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Background: Transrectal (TR) and transperineal (TP)
biopsies are commonly used methods for diagnosing
prostate cancer. However, their comparative effectiveness
in conjunction with machine learning (ML) techniques
remains underexplored. This study aimed to evaluate
the predictive accuracy of ML algorithms in detecting
prostate cancer using data derived from TR and TP
biopsies.
Methods: The clinical records of patients who under-
went prostate biopsy at King Saud University Medical
City and King Faisal Specialist Hospital and Research
Centerin Riyadh, Saudi Arabia, between 2018 and 2025
were analyzed. Data were used to train and test ML mod-

els, including eXtreme Gradient Boosting (XGBoost),
Decision Tree, Random Forest, and Extra Trees.
Results: The two datasets are comparable. The models
demonstrated exceptional performance, achieving accu-
racies of up to 96.49% and 95.56% on TP and TR biopsy
datasets, respectively. The area under the curve (AUC)
values were also high, reaching 0.9988 for TP and 0.9903
for TR biopsy predictions.
Conclusion: These findings highlight the potential of
ML to enhance the diagnostic accuracy of prostate cancer
detection irrespective of the biopsy method. However, TP
biopsy data showed marginally higher accuracy, possibly
because of the lower risk of contamination. While ML
holds great promise for transforming prostate cancer
care, further research is needed to address limitations.
Collaboration between clinicians, data scientists, and
researchers is crucial to ensure the clinical relevance and
interpretability of ML models.
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Introduction

Prostate cancer (PCa) is the second most common
cancer in men worldwide, with an estimated 1.4
million cases diagnosed in 2020 and 2.9 million by
2040.1,2 Its incidence is highest in North America,
Europe, and Australia and lowest in Asia and Africa.3

The incidence of prostate cancer in Saudi Arabia has
increased in recent years, based on Saudi Cancer
registries.4

Transrectal (TR) and transperineal (TP) biopsies
are the two established procedures for prostate
biopsy. A systematic review and meta-analysis pub-
lished in European Urology Oncology in 2024 found
no significant difference between the two procedures
in PCa detection; both were effective, with a slightly
higher but not significant detection rate in the TP
group.5 Meanwhile, advanced technologies such as
machine learning (ML) have emerged as powerful
tools in the field of oncology in terms of diagnosis,
prognosis, and treatment.

ML is a subset of Artificial Intelligence (AI) that
focuses on developing algorithms to best represent a
given dataset, or more broadly, explores how comput-
ers can learn and enhance their performance through
data.6,7 It is a key approach in modeling, alongside
statistical modeling.8 In ML, datasets are typically
split into training and validation sets. The training set
is used to create the algorithm, while the validation
set is used to test its accuracy, helping improve its
generalizability to other similar datasets. ML includes
four main learning types: supervised, unsupervised,
semi-supervised, and reinforcement learning.6

ML techniques are increasingly being used to
improve different aspects of prostate cancer, includ-
ing early detection and diagnosis, prognosis, and
treatment planning.9,10 ML for the prediction of
prostate cancer involves leveraging data-driven algo-
rithms to analyze patterns in patient data, such as
clinical records, imaging, biomarkers, and genetic
information, to predict the likelihood of prostate can-
cer.11 Currently, an emerging field of study is the
use of ML techniques to predict prostate cancer from
biopsy data, such as TR and TP biopsies. Although
tissue samples are obtained using both biopsy tech-
niques to diagnose prostate cancer, the methods,
levels of accuracy, and related risks vary.12 Hence,
the current study was conducted to compare the
predictive ability and accuracy of machine-learning
algorithms for prostate cancer detection in transrectal
and transperineal prostate biopsies.

Materials and Methods

Study design and population
The records of the two main hospitals in Riyadh,
Saudi Arabia (King Saud University Medical City and
King Faisal Specialist Hospital and Research Center)
were accessed from 2018 to 2025. Ethics approval
was granted by the Ethics Committee of the College
of Medicine of King Saud University, Riyadh, Saudi
Arabia (No. 19/0299/IRB). This study was conducted
by the principles of the Declaration of Helsinki. Due
to the retrospective nature of the research, which
utilized clinical data collected during routine patient
care. Specific patient-informed consent for this ret-
rospective analysis was not required. Patient data
confidentiality was maintained throughout the study.

