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Role of Coupling Terms in Constitutive Relationships of Magnetostrictive
Materials

D. P. Ghosh1 and S. Gopalakrishnan2

Abstract: Anhysteretic, coupled, linear and nonlinear
constitutive relationship for magnetostrictive material is
studied in this paper. Constitutive relationships of mag-
netostrictive material are represented through two equa-
tions, one for actuation and other for sensing, both of
which are coupled through magneto-mechanical coeffi-
cient. Coupled model is studied without assuming any
explicit direct relationship with magnetic field. In linear-
coupled model, which is assumed to preserve the mag-
netic flux line continuity, the elastic modulus, the per-
meability and magneto-elastic constant are assumed as
constant. In nonlinear-coupled model, the nonlinearity
is decoupled and solved separately for the magnetic do-
main and mechanical domain using two nonlinear curves,
namely the stress vs. strain curve and magnetic flux den-
sity vs. magnetic field curve. This is done by two dif-
ferent methods. In the first, the magnetic flux density is
computed iteratively, while in the second, artificial neu-
ral network is used, where in the trained network will
give the necessary strain and magnetic flux density for a
given magnetic field and stress level. The effect of non-
linearity is demonstrated on a magnetostrictive rod.

keyword: Magnetostrictive Material, Magnetome-
chanical Coupling, Artificial Neural Network.

1 Introduction

Some magnetic materials (magnetostrictive) show elon-
gation and contraction in the magnetization direction
due to an induced magnetic field. This is called the
magnetostriction, which is due to the switching of a
large amount of magnetic domains caused by sponta-
neous magnetization, below the Curie point of temper-
ature. Thus magnetostrictive materials have the ability
to convert magnetic energy into mechanical energy and

1 Graduate Student
2 Associate Prof., Department of Aerospace Engineering, Indian In-
stitute of Science, Bangalore, India.

vice versa. This coupling between magnetic and me-
chanical energies represents the transudation capability
that allows a magnetostrictive material to be used in both
actuation and sensing devices. Due to magnetostriction
and its inverse effect (also called Villery effect)[Villery
(1865)], magnetostrictive materials can be used both as
an actuator and as well as a sensor.

The theoretical and experimental study of magnetostric-
tive materials has been the focus of considerable research
for many years. However, only with the recent develop-
ment of giant magnetostrictive materials (e.g. Terfenol-
D), it is now possible to produce sufficiently large strains
and forces to facilitate the use of these materials in ac-
tuators and sensors. This has led to the application
of magnetostrictive materials to such devices as micro-
positioners, vibration controller, sonar projectors and in-
sulators, etc. Magnetostrictive material has found its way
in many structural application such as vibration control,
noise control and structural health monitoring.

The use of this material in smart laminated compos-
ites for vibration suppression, is examined by many re-
searchers. Reddy and Barbosa (2000) investigated lami-
nated composite beams containing magnetostrictive lay-
ers modelled as distributed parameter systems to control
the vibration suppression. The effect of material prop-
erties, lamination scheme, and placement of the magne-
tostrictive layers on vibration suppression were investi-
gated. Pelinescu and Balachandran (2001) presented an-
alytical investigations conducted into active control of
longitudinal and flexural vibrations transmitted through
a cylindrical strut fitted with piezoelectric and magne-
tostrictive actuators. RoyMahapatra, Gopalakrishnan,
and Balachandran (2001) have used this material to sup-
press all the frequency gear box noise components for
active noise control in helicopter passenger cabin. An-
janappa and Bi (1994) have developed an integrated
model to analyze the vibration suppression capability
of a cantilever beam embedded with magnetostrictive
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mini actuator using the Euler-Bernoulli beam theory and
strain energy conservation principle. Saidha, Naik, and
Gopalakrishnan (2003) experimentally demonstrated the
use of this material for structural health monitoring of
composite beams.

One of the main issues in the design of these magne-
tostrictive sensors/actuators is to predict its behavior un-
der various mechanical and/or magnetic excitation con-
ditions through the constitutive relationship of material.
Constitutive relationship of magnetostrictive materials
consists of a sensing and an actuation equation. In sens-
ing equation magnetic flux density is function of ap-
plied magnetic field and stress where as, in actuation
equation, strain is function of applied magnetic field and
stress. Both sensing and actuation equations are coupled
through applied magnetic field and mechanical stress
level.

