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An Assumed Strain Triangular Solid Element for Efficient Analysis of Plates and
Shells with Finite Rotation

J. H. Kim1, Y. H. Kim1, and S. W. Lee2

Abstract: A simple triangular solid shell element for-
mulation is developed for efficient analysis of plates and
shells undergoing finite rotations. The kinematics of the
present solid shell element formulation is purely vecto-
rial with only three translational degrees of freedom per
node. Accordingly, the kinematics of deformation is free
of the limitation of small angle increments, and thus the
formulation allows large load increments in the analysis
of finite rotation. An assumed strain field is carefully
selected to alleviate the locking effect without trigger-
ing undesirable spurious kinematic modes. In addition,
the curved surface of shell structures is modeled with flat
facet elements to obviate the membrane locking effect.
Various numerical examples demonstrate the efficiency
and accuracy of the present element formulation for the
analysis of plates and shells undergoing finite rotation.
The present formulation is attractive in that only three
points are needed for numerical integration over an ele-
ment.

keyword: Triangular solid shell element, assumed
strain formulation, finite rotations

1 Introduction

In the last two decades, a substantial number of formu-
lations have been presented to improve the performance
of the finite elements designed for analysis of plate and
shell structures. These elements can be classified by their
planar geometry into two types: triangular elements and
quadrilateral elements. As far as the modeling of arbi-
trary geometry is concerned, the triangular elements are
more advantageous than the quadrilateral elements be-
cause of the conveniences in local mesh refinement and
automatic mesh generation [Peraire, Vahdati, Morgan,
and Zienkiewicz (1987), Nambiar, Valera, and Lawrence
(1993)].
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However, the triangular elements, as well as the quadri-
lateral elements, suffer from the locking effect that
severely deteriorates the computational performance of
the finite element models unless appropriate remedies
are implemented. To construct triangular element mod-
els free of the locking effect, numerous approaches have
been investigated and reported. For example, the dis-
crete Kirchhoff plate theory [Sze, Zhu, and Chen (1997),
Murthy and Gallagher (1986)], the flat facet triangular
element concept [Allman (1994)], the stabilization ma-
trix method [Fish and Belytschko (1992), Cook (1993)]
and the assumed strain formulation [Kim, Kim and Lee
(2000)] have been proposed to reduce the locking effect
of the triangular element in the linear analysis of plates
and shells.

Since the finite element method evolved, many re-
searchers have had great concerns on the efficient anal-
ysis when dealing with the structures with finite ro-
tations. Recently, a bunch of studies presented some
improvements on the analysis of the finite rotation of
beams [Beda (2003), Ijima, Obiya, Iguchi and Goto
(2003), Iura, Suetake, and Atluri (2003), Lin and Hsiao
(2003), Okamoto and Omura (2003), Zupan and Saje
(2003), Ibrahimbegovic and Knopf-Lenoir (2003), Go-
tou, Kuwataka, Nishihara and Iwakuma (2003)] and
shells [Basar AND Kintzel (2003), Briseghella, Majo-
rana, and Pavan (2003), Suetake, Iura, Atluri (2003)].

The finite element formulations involving triangular el-
ements also have been applied to the analysis of plates
and shells undergoing finite rotation. More recent stud-
ies can be found in the works by Onate, Zarate, and Flo-
res (1994), Poulsen and Damkilde (1996) and Keulen
and Booij (1996) among others. Onate, Zarate, and Flo-
res (1994) have developed a triangular element with six
rotational degrees of freedom (DOF) at mid-side nodes.
Poulsen and Damkilde (1996) proposed a flat triangular
shell element with rotational DOF at loop nodes. In ad-
dition, Keulen and Booij (1996) constructed a 12-DOF
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flat facet triangular element in which mid-side rotation
is replaced with relative rotation. These elements show
fairly high accuracy in the analysis of geometrically non-
linear behavior of plates and shells. However, the con-
ventional shell elements involving rotational DOF often
require too many load steps due to their innate assump-
tion of small angle increments. As demonstrated by Lee
and his associates [Kim and Lee (1988), Park, Cho, and
Lee (1995)] with a quadrilateral element, this shortcom-
ing can be overcome through the solid shell element ap-
proach. In this approach shells are treated as a three-
dimensional solid and a solid element tailored for shell
analysis is constructed, based on the assumed strain for-
mulation. As an alternate approach that allows thickness
change, Simo, Fox, and Rifai (1990) introduced a shell
element formulation with stretchable directors through
thickness.