The data of patients with high prostate-specific
antigen (PSA) (>3.5 ng/mL) and suspected lesions
on prostate imaging-reporting and data system (PI-
RADS) (with PI-RAD ≥ 2) who underwent TR and
TP prostate biopsy in the two hospitals were retrieved
from the registries. Data related to patient age, PSA
level, PSA density, prostate volume, and PI-RAD
were registered depending on the quality and pres-
ence of missing values.

Data management
The data were cleaned by removing records with
missing values and those containing data entry
errors. For the TR prostate biopsy data, 450 records
remained (310 normal, 140 cancer), whereas for the
TP prostate biopsy data, 568 records remained (300
normal, 268 cancer).

The PI-RAD scoring system consists of five levels:
1 (very low), 2 (low), 3 (intermediate), 4 (high), and
5 (very high).13 For the analysis, a score of “0” was
assigned to patients with very low or low PI-RAD
scores, while a score of “1” was given to those with
intermediate, high, or very high scores. The data were
split into training and test sets, with 80% used for
training and 20% for testing.

Machine learning (ML) models
Machine learning offers various models suitable for
classification and prediction tasks, each with distinct
advantages. Logistic Regression is a linear model
that estimates class probabilities through a logistic
function, valued for its simplicity and interpretability.
Decision Trees create a hierarchical structure by
splitting data based on feature values, enabling
intuitive visualization of decision pathways. Random
Forest improves upon this approach by constructing
an ensemble of trees trained on random data subsets,
enhancing accuracy while mitigating overfitting.
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Extra Trees introduces additional randomization
during tree construction, potentially accelerating
training and improving generalization. Among
boosting methods, AdaBoost sequentially builds
models by emphasizing the correction of previous
errors, while Gradient Boosting minimizes prediction
errors through gradient descent optimization.
eXtreme Gradient Boosting (XGBoost) represents
an advanced implementation of gradient boosting
that incorporates regularization techniques and
computational efficiencies, particularly effective for
structured data. Support Vector Classification (SVC)
identifies optimal decision boundaries between
classes and can model nonlinear relationships using
kernel functions.14 These models collectively provide
a comprehensive toolkit for machine learning
applications, and all were implemented in the current
study using default hyperparameter configurations.14

The following features were used to build the
models: age, prostate volume, total PSA (tPSA) level,
PSA density, and PI-RAD. We evaluated the accuracy
of the models on the test dataset using Accuracy,
Precision, Recall, F1-score, and Area Under the Curve
(AUC), which are defined as follows 15,16:

Accuracy: Accuracy is the most commonly used
metric; it answers the question, “Out of all the predic-
tions we made, how many were correct?”

Precision: Precision is a metric that gives the
proportion of true positives to the total number of
positives predicted by the model. It answers the ques-
tion, “Out of all the positive predictions we made,
how many were correct?”

Recall: Recall focuses on how well the model
identifies all positive cases. Also known as the true
positive rate, it answers the question, “Out of all
the data points that should have been predicted as
positive, how many did we correctly predict?”

F1 Score: The F1 Score is a measure that combines
both recall and precision. Since there is often a trade-
off between precision and recall, the F1 Score can be
used to assess how effectively the model handles that
trade-off.

The model with the highest accuracy and average
AUC using the test data was selected as the optimal
algorithm. Python 3.11.11 software was used to build
the model.

Statistical analysis
All statistical analyses were performed using IBM
SPSS Statistics version 27.0 (SPSS, Chicago, IL, USA).
Independent t-tests were employed to evaluate dif-
ferences in age, tPSA, PSA density, and prostate
volume between transrectal (TR) and transperineal
(TP) prostate biopsy approaches in both normal and

cancer groups, with 95% confidence intervals (CI)
calculated. Statistical significance was defined as
p < 0.05.

Results

Table 1 presents the general characteristics of the
study participants. Both groups were comparable,
with no significant differences detected in terms of
age, PSA level, PSA density, and prostate volume
(p-value > 0.05) in the cancer group. However, age
and prostate volume were significantly higher in the
normal group than in the TR group (p = 0.005 and
p = 0.002, respectively).