Analysis of smart structures using magnetostrictive ma-
terials are generally performed using uncoupled mod-
els. Uncoupled models are based on the assumption that
the magnetic field within the magnetostrictive material is
proportional to the electric coil current times the number
of coil turn per unit length [Ghosh and Gopalakrishnan
(2004)]. Due to this assumption, actuation and sensing
equations gets uncoupled. where, for actuator, the strain
due to magnetic field (which is proportional to coil cur-
rent) is incorporated as the equivalent nodal load in the fi-
nite element model for calculating the block force. Thus,
with this procedure, analysis is carried out without tak-
ing smart degrees of freedom in the finite element model.
Similarly for sensor, where generally coil current is as-
sumed zero, the magnetic flux density is proportional to
mechanical stress, which can be calculated from the finite
element results through post-processing. This assump-
tion on magnetic field, leads to the violation of flux line
continuity, which is one of the four Maxwell’s equations
in electromagnetism.

On the other hand, in coupled model, it is considered
that magnetic flux density and/or strain of the material
are functions of stress and magnetic field, without any
additional assumption on magnetic field, like uncoupled
model. Benbouzid et al. modelled the static [Benbouzid,
Reyne, and Meunier (1993)] and dynamic [Benbouzid,
Kvarnsjo, and Engdahl (1995)] behavior of the nonlinear
magneto-elastic medium for magneto-static case using fi-
nite element method. Magneto-mechanical coupling was
incorporated considering both permeability and elastic

modulus as functions of stress and magnetic field. How-
ever, all these work do not provide a convenient way
for analysis of magnetostrictive smart structure consid-
ering coupled magneto-mechanical features. This paper
deals with the constitutive relationship considering cou-
pled features of magnetostrictive materials, which can
be used in a finite element formulation considering both
magnetic and mechanical degrees as unknown degrees of
freedom. In addition, it is shown that the magnetic field
is not proportional of applied coil current (which is the
assumption of uncouple model), and it depends on the
mechanical stress on the magnetostrictive material. This
paper also shows that coupled model preserve the flux
line continuity, which is one of the drawback of uncou-
pled model.

The constitutive relations of magnetostrictive materials
are essentially nonlinear [Butler (1988)]. The predic-
tion of behavior of magnetostrictive material, in general,
is extremely complicated due to its hysteretic non-linear
character. In structural application, due to this nonlinear
material properties, modelling of the system will become
nonlinear, for which exact non-linear constitutive rela-
tionships is essential. Toupin (1956) and Maugin (1985)
had done extensive work related to electrostrictive and
piezoelectric phenomena which have similarities in form
with the magnetostriction phenomena. Earlier study to
model uncoupled nonlinear actuation of magnetostrictive
material was done by KrishnaMurty, Anjanappa, Wang,
and Chen (1999) by considering a fourth order polyno-
mial of magnetic field for each stress level. In this ap-
proach, stress level for which curve is not available, the
coefficients of the curve will have to be interpolated from
the coefficients of nearest upper and lower stress level
curves.

In this paper, Nonlinear constitutive relationship of this
material is studied considering coupled model, where
nonlinear strain and nonlinear magnetic flux density re-
sponse from magnetic field and stress is studied con-
sidering both sensing and actuation equation simulta-
neously. To reduce the complexity of nonlinearity in
magnetostrictive material, both mechanical and magnetic
nonlinearity are considered separately. In this approach
only two nonlinear curves, one for mechanical stress-
strain and other for magnetic field-flux density relation-
ships are essential to model this nonlinearity in their re-
spective domains. This paper has shown perfect decou-
pling of nonlinearity by rewriting sensing and actuation
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Figure 1 : Artificial neural network architecture

equation in terms of magnetic flux density and strain in-
stead off magnetic field and strain.

In this model magnetic flux density and strains are com-
puted from magnetic field and stress level through an it-
erative procedure due to these nonlinear curves. To avoid
this nonlinear iteration, one three layer artificial neural
network (ANN) is trained to get this nonlinear mapping
directly. ANN is an universal approximater, which can
give a nonlinear parameterize mapping from a given in-
put data to an output data. In this paper it is shown that
ANN can be used to get the direct mapping for constitu-
tive relationship of magnetostrictive materials, where in-
puts in the network are magnetic field and applied stress
level and outputs in the network are the strain and the
magnetic flux density. Hence, nonlinearity in elastic
modulus and permeability is replaced by this trained net-
work.

This paper is organized as follows. First the artificial
neural network as an universal function approximatior
is introduced. Then the anhysteretic modelling of mag-
netostrictive material for linear-coupled and nonlinear-
coupled constitutive relationships is given. In both lin-
ear and nonlinear models total mechanical and magnetic
energy is calculated for a magnetostrictive rod. Hamil-
tonian principle is used to get the equations for mag-
netic and mechanical degrees of freedoms. In linear
model, modulus of elasticity, permeability and magneto-
mechanical coefficient of magnetostrictive rod are con-
sidered as constant. In nonlinear model, nonlinear stress-

strain and magnetic flux density-magnetic field rela-
tionships is assumed to predict highly nonlinear behav-
ior of magnetostrictive materials. Even in this case,
the magneto-mechanical coefficient is taken as constant.
Using this model the strain and magnetic flux density
is computed from applied stress level and coil current
through iterative procedure. As the nonlinear-coupled
model requires iteration to get magnetic flux density and
strain from applied stress and coil current, one artificial
neural network is trained to avoid the iteration or for at
least to get a initial guess for the iteration. Next the ANN
model is discussed. One three layer with 4 nodded hid-
den layer ANN is trained using some sample data, which
are generated through above mentioned iterative proce-
dure. This trained network predicts strain and magnetic
flux density from stress level and magnetic field. Fi-
nally, comparative study is done for linear, polynomial-
nonlinear, ANN results with experimental data given in
Etrema manual. The paper is then concluded with some
specific observation.