In the present paper, a simple triangular solid shell ele-
ment formulation is developed for analysis of shells un-
dergoing finite rotation. For this, the 36-DOF triangular
solid shell element presented in Reference 7 for linear
analysis is extended to geometrically nonlinear analysis.
The curved shell geometry is modeled with flat facet tri-
angles to obviate the membrane locking effect [Allman
(1994), Poulsen and Damkilde (1996), Stolarski and Be-
lytschko (1983)]. By adopting the kinematics of the solid
element approach, the present triangular element formu-
lation is expected to allow load increments much larger
than is possible for the conventional shell formulation
with the rotational parameters. The finite element formu-
lation is based on the assumed strain approach in which
an independently assumed strain field is introduced to
reduce the locking effect without triggering detrimental
spurious kinematic modes [Kim, Kim, and Lee (2000),
Lee and Pian (1978)].

Numerical tests with various examples undergoing finite
rotations are conducted to demonstrate the efficiency and
accuracy of the present triangular solid shell element.

2 Finite element formulation

2.1 Triangular solid element configuration and kine-
matics

Fig. 1 shows the present 12-node triangular solid ele-
ment with six nodes on both top and bottom surfaces.
Each node has only three translational DOF, resulting in
an element with 36 DOF. The difference of the displace-

ment vectors between top and bottom surface nodes can
be related to the rotations around the inplane vectors on
the midsurface. Alternatively, through the use of proper
kinematic relationship, the element can be transformed
into a six node with six DOF per node.
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Figure 1 : Twelve node triangular solid element,
3DOF/node

2.2 Equilibrium equation and compatibility equation

For a solid in equilibrium, the virtual work is expressed
in integral form as follows:
∫

(δE)T SdV − δW = 0 (1)

In equation (1), δE is the virtual strain vector, S is the sec-
ond Piola-Kirchhoff stress vector, δW is the virtual work
done due to external load. Superscript T stands for vec-
tor or matrix transpose, and the integration is performed
over the volume of the undeformed configuration. Intro-
ducing the independently assumed strain vector E, the
compatibility equation is expressed in integral form as
follows:∫

(δS)T (E − E)dV = 0 (2)

The stress-strain relationships for elastic material is ex-
pressed such that:

S = C E (3)

where C is the 6x6 elastic constitutive matrix. To be
consistent with the kinematics of shell deformation, the
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constitutive matrix is reformed such that there is no cou-
pling between the inplane normal strains and the trans-
verse normal stress [Kim, Kim, and Lee (2000), Kim and
Lee (1988)].

Substituting equation (3) into equations (1) and (2), the
equilibrium and compatibility equation can be expressed
in terms of displacement-dependent strain vector and in-
dependently assumed strain vector as follows:
∫

(δE)T C EdV − δW = 0 (4)

∫
(δE)T C(E − E)dV = 0 (5)

For iterative solution techniques in nonlinear analysis,
the nodal degrees of freedom vector qe are expressed in
incremental form as follows:

qe = kqe +Dqe (6)

where kqe represents the resulting nodal degrees of free-
dom vector after the k-th iteration, Dqe is incremen-
tal nodal degrees of freedom vector at current iteration,
and the variables with subscript e indicate the elemen-
tal quantities. Then, the displacement-dependent strain
vector is expressed as

E = kE +Dε+Dη (7)

where kE is the resulting strain vector obtained after the
k-th iteration, Dε and Dη represent the strain vectors that
are linear and nonlinear in incremental displacement, re-
spectively. For the linearized iteration of the Newton-
Raphson method, Dη is neglected hereafter.

