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ABSTRACT: Multiple Sclerosis (MS) is a disease that disrupts the �ow of information within the brain. It a�ectsQ2

approximately 1 million people in the US. And remains incurable. MS treatments can cause side e�ects and impact the

quality of life and even survival rates. Based on existing research studies, we investigate the risks and bene�ts of three

treatment options based on methylprednisolone (a corticosteroid hormone medication) prescribed in (1) high-dose,

(2) low-dose, or (3) no treatment. �e study currently prescribes one treatment to all patients as it has been proven to

be the most e�ective on average. We aim to develop a personalized approach by building machine learning models and

testing their sensitivity against changes in the data. We �rst developed an unsupervised predictive-prescriptive model

based on k-means clustering in addition to three predictive models. We then assessed the models’ performance with

patient data perturbations and �nally developed a robust model by re-training on a set that includes perturbations.

�ese increased themodels’ robustness in highly perturbed scenarios (+10% accuracy) while having no cost in scenarios

without perturbations. We conclude by discussing the trade-o� between robusti�cation and its interpretability cost.

KEYWORDS:Multiple sclerosis; MS; optimal classi�cation trees (OCT); machine learning

1 Introduction

�e exact causes of MS are still unknown in the medical community, and treatment methods are active

research. As there is no known cure [1] and the disease a�ects patients di�erently, prescribing e�ective

treatments is of paramount importance. �e variation of symptoms and treatment response represents

a strong motivation for a personalized treatment approach. �us, it is important to identify the disease

through risk modeling approaches the patient characteristics can in�uence treatment, enabling the choice

given patient e�ects. Prediction models help in identifying and estimating the impact of patient, inspection,

and setting characteristics on future health outcomes [2]. �e main risk of patients is o�en the basis of

heterogeneous treatment e�ects [3].

Multiple sclerosis (MS) is a disease of the central nervous system [4] with several subtypes. �e most

common subtype is relapsing-remitting Multiple Sclerosis (RRMS) [5]. Patients with RRMS present with

intense symptoms (relapses) followed by periods without symptoms (remission) [6]. Several treatments

are available [7] with direct patient responses, with each treatment having a very di�erent safety pro�le.it

is also important to monitor progression of the disease [8]. Patient and particular setting characteristics

can be included in network meta-regression models [9,10] to make predictions for di�erent treatments

and subgroups of patients [2]. �is approach presents computational and practical di�culties when many

predictors are to be included in the model.
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ABSTRACT: Background: Tetralogy of Fallot (TOF), the predominant cyanotic congenital heart defect, arises
from multifactorial gene-environment interactions disrupting cardiac developmental networks. This study
investigated TOF-specific transcriptional alterations and identified high-confidence candidate genes. Methods:
Based on GSE36761 transcriptome data, a weighted gene co-expression network analysis (WGCNA) and
protein-protein interaction (PPI) network were conducted to identify TOF-related sub-network and Hub genes.
The potential biological functions among these genes were revealed by enrichment analysis. Genetic, epigenetic
and transcriptional alteration in the Hub genes were analyzed with leveraged public resources: a methylation
dataset (GSE62629) and two single-cell datasets (EGAS00001003996 and GSE126128). Results: Eight Hub genes
were identified using the WGCNA network and PPI network, and functional enrichment analysis revealed
that GJA1, RUNX2, PTK7, PRICKLE1, and SFRP1 were involved in the morphogenesis of an epithelium, and
dysregulation of the signaling were also found in the other two TOF datasets. Furthermore, the study found
that the promoters of GJA1, RUNX2, PTK7, and PRICKLE1 genes were hypermethylated and that GJA1 and
SFRP1 are highly expressed in mouse second heart field cells and neural crest cells, and the latter is expressed
in human embryonic outflow tract cells. Since RUNX2 was not expressed in human and mouse embryonic
hearts, GJA1, PTK7, PRICKLE1, and SFRP1 were ultimately identified as TOF candidate genes. Conclusion:
Based on the WGCNA network and various bioinformatics analysis approaches, we screened 4 TOF candidate
pathogenic genes, and found that the signaling pathways related to the morphogenesis of an epithelium may
be involved in the pathogenesis of TOF.

KEYWORDS: Tetralogy of Fallot; gene regulatory networks; weighted gene co-expression network analysis;
protein-protein interaction network; disease candidate genes

1 Introduction

Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease, is characterized
by four cardinal anatomical abnormalities: ventricular septal defects, pulmonary artery stenosis,
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aortic cross, and right ventricular hypertrophy [1,2]. Epidemiological data have shown that TOF
occurs in 3–5 per 10,000 newborns and the family recurrence risk of TOF approximating 3% [3–5].
Advances in congenital cardiac surgical techniques have significantly reduced early mortality rates
from 25% to less than 2% in recent decades [6]. However, postoperative morbidity and mortality
remain substantial for patients with complex congenital heart disease, particularly among infants
with TOF [7,8].