2 Artificial Neural Network (ANN)

Artificial neural networks can provide non-linear param-
eterized mapping between a set of inputs and a set of out-
puts with unknown function relationship. A three-layer
network (Figure-1) with the sigmoid activation functions
can approximate any smooth mapping. A typical super-
vised feed-forward multi layer neural network is called
as a back propagation (BP) neural network. The structure
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Figure 2 : Magnetostriction and magneto-mechanical coupling vs. magnetic field supplied by Etrema

of a BP neural network shown in Figure-1 mainly include
an input layer for receiving the input data; some hidden
layer for processing data; and an output layer to indicate
the identified results. In this study, the tusk of identifying
nonlinear magnetostriction through ANN is performed
by training the neural network using the known samples.

2.1 Training Of Network

The training of a BP neural network is a two-step pro-
cedure [Rumelhart, Hinton, and Williams (1986)]. In
the first step, the network propagates input through each
layer until an output is generated. The error between the
output and the target output is then computed. In the sec-
ond step, the calculated error is transmitted backwards
from the output layer and the weights are adjusted to
minimize the error. The training process is terminated
when the error is sufficiently small for all training sam-
ples. In practical applications of the back-propagation
algorithm, learning is the result from many presentations
of this training examples to the multi-layer perceptron.
One complete presentation of the entire training set dur-
ing the learning process is called an epoch. The learning
process is maintained on an epoch-by-epoch basic until
the synaptic weights and bias levels of the network stabi-
lizes and the averaged squared error over the entire train-
ing set converges to some minimum value. For a given
training set, back-propagation learning can be done in se-
quential or batch mode.

2.2 Validation Of Trained Network

To validate the trained network, the data set is separated
into two parts, one for training and the other for testing
the network performance. The network will be trained
using training sample and the trained network will be val-
idated with the test sample. A network is said to gener-
alize well when the input-output mapping computed by
the network, is corrected with the test data that was never
used in creating or training the network. Although the
network performs useful interpolation, because of multi-
layered perceptrons with continuous activation functions,
it leads to output functions that are also continuous.

3 Anhysteretic Coupled Constitutive Model.

Here experimental data is taken from Etrema manual
[Butler (1988)] for Terfenol-D, a giant magnetostrictive
material to verify the proposed model. Experimental data
of magnetostriction vs. magnetic field for different stress
level given in the manual is reproduced in Figure-2 and
stress vs. strain curves for different magnetic field level
is reproduced in Figure-3.

Application of magnetic field causes strain in the mag-
netostrictive material (Terfenol-D) and hence the stress,
which changes magnetization of the material. As de-
scribed by Butler (1988), Moffett, Clark, Wun-Fogle,
Linberg, Teter, and McLaughlin (1989), and Hall and
Flatau (1994), the three-dimensional coupled constitutive
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Figure 3 : stress and Q vs. strain relationship for different H level supplied by Etrema

relationship between magnetic and mechanical quantities
for magnetostrictive material are given by

{ε} = [S(H)]{σ}+[d]T{H} (1)

{B}= [µ(σ)]{H}+[d]{σ} (2)

where {ε} and {σ} are strain and stress respectively.
[S(H)] represents elastic compliance measured at constant
{H} and [µ(σ)] represents the permeability measured at
constant stress {σ} . Here [d] is the magneto-mechanical
coupling coefficient, which provides a measure of the
coupling between the mechanical strain and magnetic
field. In general, [S], [d] and [µ] are nonlinear as they
depend upon {σ} and {H}.

Equation-(1) is often referred to as the direct effect and
Equation-(2) is known as the converse effect. These
equations are traditionally used for actuation and sensing
purpose, respectively. It should be noted that the elas-
tic constants used, correspond to the fixed magnetic field
values and the permeability correspond the fixed stress
values.