Similarly, the virtual strain vector is expressed as:

δE = δε+δη (8)

The independently assumed strain vector in incremental
form and its virtual vector are expressed as follows:

E = kE+Dε (9)

δE = δε (10)

Substituting Eqs. (7-9) into Eq. (4) and neglecting high
order terms, the equlibrium equation can be reformed as

∑
e

∫ [
δεT C Dε+δηT C kE + δεT C kE

]
dV

= ∑
e

δWe (11)

where the notation ∑ with subscript e stands for summa-
tion over elements.

Similarly, using Eqs. (7), (9), (10) and neglecting high
order terms, Eq. (5) of compatibility condition can be
expressed as follows:

∑
e

∫ [
δεT C(kE− kE)

]
dV

+∑
e

∫ [
δεT CDε

]
dV − ∑

e

∫ [
δεT C Dε

]
dV = 0

(12)

Using nodal interpolation function, the incremental strain
vector can be symbolically expressed as

Dε = B Dqe (13)

where B is a 6x36 matrix relating the strain vector to the
nodal displacement vector. In a similar manner, the vir-
tual strain vectors, δε and δη, are expressed as:

δε = B δqe (14)

δη = δqeRDqe (15)

where δqe is the virtual nodal degree of freedom vector,
and the matrix R is obtained from the nonlinear strain-
displacement relations.

The incremental assumed strain vector Dε and the virtual
strain vector δε can be expressed as:

Dε = PDα (16)

δε= Pδα (17)

where P(ξ,η,ζ) is the assumed strain interpolation ma-
trix defined in parent coordinate system and α is the as-
sumed strain parameter vector.

Substituting equations (13), (16), (17) into equation (12)
leads to the following relation:

∆α = H−1GDqe + H−1F (18)

where

F =
∫

PT C (kE− kE)dV (19)

G =
∫

PT C BdV (20)

H =
∫

PT C PdV (21)
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Using equations. (14-16) and (18), equation (11) for the
linearized equilibrium equation becomes

∑
e

δqT
e (KeDqe − DQe) = 0 (22)

where the stiffness matrix and load vector at element
level is

Ke = GT H−1G+KS (23)

DQe = Qa − GT H−1F− kQ (24)

The initial stress stiffness matrix KS is constructed based
on the current stress obtained after the k-th iteration. The
initial stress load vector kQ and the external load vector
Qa are defined as

kQ =
∫

BT C kEdV (25)

δWe = δqT
e Qa (26)

After assembling over all elements, equation (22) be-
comes

KDq = DQ (27)

which can be solved for Dq.

3 Assumed strain

3.1 Assumed strain field

In the present formulation the assumed strain fields are
tailored to alleviate the locking effect while maintaining
kinematic stability. In order to reduce locking, the as-
sumed strain field must be chosen as simple as possible.
However, an oversimplified strain field may trigger detri-
mental spurious kinematic modes. The assumed strain
field chosen for the present investigation is as follows
[Kim, Kim and Lee (2000)]:

Exx = α1 +α2ξ +α3η +ζ(α4 +α5ξ +α6η)
Eyy = α7 +α8ξ +α9η +ζ(α10 +α11ξ +α12η)
Ezz = α13 +α14ξ +α15η
Exy = α16 +α17ξ +α18η +ζ(α19 +α20ξ +α21η)
Eyz = α22 +α23ξ +α24η +ζ(α15 +α25ξ +α26η)
Ezx = α27 +α24ξ +α23η +ζ(α14 +α28ξ +α25η)

(28)

In equation (28) ξ, η, and ζ are the parent coordinates
with ξ, η embedded in the triangular plane and ζ normal
to the plane.

Note that the transverse shear strain fields are chosen
such that they share common coefficients among them-
selves and with the transverse normal strain field. The
assumed strain fields in equation (28) can be expressed
in matrix form as

E = Pα (29)

Incremental form of equation (29) appears in equation
(16).