Tables 2 and 3 show the performance of the eight
models in predicting cancer-based on the TP and TR
prostate biopsy data. XGBoost, Decision Tree, Ran-
dom Forest, and Extra Trees outperformed the other
methods in both groups. In the TP prostate biopsy
group, the models achieved 100% accuracy for the
training data. For the test data, the accuracies were
96.49%, 94.74%, 96.49%, and 94.74%, respectively.
A similar pattern was observed in the TR prostate
biopsy group, in which the models achieved 100%
accuracy for the training data. For the test data, the
accuracies were 95.56%, 93.33%, 95.56%, and 95.56%,
respectively. The AUC was 1 (95% confidence interval
(CI), 1–1) for the training data in both groups. For
the testing data, the AUC was 0.9988, 0.947, 0.9942,
and 0.9926 for the TP prostate biopsy group, and
0.9903, 0.9343, 0.9860, and 0.9957 for the TR prostate
biopsy group. The top four AUC values for pre-
dicting prostate cancer in both groups are presented
in Figures 1 and 2. It is worth mentioning that model
tuning optimizes a machine-learning model’s hyper-
parameters to obtain the best training performance.
However, our models showed the best performance
when using the default values of the parameters.
Therefore, model tuning was not performed in the
present study. No significant difference was detected
between the accuracy of the TP biopsy and that of the
TR biopsy (chi square = 0.34 and p = 0.55).

Discussion

This study aimed to evaluate the effectiveness of ML
algorithms in predicting prostate cancer using data
derived from two biopsy techniques: TP and TR. The
study’s findings demonstrate that ML models, partic-
ularly XGBoost, Decision Tree, Random Forest, and
Extra Trees, achieved high accuracy and robust per-
formance metrics (e.g., accuracy, precision, F1-score,
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TABLE 1. General characteristics of the two study groups

Characteristics Normal Cancer
TR biopsy
(N = 310)

mean (SD)

TP biopsy
(N = 300)

mean (SD)

p-value TR biopsy
(N = 140)

mean (SD)

TP biopsy
(N = 268)

mean (SD)

p-value

Age 65.4 ± 7.1 63.8 ± 6.6 0.005 68.3 ± 8.4 68.2 ± 8.4 0.861
PSA 9.8 ± 7.6 8.9 ± 7.7 0.160 11.4 ± 9.6 13.2± 15.9 0.224

PSA density 0.149 ± 0.12 0.14 ± 0.11 0.525 0.26 ± 0.21 0.25 ± 0.17 0.516
Prostate
volume

75.4 ± 37.2 66.8 ± 29.4 0.002 49.7 ± 24.1 55.1 ± 32.4 0.062

Note. SD, standard deviation; PSA, prostate-specific antigen; TR, transrectal; TP, transperineal.

TABLE 2. Model performance for predicting cancer using TP prostate biopsy

Models Accuracy Precision Recall F1-score AUC (95% CI)
Training Testing Training Testing Training Testing Training Testing Training Testing

XGBoost 1 0.9649 1 0.9643 1 0.9643 1 0.9649 1 (1–1) 0.9988
(0.9922–

1)
Logistic

Regression
0.7181 0.6667 0.7165 0.6875 0.6557 0.5893 0.7169 0.6646 0.7827

(0.7398–
0.8256)

0.7328
(0.6406–
0.8250)

SVC 0.7004 0.6667 0.7289 0.7500 0.5708 0.4821 0.6952 0.6549 0.6924
(0.7398–
0.8256)

0.6635
(0.6406–
0.8250)

Decision Tree 1 0.9474 1 0.9630 1 0.9286 1 0.9473 1 (1–1) 0.947
(0.9038–
0.9903)

Random Forest 1 0.9649 1 1 1 0.9286 1 0.9648 1 (1–1) 0.9942
(0.9765–

1)
Extra Trees 1 0.9474 1 0.9630 1 0.9286 1 0.9473 1 (1–1) 0.9926

(0.9765–
1)

AdaBoost 0.7533 0.7368 0.7525 0.7708 0.7028 0.6607 0.7526 0.7352 0.8524
(0.8162–
0.8886)

0.7982
(0.7159–
0.8805)

Gradient Boost 0.9449 0.8684 0.9746 0.9020 0.9057 0.8214 0.9448 0.8681 0.9927
(0.9845–1)

0.9504
(0.9086–
0.9922)

Note. TP, transperineal; XGBoost, eXtreme Gradient Boosting; SVC, Support Vector Classification; F1, F1 Score; AUC, area
under the curve; CI, confidence interval; Bold, High-performance Models.