3.1 Coupled Constitutive Model.

Analysis of smart structures using magnetostrictive ma-
terials as either sensors or actuators has traditionally been
performed using uncoupled models. Uncoupled models
make the assumption that the magnetic field within the
magnetostrictive material is constant and proportional to

the electric coil current times the number of coil turn per
unit length [Ghosh and Gopalakrishnan (2004)]. Hence
actuation and sensing problems are solved by two un-
coupled equations, which are given by the last part of
equations (1) and (2), respectively. This makes the anal-
ysis relatively simple, however this method has its lim-
itations. It is quite well known that [S], [d] and [µ] all
depend on stress level and magnetic field. In the pres-
ence of mechanical loads, the stress changes and so is
the magnetic field. Estimating the constitutive properties
using uncoupled model in such cases will give inaccurate
predictions. Hence, the constitutive model should be rep-
resented by a pair of coupled equations given by Equa-
tion (1) & (2) to predict the mechanical and magnetic re-
sponse. It is therefore necessary to simultaneously solve
for both the magnetic response as well as the mechani-
cal response regardless of whether the magnetostrictive
material is being used as a sensor or actuator. Due to
in-built non-linearity, the uncoupled model may not be
capable of handling certain applications such as (1) mod-
elling passive damping circuits in vibration control and
(2) development of self-sensing actuators in structural
health monitoring. In these applications, the coupled
equations requires to be solved simultaneously. The so-
lution of coupled equations simultaneously is a necessity
for general-purpose analysis of adaptive structures built
with magnetostrictive materials.

In general, the errors that result from using uncoupled
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models, as opposed to coupled ones, are problem depen-
dent. There are some cases where very large differences
exist in situation, where an uncoupled model is used over
a coupled model [Ghosh and Gopalakrishnan (2002)].

In this work, the coupled case is analyzed with both
linear and non-linear model. In linear-coupled model,
magneto-mechanical coefficient, elasticity matrix and
permeability matrix are assumed as constant. In
nonlinear-coupled model, mechanical and magnetic non-
linearity are decoupled in their respective domains. The
nonlinear stress-strain relationship is generally repre-
sented by modulus of elasticity and the nonlinear mag-
netic flux-magnetic field relationship represented by per-
meability of the material. Magneto-mechanical coupling
coefficient will be assumed as constant in this case.

3.1.1 Linear Model:

From Equation-(1) and Equation-(2), the 3D constitutive
model for the magnetostrictive material can be written as

{σ} = [Q]{ε}− [e]T{H} (3)

{B}= [e]{ε}+[µε]{H} (4)

Where [Q] is Elasticity matrix, which is the inverse of
compliance matrix [S], [µε] is the permeability at constant
strain. [µε] and [e] are related to [Q] through

[e] = [d][Q] (5)

[µε] = [µσ]− [d][Q][d]T (6)

For ordinary magnetic materials, where magnetostrictive
coupling coefficients are zero, [µε]=[µσ], the permeabil-
ity.

Consider a magnetostrictive rod element of length L, area
A, with Young modulus Q. If a tensile force F is applied
the rod develops a strain ε, and hence a stress σ. Total
strain energy in the rod will be

Ve =
1
2

∫
εσdv =

1
2

∫
ε{Qε−eH}dv

=
1
2

∫
εQεdv− 1

2

∫
εeHdv

=
1
2

ALQε2 − 1
2

ALeεH (7)

Magnetic potential energy in magnetostrictive rod is

Vm =
1
2

∫
BHdv =

1
2

∫
{eε+µεH}Hdv

=
1
2

∫
εeHdv+

1
2

∫
HµεHdv

=
1
2

ALHeε+
1
2

ALµεH2 (8)

Magnetic external work done for N number of coil turn
with coil current I is

Wm = INµσHA (9)

Mechanical External work done is

We = FεL (10)

Total potential energy of the system comes Tp = −(Ve −
We)+(Vm −Wm).

Tp = −1
2

ALQε2 +
1
2

ALeεH

+
1
2

ALHeε+
1
2

ALµεH2 − INµσHA+FεL (11)

Using Hamilton’s Principle, δ(
∫

t1
t2

Tp dt) = 0 two equa-
tions in terms of H and ε, will come.

−ALQε+ALeH +FL = 0 (12)

ALeε+ALHµε − INµσA = 0 (13)

Dividing both equations by AL, equations will be

−Qε+eH = −F
A

(14)

eε+Hµε =
INµσ

L
(15)

As right hand side of Equation-15 is not function of ε and
left hand side is magnetic flux density (Equation-4), the
magnetic flux density in this model is not function of ε.
Hence, it is preserving the flux line continuity.

Eliminating H from Equation-14 and substituting this in
Equation-15, stress - strain relationship of the magne-
tostrictive material can be written as follows.

H = (Qε−F/A)/e (16)
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Figure 4 : Ratio of two permeabilities (r) with different values of permeability vs. modulus of elasticity (left) and
modified elasticity (right), considering d=15X10−9 m/Amp .