3.2 Numerical integration rule

Based on the assumed strain field as well as the displace-
ment field, the present study adopts three-point rule for
numerical integration over the midsurface with the sam-
pling points located at (1/6, 2/3), (1/6,1/6) and (2/3,1/6)
in the parent coordinate system for a triangle. Integration
through thickness is carried out analytically, following
the approach used by Kim and Lee (1988).

3.3 Local coordinate system and element invariance

In the present formulation, the assumed transverse shear
strain fields are composed of incomplete polynomial
terms. As a result, the element stiffness matrix varies
with the coordinate system in which strain and stress
components are defined. Accordingly, a specifically de-
fined local coordinate system is needed to enforce the in-
variance of the element stiffness. The local coordinate
system used in the present study is shown in Fig. 2. First,
the largest angle in a triangle is bisected. Then the x and
y axes of the local coordinate system are defined over the
shell mid-plane 45 degrees off from the bisecting line.
The z axis is normal to the plane defined by the x and
y axes. This local coordinate system is defined for each
element to ensure the element invariance.

3.4 Spurious kinematic modes and kinematic stability

It turns out that, for geometrically linear case, the as-
sumed strain field defined in equation (28) triggers two
spurious kinematic modes. For a triangular element with
right angle and two equal side lengths, the spurious kine-
matic modes are found as follows:

u = ρxy, v = −ρxy (30)
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Figure 2 : A local coordinate system defined for each
element

w = γ(x2−y2) (31)

where ρ, γ are arbitrary constants. These modes are
identified by applying the zero strain energy condition
at the sampling points of numerical integration in an el-
ement. However, they are incompatible spurious kine-
matic modes and thus disappear when four or more ele-
ments are assembled, resulting in a stable global stiffness
matrix with sufficient ranks. Also, it can be shown by
following Park, Cho, and Lee. (1995) that, for geometri-
cally nonlinear case, the above two modes disappear even
at element level and the element is completely free of any
spurious kinematic modes.

4 Numerical tests

In order to validate the performance of the present as-
sumed strain triangular element, numerical tests are car-
ried out for several plate and shell examples undergo-
ing geometrically nonlinear deformation. For geomet-
rically nonlinear analysis, the Newton-Raphson iteration
method is used. The arc-length method with the min-
imum residual displacement [Chan (1988)] is used for
the analysis beyond the limit point. Of particular inter-
est is the ability of the present formulation to allow large
load increment in finite rotation problems. In the follow-
ing, numerical results obtained by the present formula-
tion are labeled ‘Present’. They are compared with the
results, labeled ‘Reduced’, obtained by the assumed dis-
placement formulation with reduced integration using the
three-point rule.

L

1/4 model,  2x2 mesh

L

p

p = pressure (psi)

L = 1000 inch

t = 2 inch (thickness)

E = 2x104 (psi)

    = 0.3

(a)

(b)

(c)

Figure 3 : (a) Clamped square plate under uniform pres-
sure; (b) 4x4 uniform mesh; (c) 4x4 distorted mesh

4.1 Clamped square plate under uniform pressure

A clamped square plate is subjected to uniform pres-
sure as shown in Fig. 3-(a). The side length and the
thickness of the plate are L=1000 inch and t=2 inch, re-
spectively. Elastic material properties are Young’s mod-
ulus E=20000 psi and Poisson’s ratio ν=0.3. Due to the
symmetry of the geometry and loading condition, only a
quarter of the plate is discretized with a uniform mesh or
a distorted mesh as shown in Fig. 3-(b),(c). The maxi-
mum transverse displacement at the center of the plate is
evaluated for the increasing pressure load. The numeri-
cal solutions obtained by the present study are compared
with the analytic solution given by Way (1938) as shown
in Fig. 4. The pressure load and the transverse displace-
ment in the figure are normalized by Young’s modulus
and thickness of the plate, respectively. The results of the
present element show good agreement with Way’s solu-
tion even with 3x3 coarse mesh discretization. Mesh dis-
tortion sensitivity of the present formulation appears not
to be severe as shown in Fig. 4-(b).