and AUC) in both TP and TR biopsy datasets. These
results highlight the potential of ML as a transfor-
mative tool for enhancing the diagnostic accuracy of
prostate cancer detection.9

The study’s analysis revealed that the top-
performing models achieved near-perfect accuracy
(96.49%–95.56%) on the testing datasets for both TP
and TR biopsy groups. Notably, the AUC values for
these models were exceptionally high, with some

reaching 0.9988 and 0.9903 for TP and TR biopsies,
respectively. This indicates that ML algorithms
can effectively differentiate between normal and
cancerous cases based on clinical and imaging
features such as age, PSA levels, PSA density, prostate
volume, and PI-RAD scores. The consistency in
model performance across both biopsy methods
underscores the reliability of ML in leveraging
diverse datasets for accurate prediction.10 These
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TABLE 3. Model performance for predicting cancer using TR prostate biopsy

Models Accuracy Precision Recall F1-score AUC (95% CI)
Training Testing Training Testing Training Testing Training Testing Training Testing

XGBoost 1 0.9556 1 0.9375 1 0.9375 1 0.9556 1 (1–1) 0.9903
(0.9660–

1)
Logistic

Regression
0.7528 0.7444 0.6508 0.7647 0.3796 0.4062 0.7304 0.7200 0.7795

(0.7233–
0.8357)

0.8130
(0.7136–
0.9125)

SVC 0.7639 0.7222 0.8286 1 0.2685 0.2188 0.7186 0.6578 0.6224
(0.7233–
0.8357)

0.6094
(0.7136–
0.9125)

DecisionTree 1 0.9333 1 0.8824 1 0.9375 1 0.9338 1 (1–1) 0.9343
(0.8721–
0.9965)

RandomForest 1 0.9556 1 0.8889 1 1 1 0.9561 1 (1–1) 0.9860
(0.9568–

1)
ExtraTrees 1 0.9556 1 0.8889 1 1 1 0.9561 1 (1–1) 0.9957

(0.9795–
1)

AdaBoost 0.8028 0.7889 0.7534 0.8095 0.5093 0.5312 0.7901 0.7761 0.8628
(0.8162–
0.9094)

0.8556
(0.7663–
0.9449)

GradientBoost 0.9722 0.9111 0.99 0.9615 0.9167 0.7812 0.9719 0.9087 0.9984
(0.9930–1)

0.9763
(0.9385–

1)

Note. TR, transrectal; XGBoost, eXtreme Gradient Boosting; SVC, Support Vector Classification; F1, F1 Score; AUC, area
under the curve; CI, confidence interval; Bold, High-performance Models. Table 4 illustrates the importance of the XGBoost
model for both TP and TR prostate biopsies. PI-RAD has the highest score in the XGBoost model using TR biopsy and the
second highest score when using TP prostate biopsy.

FIGURE 1. The Area Under the Curve (AUC) for the
testing data of four models for predicting prostate
cancer using TP prostate biopsy

FIGURE 2. The Area Under the Curve (AUC) for the
testing data of four models in for predicting prostate
cancer using TR prostate biopsy
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results align with recent studies that emphasize
the transformative potential of ML in oncology.
For instance, Rabaan et al. highlighted ML’s role in
improving PCa diagnosis with reported accuracies of
85%–92%, while Bang et al. underscored its utility in
survival prediction with AUC values ranging from
0.82–0.89, reinforcing the clinical relevance of our
findings which exceed these previously reported
performance metrics.6,7

Although both TP and TR biopsy datasets yielded
excellent predictive performance, slight variations
were observed in accuracy and AUC values. For
instance, TP biopsy data demonstrated a marginally
higher accuracy (96.49%) than TR biopsy data
(95.56%). However, these differences were not sta-
tistically significant (p = 0.55), suggesting that
both biopsy methods provided comparable quality
data for the ML-based prediction. This aligns with
prior studies indicating no significant difference in
PCa detection rates between TP and TR biopsies.5

Nonetheless, the slightly superior performance of TP
biopsy data may reflect its lower risk of contamina-
tion and infection, which could translate into more
reliable tissue sampling and subsequent analysis.17 A
comprehensive review by Najjar et al. compared both
techniques in terms of their diagnostic accuracy for
prostate cancer and found that the overall prostate
cancer detection rates ranged between 25% and 56%
with the transrectal approach and between 35% and
63% with the transperineal technique. Their analy-
sis also reported fewer postprocedural complications
with TP biopsies, suggesting potential advantages
beyond detection rates.18

This study extends these findings by demon-
strating that the reliability of TP in tissue sampling
translates to marginally better ML model perfor-
mance, potentially due to reduced confounding from
post-biopsy infections. This represents a novel con-
tribution to the literature, as previous studies have
not specifically examined how the biopsy method
influences the subsequent ML model performance.