ε =
INµσAe+LµεF
ALe2 +ALµεQ

=
INµσeA+FµεL

ALµσQ
(17)

From Equation-17, total strain for applied coil current I
and tensile stress F/A can be written as

ε = λ+εσ (18)

where λ is the strain due to coil current, which is called
the magnetostriction, and εσ is the strain due to tensile
stress (elastic strain).

λ =
INµσAe
ALµσQ

= INd/L (19)

εσ =
LµεF

ALµσQ
=

F
AQ∗ (20)

Let Q∗ be the modified elastic modulus and substituting
the value of e and µε from Equation-5 and Equation-6,
Q∗ will be

Q∗ =
Qµσ

µε =
Qµσ

µσ −d2Q
= Q+

e2

µε (21)

If the value of µσ is much greater than d2Q, µε can be
assumed equal to µσ and Q∗ can be assumed as equal to
Q. If the value of µσ is much greater than d2Q the total
strain of the rod will be same as for the uncoupled model.

The first term in the above expression is the strain due to
magnetic field, and the second term is the strain due to
the applied mechanical loading. However, for Terfenol-
D [Butler (1988)], the value of d2Q is comparable with
µσ. Substituting the value of strain from Equation-17 in
the Equation-16, the value of magnetic field will be

H =
F
Ae

(1− µε

µσ )+
IN
L

(22)

Note that although the magnetostriction value (INd/L)
in Equation-19 is same for coupled and uncoupled case,
the value of magnetic field is different.

Assuming r as the ratio of two permeabilities or two elas-
tic module. From Equation-(21), r can be written as.

r =
µσ

µε =
Q∗

Q
(23)

If the value of r is one, result of coupled analysis is sim-
ilar with uncoupled analysis. In Figure-4, the value of r
is shown in contour plot for different values of constant
strain permeability and modulus of elasticity considering
coupling coefficient as 15X10−9 m/Amp. In the left fig-
ure, value of r is shown for different values of permeabil-
ity and elastic modulus. In the right figure, value of r is
shown for different values of permeability and modified
elasticity. In these plots it is clear that for a particular
value of elasticity if the value of permeability increase,
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Figure 6 : Ratio of two permeabilities (r) with different values of coupling coefficient vs. modulus of elasticity (left)
and modified elasticity (right), considering µε = 7X10−6 henry/m.

the value of r will decrease. But for a particular value of
permeability, if the value of elasticity increase the value
of r will increase. In Figure-5, the value of r is shown
in contour plot for different value of permeabilities and
coupling coefficient considering module of elasticity as
15GPa. In the left figure, value of r is given for different
values of constant strain permeability and coupling coef-
ficient. In the right figure, value of r is shown for differ-

ent values of constant stress permeability and coupling
coefficients. In these plots it is clear that for a particular
value of permeability, if the value of coupling coefficient
increase the value of r will increase. But for a particular
value of coupling coefficient if the value of permeability
increase, the value of r will decrease. In Figure-6, the
value of r is shown in contour plot for different value of
elasticities and coupling coefficient considering constant
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strain permeability as 7X10−6 henry/m. In the left figure,
value of r is given for different values of modulus of elas-
ticities and coupling coefficient. In the right figure, value
of r is shown for different values of modified elasticities
and coupling coefficients. In these plots it is clear that for
a particular value of elasticity, if the value of coupling co-
efficient increase the value of r will increase. Similarly,
for a particular value of coupling coefficient if the value
of elasticity increase, the value of r will increase.

From experimental data given in Etrema manual [Butler
(1988)], the best value of Q, µσ and d is calculated, which
will minimize the difference between experimental data
and the data according to Equation-(17) by least square
approach. In the first set of experimental data, only mag-
netostriction values was reported, which is expressed in
Equation-(19). The value of coupling coefficient is cal-
culated minimizing the total square error, λError.

λError = ∑ (λexp −λ)2 (24)

Similarly in the second set of experimental data, strain
due to compressive stress (εσ) was reported. The ex-
pression for the value of elastic strain, εσ is given in
Equation-(20). In this expression, the value of Q∗ is cal-
culated minimizing the total square error εError

σ .

εError
σ = ∑ (εexp

σ −εσ)2 (25)

From Equation-(24), using first set of experimental data
(plotted in Figure-2), the value of d was calculated as
14.8X10−9 (m/amp). From Equation-25, using the sec-
ond set of experimental data (plotted in Figure-3), the
value of Q∗ is 33.4 GPa. Assuming constant strain per-
meability (µε) of the material is 7X10−6 henry/m, the
value of r is 1.6, constant stress permeability (µσ) is
11.2X10−6 henry/m and Q is 20.8 GPa. From these
study it is clear that for giant magnetostrictive material,
like Terfenol-D, coupled analysis will give better result
than uncouple analysis. But for magnetostrictive mate-
rial with low coupling coefficient, the uncouple analysis
will give similar result with couple analysis.