4.2 Clamped shallow circular arch under point load

Fig. 5 describes a clamped shallow circular arch sub-
jected to point load at the center of the arch. The dimen-
sion of the arch is R=2.54 inch, t=0.0508 inch and the
half angle θ=0.707 radians. The elastic material proper-
ties of the arch are E=6.895×1010 psi and ν=0.25. Only
a half of the arch is modeled with the flat triangular ele-
ment due to the symmetry of the geometry and the load-
ing condition. The arch experiences symmetric buckling
as the concentrated loading increases. The arc length
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Figure 4 : Normalized transverse displacement at the
center of plate; (a) uniform mesh; (b) distorted mesh

method is used for the analysis beyond the limit point.
Fig. 6 clearly demonstrates that the present formulation
shows good convergent characteristics even beyond the
limit point.

4.3 Pinched cylinder with free edges

Fig. 7 shows a cylinder with free edges subjected to nor-
mal point loads at two opposite sides. Two loading cases,
tension and compression, are tested for the example. The
geometric parameters of the cylinder are R=4.953 inch,
L=10.35 inch, and t=0.094 inch. Elastic material prop-
erties of the cylinder are E=10.5×106 psi and ν=0.3125.
Taking advantage of the symmetry of the geometry and
the loading condition, only an octant of the cylinder is
modeled with 8x6 uniform mesh of the flat triangular el-
ement as shown in Fig. 7. The deformed cross sections
of the cylinder for tension and compression loads are as

P

t : thickness

R : radius  : angle

Figure 5 : Clamped shallow circular arch subjected to a
point load at the center of the arch
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Figure 6 : Normalized transverse displacement of shal-
low circular arch at the loading point

shown in Fig. 8-(a). The radial displacement at the load-
ing point for the increasing load is shown in Fig. 8-(b)
corresponding to ten loading steps or single loading step.
The result of the present element agrees well with the an-
alytic solution given by Gruttmann (1989). It is notable
that the present solid element model is able to reach the
final solution in single load step and to yield the identical
result to that obtained by using ten load steps as shown
in Fig. 8-(b).

4.4 Cantilever beam subjected to tip roll-up moment

An initially straight beam is subjected to tip roll-up mo-
ment as shown in Fig. 9. The roll-up moment is ap-
plied by a couple with two forces of equal magnitude at
top and bottom surface. The magnitude of roll-up mo-
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Figure 7 : Pinched cylinder with free edges
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Figure 8 : (a) Deformed cross section of cylinder for
tension or compression load; (b) Radial isplacement at
the loading point using ten loading steps or single loading
step

ment and geometrical and material parameters are given
in Reference [Buechter and Ramm (1992)]. The dimen-
sions of the beam are such that the side length is 100, the
thickness is 2, and the width is 2. The material proper-
ties of the beam are E=21000 and ν=0.0. The half width
of the beam is modeled uniformly with 18x1 mesh. Fig.
9 also show deformed configurations at various tip rota-
tional angles. Each of these configurations is obtained
using a single load step. The number of iterations needed
to achieve convergence is shown for each configuration.
The 360 o roll-up of the clamped beam is completed in
a single load step with 13 iterations. It is clear that the
present element formulation allows large load increments
for analysis involving finite rotation.

360o
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90o

geometrical dimensions

length: 100

width: 1

thickness: 2

0.0

21000E

material properties

angle            iterations

90o 6

180o                  9

270o 12

360o 13

18x1 mesh

sym

length:L

angleuproll:
L

IE
M

M

Figure 9 : Cantilever beam subjected to tip roll-up mo-
ment

4.5 Cut-out hemisphere under alternating pinched
loads

A quarter of a hemisphere with 18 o cut-out is modeled
with 32x26 flat triangular mesh as shown in Fig. 10. The
geometric parameters are radius R=10 inch and thickness
t=0.04 inch. The material properties are E=6.825×107

and ν=0.3. Both lower and upper boundaries of the hemi-
sphere are free and two alternating point loads are applied
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Figure 10 : A quarter of cut out hemisphere subjected to
two symmetrical alternating loads

Figure 11 : Radial displacement at two loading points

symmetrically at point A and point B as shown in Fig.
10. With single load step, converged solution for load P
of 80 lb is achieved. Fig. 11 demonstrates the present re-
sult shows good agreement with the result of Park, Cho,
and Lee (1995).