The multifactorial etiology of TOF may contribute to disorders of transcription regulation networks
[9,10]. TOF exhibiting genetic heterogeneity, including various forms such as single-nucleotide variants,
copy number variations, transcriptional dysregulation, abnormal epigenetic modifications, and their
complex interactions, all of which ultimately lead to gene network dysfunction [10–13]. Marcel and
colleagues showed that deleterious private and rare mutations are in genes essential for the development
of right ventricle and outflow tract in TOF patients, and that the interaction of these mutate genes form
a similar abnormal gene regulatory network [12]. Similarly, Reuter et al. found that affected genes in
TOF patients form an interactive network in which NOTCH1 plays a core role [13]. Weighted gene
co-expression network analysis (WGCNA), a systems biology analysis method, has been widely used to
reveal the gene modules and networks underlying abnormalities in various diseases [14–16]. Therefore,
it is necessary to exploit systems biology analysis to synthesize the interactions between these genetic
factors and their effects on TOF.

The maturity of the outflow tract (OFT) development that is closely related to TOF mainly
depends on the neural crest cells (NCC) migrating towards the heart and the anterior second
heart field cells (aSHFC) from the pharyngeal mesoderm, as well as involving various cell-cell
interactions [17,18]. Profiling spatiotemporal gene expression of the NCC and aSHFC provides a
new perspective for understanding the embryonic origin of TOF. Thus, the present study will further
uncover the single-cell expression profile of Hub genes screened by WGCNA in the embryonic heart.

2 Materials and Methods

2.1 Data Availability and Preprocessing

All publicly available sequencing datasets related to TOF were retrieved from the NCBI Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). Four datasets were ultimately
included: two microarray expression profiles (accession numbers GSE26125 [19] and GSE35776 [20]),
one transcriptomic dataset (GSE36761 [12]), and one methylation dataset (GSE62629 [21]). The
preprocessed matrix data were downloaded from the GSE26125 and GSE35776, the original gene
count expression matrix was downloaded from the GSE36761, and the original CpG score data
were downloaded from the GSE62629. The analytical workflow is summarized in Fig. 1.

The GSE26215 data were normalized, and the GSE35776 expression matrix was subjected to
log2 logarithmic transformation. The original expression matrix of GSE36761 was normalized
by the vst function in the DESeq2 package (version 1.34.0; https://bioconductor.org/packages/
release/bioc/html/DESeq2.html, accessed on 01 April 2025). Both GSE36761 and the methylation
data were annotated using the GRCh37/hg19 genome assembly. To reduce technical noise, only
genes exhibiting the top 60% intergroup variance between TOF and control samples in the GSE36761
expression matrix were retained for subsequent co-expression network construction.

https://www.ncbi.nlm.nih.gov/geo/)
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Figure 1: Flowchart of the data collection and analysis. 
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Figure 1: Flowchart of the data collection and analysis.

2.2 Constructing Gene Network

A scale-free WGCNA network was constructed for the GSE36761 dataset using the WGCNA
package (version 1.63) in R 4.0 (https://www.r-project.org, accessed on 01 April 2025), with
the scale-free topology fit index exceeding 0.7. Detailed methodological protocols for WGCNA
implementation can be found in our previous publication [22]. First, pairwise gene comparisons
were performed to calculate absolute Pearson correlation coefficients. A soft threshold power βwas
determined as the minimal integer enabling scale-free network conformity. The adjacency matrix
was then computed using the formula AMab = |cor(a, b)|β, where AMab represents adjacency
values between gene pairs a and b. We determined that β = 9 was the optimal weighting coefficient,
i.e., the soft threshold. Subsequently, topological overlap matrices (TOM) were derived from
the adjacency matrix to quantify network interconnectedness beyond direct correlations. Finally,
hierarchical clustering with the average connectivity method was performed on the dissimilarity
topological matrix to identify gene modules. The minimum number of genes in a module was set
to 100, and similar genes were divided into the same module. Module eigengenes (ME), defined as
the first principal components of module expression patterns, were calculated for dimensionality
reduction. Highly correlated modules (r > 0.75) were merged using the dynamic tree cut algorithm.