The coupled linear model cannot model the high nonlin-
earity of magnetostriction λ, which is required for design
of actuator. Even considering nonlinear magnetic (mag-
netic field-magnetic flux) and mechanical (stress-strain)
relationships with linear coupling coefficient, nonlinear
relationships of magnetostriction cannot be modelled as
it is a function of coil current, coil turn per unit length of

actuator and magneto-mechanical coefficient (Equation-
19). In the next section, we introduce a nonlinear model
with a constant coupling coefficient, which can model the
non-linear constitutive model exactly for constant mag-
netic coupling.

3.1.2 Nonlinear coupled model.

The model developed in this section is based on a cou-
pled magneto-mechanical formulation, which allows ac-
curate prediction of both the mechanical and the mag-
netic response of a magnetostrictive device with nonlin-
ear magnetic and mechanical properties. Non-linearity
in this model is introduced using two nonlinear curves,
one for stress-strain relation and the second for magnetic
field-magnetic flux relation, which enables to decouple
the non-linearity in mechanical and magnetic domains.
Magneto-mechanical coefficient is considered as a real
parameter scalar value. Two-way coupled magneto-
mechanical theory is used to model magnetostrictive ma-
terial. The formulation starts with the constitutive re-
lations. In earlier coupled-linear model, stress (σ) and
magnetic flux density (B) was expressed as a function
of the components of strain (ε) and magnetic field (H)
as per Equation-(3) and Equation-(4). Main draw back
with such an approach is that the non-linearity between
magnetic domain (µε) and mechanical domain (Q)are not
uncoupled. Hence, it is difficult to model non-linearity in
earlier representation. To address these issues, a different
approach is used in which Equation-(3) and Equation-(4)
are rearranged in terms of the mechanical strain (ε) and
the magnetic flux density (B). In doing so, the mechan-
ical non-linearity is limited to stress-strain relationship
and magnetic non-linearity is limited to magnetic field-
magnetic flux relationship.

One-dimensional nonlinear modelling is again studied
using one-dimensional experimental data from Etrema
manual. The constitutive equation can now be rewritten
in terms of magnetic flux density (B) and strain (ε), as

σ = Eε− f T B (26)

H = − f ε+gB (27)

Where

g = (µε)−1

f = gdQ = e/µε (28)

E = Q+Qd f = Q∗



222 Copyright c© 2004 Tech Science Press CMC, vol.1, no.3, pp.213-227, 2004

Like linear case, considering a magnetostrictive rod ele-
ment of length L, area A, applied tensile force F , strain
ε, stress σ, elastic modulus E. Total strain energy in the
rod will be

Ve =
1
2

ALεσ =
1
2

ε(Eε− f B)

=
1
2

ALEε2 − 1
2

ALε f B (29)

Magnetic potential energy in magnetostrictive rod is

Vm =
1
2

ALBH =
1
2

AL(− f ε+gB)H

= −1
2

ALB f ε+
1
2

ALgB2 (30)

Magnetic external work done for N turn coil with coil
current I is

Wm = INBA (31)

Mechanical External work done is

We = FεL (32)

Total potential energy of the system is equal to T p =
−Ve−V m+W m+We.

Tp = −1
2

ALEε2 +ALε f B− 1
2

ALgB2 + INBA+FεL (33)

Using Hamilton’s Principle like linear model, two equa-
tion of B and ε will be get

−ALEε+AL f B+F L = 0 (34)

ALε f −ALgB+ INA = 0 (35)

Dividing by Volume, AL Equation-(34) and Equation-
(35) will become

Eε− f B =
F
A

(36)

− f ε+gB =
IN
L

(37)

Eliminating B from Equation-(36) and substituting this
in Equation-(37), stress-strain relationship for the mag-
netostrictive material can be obtained.

B =
Eε−F/A

f
(38)

ε =
F/A+ IN f/(gL)

E − f 2/g
(39)

Assuming E∗ as the magnetically free elastic modulus

E∗ = E − f 2/g = Q (40)

Total strain for applied coil current I and tensile force, F
will be

ε =
IN f

(gLE∗)
+

F
AE∗ (41)

Here E = Q∗ is the elastic modulus for a magnetically
stiffened rod and Q = E∗ is for magnetically flexible rod.
Magnetically stiffened means that the magnetic flux B=0
in side the rod as rod is wound by short circuited coils.
Magnetically flexible means the rod is free from any coil.
E-Q relation can be obtained form Equation-(28).