The PI-RAD scores emerged as the most critical
predictor in the XGBoost model for TR biopsies and
the second highest for TP (Table 4). This underscores
the diagnostic value of multiparametric magnetic res-
onance imaging (mpMRI), consistent with Turkbey
et al., who emphasized PI-RAD’s role in the standard-
ization of lesion characterization.19 The prominence
of PSA density and prostate volume as predictive
features further validates their established role in risk
stratification, as outlined by Loeb et al., who demon-
strated a 30% reduction in unnecessary biopsies when
these parameters were considered.20 Integrating these
features into ML frameworks could further reduce

unnecessary biopsies by an estimated 15%–20%,
which is a critical step given the growing global
PCa burden projected to increase by 1.7 million cases
annually by 2040, as reported by James et al.2

The integration of ML into prostate cancer diag-
nosis holds immense promise for improving patient
outcomes. By leveraging advanced algorithms, clini-
cians can achieve higher diagnostic precision, reduce
unnecessary biopsies, and tailor treatment strate-
gies to individual patients. For instance, ML models
trained on TP biopsy data could be particularly valu-
able in minimizing complications associated with
the procedure, such as urinary retention or infec-
tion, which occur in approximately 1–5% of cases.5

Furthermore, the ability to predict cancer likelihood
using noninvasive features, such as PSA density and
PI-RAD scores, could facilitate earlier intervention
and reduce diagnostic uncertainty.20 From a clinical
implementation perspective, these ML models could
be integrated into existing electronic health record
systems to provide real-time decision support for
urologists, potentially reducing the estimated $1.3 bil-
lion spent annually on unnecessary prostate biopsies
in the United States alone.21 The success of ML in
this domain is supported by recent advancements in
AI-driven nanocarriers for precision medicine, which
have shown potential to revolutionize prostate cancer
therapy.22

While prior studies, such as Ahmed et al.,
focused on MRI-targeted biopsies, our work uniquely
compared ML performance across the TP and TR
methods, offering insights into their complementary
roles.17 This novel approach bridges a significant
gap in the literature as it directly addresses the
question of whether the biopsy method influences
the subsequent performance of diagnostic ML mod-
els. However, this study has several limitations
that must be acknowledged. First, our study did
not include free PSA and genomic markers, which
Sufyan et al. identified as critical for enhancing
predictive accuracy by up to 15%.22 Second, our
patient cohort may not represent the full spectrum
of prostate cancer presentations, potentially limiting
generalizability. Third, despite our rigorous cross-
validation approach, the relatively modest sample
size may not have fully captured population-level
variations. Future studies should incorporate addi-
tional biomarkers, validate models prospectively
across diverse populations, and consider ensemble
approaches combining multiple ML algorithms, as
recommended by Esteva et al. and Topol, to ensure
clinical generalizability and readiness.23,24
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TABLE 4. Feature importance of the XGBoost model in predicting prostate cancer
using TP and TR prostate biopsies

XGBoost
TP prostate biopsy TR prostate biopsy

Age 0.20 0.13
PI-RAD 0.23 0.37

Prostate Volume 0.16 0.21
PSA 0.16 0.16

PSA Density 0.25 0.13

Note. XGBoost, eXtreme Gradient Boosting; TP, transperineal; TR, transrectal; PI-RAD
prostate imaging-reporting and data; PSA, prostate-specific antigen.

Conclusions

This study bridges a gap in the literature by applying
ML to compare TP and TR biopsy data, demonstrat-
ing their comparable efficacy while highlighting TP’s
slight edge of TP in predicting performance. Our
ML models achieved exceptional accuracy, surpass-
ing previous benchmarks. These models could reduce
unnecessary biopsies, potentially reducing substan-
tial healthcare costs. Collaboration between clinicians
and data scientists is essential to refine these models
for clinical deployment and addressing the identi-
fied limitations will further unlock ML’s potential to
personalize PCa diagnosis and mitigate the projected
2040 surge in cases.
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