4.6 Sliced ring plate under line load at the free edge

A sliced ring plate is illustrated in Fig. 12-(a). One edge
is clamped, and the other edge is free. An upward line
load is applied along the free edge. The dimensions of the
plate are such that inner radius R1 is 6 m, outer radius R2

x

yR
1

R
2

p

clamped edge

free edge

A B

A

B

(a) (b)

Figure 12 : (a) Sliced ring plate applied by line load
along free edge; (b) Deformed shape of ring plate after
applying line load p=4.034 (N/m)
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Figure 13 : Maximum disp. vs. load magnitude; N =
number of load steps, I = total number of iterations, and
pf = final line load magnitude (N/meter)

is 10 m, and thickness is 0.03 m. The material properties

are E = 2.1×108 N / m2 and ν = 0.

Fig. 12-(b) depicts the deformed shape of the ring plate
subjected to line load p=4.034 N/m where the final dis-
placement at point B in the loading direction is 13.61
m. The displacement at point B versus the line load
magnitude p is plotted in Fig. 13. In addition to the
present solution, the results reported by Mohan and Ka-
pania (1998) are included for comparison. Both results
show good agreement with each other. However, for the
present analysis, same result is efficiently obtained using
single load step and six iterations.
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4.7 Deep arch with asymmetrical boundary condi-
tions

Fig. 14 shows a deep arch subjected to central load. The
end of the arch is clamped and the other is simply sup-
ported. The angle of the structure is 215 degree and the
thickness is unit. The width is set to be 12 for reason-
able aspect ration and the Young’s modulus of material is
106 , thus the bending rigidity is 10 6 same with equiva-
lent beam problem [Wood and Zienkiewicz (1977)]. The
Poisson ratio is set to be zero to minimize the deforma-
tion along width. The structure is modeled with 40 by 1
triangular elements.

215

R=100

t=1

b(width)=12
.0

106EI

P

Figure 14 : Deep arch with asymmetric boundary condi-
tion subjected to central point load

The deep arch example is introduced to evaluate the
present element’s capability of calculating buckling load.
Fig. 15 shows the vertical displacement associate with
load magnitude compared with analytic solution [Deppo
and Schmidt (1975)]. Ibrahimbegovic and Frey (1993)
show almost exact overlap with analytic solution using
quadratic shear flexible beam element. Fig. 15 demon-
strates that the present element shows quite good accu-
racy for the deep arch problem.

5 Conclusion

A triangular element model with 36 DOF is developed
based on the assumed formulation for efficient analysis
of plates and shells undergoing finite rotation. The main

W

undeformed

deformed

configuration at

P=900.8

Reference buckling load

Present 900.8

de Ville de Goyer and Frey (1984) 902.8

Wood and Zienkiewicz (1977) 925.0

Ibrahimbegovic and Frey (1977) 897.5

Analytic 897.0

0.0 0.4 0.8 1.2
0
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6

9

  Analytical
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  Zinkiewicz

E
I/

P
R

2

W/R

Figure 15 : Buckling load and vertical deflection with
respect to the magnitude of load

focus of the present study is to develop a simple trian-
gular shell element that allows large load increments in
the geometrically nonlinear analysis. For this, plates and
shells are treated as a three-dimensional solid with purely
vectorial description of the kinematics of deformation.
The assumed strain is carefully selected to alleviate the
shear locking effect without triggering undesirable spu-
rious kinematic modes, while the flat facet element con-
cept is adopted to obviate the membrane locking. For ge-
ometrically nonlinear plates and shells the present formu-
lation leads to kinematically stable finite element models
completely free of any spurious modes. The result of nu-
merical tests validates the accuracy and efficiency of the
present formulation within the context of the flat facet el-
ement approach. The present triangular element allows
large load increments in the analysis of finite rotation,
and it is attractive in that only three points are needed for
numerical integration.
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