To model the one-dimensional nonlinear magnetostric-
tive stress-strain and magnetic field-magnetic flux rela-
tionships, Equation-(26) and Equation-(27) can be writ-
ten as,

E(ε)− f B = σ (42)

− f ε+g(B) =
IN
L

(43)

Where f is the real parameter of scalar value, and ε -
E(ε), B - g(B) are two real parameter nonlinear curves.
The basic advantage of this model is that only two non-
linear curves are required for representing nonlinearity
reported in different stress levels. As opposed to this ap-
proach, in straight forward polynomial representation of
magnetostriction [KrishnaMurty, Anjanappa, Wang, and
Chen (1999)] one requires single nonlinear curve for ev-
ery stress level. To get the coefficients of two nonlinear
curves and the value of real parameter f , experimental
data from Etrema manual [Butler (1988)] is used. From
strain, applied coil current and stress level available in
the manual, these coefficients are evaluated. Consid-
ering modulus elasticity as 30GPa, and f as 75.3X106

m/Amp as an initial guess, the values of magnetic flux
density, B are calculated from Equation-(42). Similarly
from Equation-(43), values of g(B) are evaluated. From
these B and g(B) values, curves of B−g(B) is computed.
This curve is used to get mechanical relationship. Here,
the value of B is computed from B− g(B) relationship.
And from this value of B, using Equation-(42), values of
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Figure 7 : Stress-Strain and magnetic field-flux curves.

Table 1 : Coefficients for sixth order polynomial.
c d a b

6 0 0 4.5419e+28 1.5853e-50
5 -2.1687e+06 -1.9526e-27 7.6602e+25 -6.1288e-44
4 1.5211e+06 1.1589e-21 -4.2662e+22 -1.0355e-34
3 3.5828e+05 -2.0047e-16 -6.6788e+19 -4.0508e-27
2 -2.1062e+05 2.0096e-12 2.3911e+16 1.0806e-19
1 2.2754e+05 4.7789e-06 1.2539e+13 2.7977e-11
0 -8.8129e+03 4.4239e-02 3.3893e+10 -1.9704e-05

E(ε) is calculated. From the E(ε) and ε values, the me-
chanical nonlinear curve of ε−E(ε) relationship is com-
puted. In summery, first the magnetic nonlinear curve
is evaluated from mechanical nonlinear curve and me-
chanical nonlinear curve is evaluated from magnetic non-
linear curve with the help of experimental data given in
Etrema manual [Butler (1988)]. This iteration will con-
tinue till both mechanical curve and magnetic curve con-
verges. Thus, with the help of experimental data given in
Etrema manual [Butler (1988)] and Equations-(42) and
(43), nonlinear mechanical and magnetic relationship is
evaluated. Initial values of modulus of elasticity and f
are computed on trial and error basis.

For sensor device, where coil current is assumed as zero,
strain and the value of magnetic flux due to the applica-
tion of stress is given by

ε =
g(B)

f
(44)

B =
E(ε)−σ

f
(45)

Nonlinear curves for magnetic and mechanical properties
are shown in Figure-7. These two nonlinear curves are
represented as sixth order polynomial given in Equation-
(46) and Equation-(47). Coefficients of these polynomi-
als curves are given in Table-1, where unit of B is tesla,
g(B) is Amp/m and E(ε) is Pa. The value of magneto-
mechanical coupling parameter ( f ) is 75.3X106 m/amp,
which is reciprocal of 13.3X10−9 amp/m.

g(B) = c5 ∗B5 + ..+c1 ∗B+c0

B = d5 ∗g(B)5 + ..+d1 ∗g(B)+d0 (46)

E(ε) = a6 ∗ ε6 + ..+a1 ∗ ε+a0

ε = b6 ∗E(ε)6 + ..+b1 ∗E(ε)+b0 (47)

On the basis of these two curves given in Equation-
(46) and Equation-(47) and parameter ( f ), strain, mag-
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Figure 8 : Magnetic field-strain in different stress level.

netostriction vs. applied magnetic field for different
stress level are plotted in Figure-8. The experimental
data of strain-magnetic field relationships for different
stress level is almost matching with this model. Sim-
ilarly strain-compressive force and elastic modulus for
different magnetic field level is plotted in Figure-9. Elas-
tic modulus is initially decreases and then increases for
each magnetic field level, which is also reported in Butler
(1988).

Calculation of Flux and Strain from Coil Current and
Stress: As two nonlinear curves are related in these re-
lationships, the calculation of magnetic flux and strain
from stress and coil current is an iterative procedure. Ini-
tially, the value of magnetic flux, B is assumed a certain
value. From B−g(B) curve, the value of g(B) is evalu-
ated. From Equation-(37) the value of strain is evaluated
considering magnetic field as coil current times coil turn
per unit length of actuator. Using this strain, from the
ε −E(ε) curve the value of E(ε) can be found. From
Equation-(36), the value of B can be determined. If this
B value is not same as assumed, this iteration will be con-
tinued until the value converges.

3.1.3 ANN model.

To avoid iterative procedure mentioned in nonlinear
model, one three layer artificial neural network is devel-
oped, which gives direct nonlinear mapping from mag-
netic field and stress to magnetic flux density and strain.

Standard logistic function y = 1/(1 + e−1.7159v) is used
in hidden layer as activation function with linear output
layer. Input (stress and magnetic field) and output (strain
and magnetic flux density) data is normalized for better
performance of network.

σn =
(σ−σmean)

(max|σ|−σmean)
(48)

Hn =
(H −Hmean)

(max|H|−Hmean)
(49)

εn =
(ε−εmean)

(max|ε|−εmean)
(50)

Bn =
(B−Bmean)

(max|B|−Bmean)
(51)

σn, the normalized stress is calculated using Equation-
(48). The value of σmean and (max|σ| − σmean) are
−1.57966X107 and 0.830345X108 Pa respectively. Sim-
ilarly Hn is normalized magnetic field, is calculated from
Equation-(49). The value of Hmean and (max|H|−Hmean)
in Equation-(49) are both 750 Oe. Normalized strain εn

is the output of network, from which strain is calculated
using Equation-(50). The value of εmean and (max|ε| −
εmean) are 0.203245X10−03 and 0.106504X10−02 respec-
tively. In Equation-(51) the value of Bmean is 0.385126
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Figure 9 : Stress and modulus vs. strain curves for different field level.

tesla and the value of (max|B|−Bmean) are 0.319818 and
0.499656 tesla respectively.

Table 2 : Connection between input layer and hidden
layer.

Input Layer Hidden Hidden Hidden Hidden
Neurons Node 1 Node 2 Node 3 Node 4

Hn 4.6187 -2.1241 -.15066 .38726
σn 1.2866 -1.3195 -.43318 .031765

Input Bias 2.2483 -.25721 -.61579 .088719

To train this network some training and validation sam-
ples are generated through iterative process stated earlier.
Weight and bias parameter of the trained network is given
in Table-2 and Table-3. Different validation studies are
also carried out.

Table 3 : Connection between hidden layer and output
layer.

Output Layer Neurons εn Bn

Hidden Node 1 .63447 .67409
Hidden Node 2 -.53313 -.23172
Hidden Node 3 -.69546 -.071654
Hidden Node 4 .48235 2.1900

Output Bias Node -.29930 -1.5467

3.2 Comparison Between Different Coupled Models.

Comparative study of different models are done taking
a magnetostrictive rod with varying magnetic field and
stress level. Three different stress levels (6.9 MPa,15.1
MPa and 24.1MPa) are taken to compute the total strain
and magnetic flux density in the rod for varying magnetic
field level and shown in Figure-10. In the left Figure, to-
tal strain is shown according to linear, polynomial, ANN
and experimental approaches. Both polynomial and
ANN approach is showing close result with the experi-
mental data throughout the magnetic field range. Where
as in linear model, results are not matching with the ex-
perimental data throughout the magnetic field range. But,
this model can be used in low magnetic field level for
medium stress level and in medium field level for high
stress level. For low stress level, linear model can be
used on an average sense. In the absence of experimen-
tal data (Etrema manual) of magnetic flux density, only
computational results are shown in right figure. Mag-
netic flux density is shown according to linear, polyno-
mial and ANN approach. Similar to strain result, results
of ANN model and polynomial model are in excellent
agreement. However, the results of linear model is not
matching through out the magnetic field range. In lin-
ear model, for medium stress level in low magnetic field
level magnetic flux density is matching with the nonlin-
ear model. For high and low stress level, linear model
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Figure 10 : Strain and magnetic flux density for different stress level.

can be used in an average sense.

4 Conclusions

This study is mainly intended for anhysteretic linear and
nonlinear, coupled constitutive relationship of magne-
tostrictive material. Coupled model is studied without
assuming any direct relationship of magnetic field unlike
uncoupled model. In linear-coupled model elastic mod-
ulus, permeability and magnetoelastic constant is con-
sidered as constant. But this model cannot predict the
highly nonlinear properties of magnetostrictive material.
In nonlinear-coupled model, nonlinearity is decoupled in
magnetic domain and mechanical domain using two non-
linear curves for stress-strain and magnetic flux density-
magnetic field intensity. In this model, the computation
of magnetostriction requires the value of magnetic flux
density, which comes through an iterative process for
nonlinearity of curves. To avoid this iterative computa-
tion one three layer artificial neural network is developed,
which will give nonlinear mapping from stress level and
magnetic field to strain and magnetic flux density. Fi-
nally, comparative study of linear, polynomial and ANN
approach is done and shown that linear coupled model
can predict the constitutive relationships in an averaged
sense only. Nonlinear models are shown to predict ex-
perimental results exactly throughout the magnetic field
range.
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