2.3 Detecting TOF Modules

We assessed module-clinical trait associations by computing Pearson correlations between
ME and clinical parameters (including age, gender, oxygen partial pressure, and disease status) to
identify key modules of interest. The WGCNA package implements module significance (MS) as a
metric quantifying module-trait relationships, calculated as the mean gene significance (GS) across
all module genes. In our study, the module with maximal MS value for TOF status was designated
as the TOF-associated module. Statistical significance was defined as p < 0.01 for MS values.

https://www.r-project.org
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2.4 Enrichment Analysis

Pathway enrichment analysis was conducted using Metascape (v3.5.20220101; https://
metascape.org, accessed on 01 April 2025) to annotate biological functions, incorporating
Gene Ontology Biological Processes (GOBP), KEGG, Reactome, and WikiPathways databases.
Gene Set Variation Analysis (GSVA) was performed with the GSVA package (v1.42.0) in R
under default parameters. The GOBP gene sets were retrieved from the Molecular Signatures
Database (MSigDB; http://www.gsea-msigdb.org/gsea/downloads.jsp, accessed on 01 April
2025). Differential pathway analysis between TOF and control groups was executed using the
limma package (v3.50.1), with false discovery rate (FDR) correction applied for multiple testing.
The simplifyEnrichment package (v1.4.0) subsequently clustered significant GOBP terms based
on semantic similarity, generating condensed visualizations to facilitate rapid interpretation of
predominant biological processes.

2.5 Identification of Hub Genes

To robustly identify Hub genes, we integrated protein-protein interaction (PPI) networks with
WGCNA analysis through a dual-filter strategy. These filtered genes were subsequently used to
construct a PPI network via STRING database (v11.5; https://string-db.org, accessed on 01 April
2025) with medium confidence threshold (combined score ≥ 0.4). Hub genes were defined as nodes
with ≥5 interaction partners in the PPI network according to previous reports [23]. All network
visualizations were generated using Cytoscape 3.9 (https://cytoscape.org, accessed on 01 April
2025), with node degree represented as topological centrality measure.

2.6 DNA Methylation and Single-Cell Transcriptomic Analysis

Differentially methylated CpGs analysis was performed using the R package methylKit (v1.20.0).
Spatial scRNA-seq analysis was performed via the online database (EGAS00001003996) [24], which
used to display the spatiotemporal expression information of the Hub genes in the embryonic heart. A
murine single-cell dataset (GSE126128) encompassing E7.75-E9.5 cardiac development was analyzed
to further validate Hub gene expression dynamics [25].

2.7 Data and Code Availability

All datasets analyzed in this study were obtained from the aforementioned repositories. The
WGCNA network construction workflow was implemented using code adapted from the official
WGCNA tutorial (Version 1.72-1; https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/
Rpackages/WGCNA/, accessed on 01 April 2025), with full reproducibility ensured through open
access to all analytical scripts.

3 Results

3.1 WGCNA Network Construction

After hierarchical clustering analysis, TOF-18 was identified as an outlier sample subsequently
excluded to mitigate confounding effects. As shown in Fig. 2, the reclustered samples demonstrated
distinct segregation between the case and control groups. The adjacency matrix transformation was
performed on the 10,503 genes of the 28 samples, and then the transformation into a topological
matrix was continued (Fig. 3A–C), confirming the resultant network exhibited scale-free topology

https://metascape.org
https://metascape.org
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://string-db.org
https://cytoscape.org
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
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characteristics. In addition, module detection was implemented using dynamic tree cutting with a
minimum module size of 100 genes, followed by merging of highly correlated modules (similarity
threshold > 0.75). This process ultimately yielded eight distinct co-expression modules (Fig. 3D).
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Figure 3: Soft threshold and clustering tree diagram of the gene module. (A) Relationship analysis between
different soft thresholds (weighting coefficients) and network topology. (B) Relationships between different
soft thresholds and the average connectivity in the network. (C) Correlation scatter plot of log10(k) and
log10(p(k)). (D) Clustering tree diagram of all genes.

3.2 Module-Trait Association Analysis

We systematically evaluated the associations of eight co-expression modules with clinical
characteristics (age, sex, oxygen saturation, and disease status) to identify clinically relevant
modules. Notably, the ME of the darkorange and blue modules demonstrated highly significant
correlations with TOF, with correlation coefficients of 0.84 and 0.78, respectively (Fig. 4A). In
addition, the darkorange module also presented the highest MS value (Fig. 4B). Although the blue
module ranked second in MS and showed statistically significant TOF correlation, its intramodular
connectivity metrics within the WGCNA framework were suboptimal. Consequently, only
the darkorange module was retained as the clinically meaningful, TOF-associated module for
downstream analyses.

3.3 Identification of Hub Genes in the Darkorange Module

Hub gene identification within the darkorange module was performed by analyzing
intramodular connectivity metrics. For the 481 genes assigned to this key module, a robust
correlation was observed between GS and module membership (MM), reinforcing the biological
relevance of this module to TOF pathogenesis (Fig. 5A). Functional enrichment analysis via
Metascape revealed predominant associations with organogenesis (e.g., cardiac, renal, and cranial
development; epithelial morphogenesis; cell junction assembly) and WNT signaling-mediated
cardiac development, alongside system-level processes (cardiac contraction and circulatory
regulation) (Table 1). PPI network analysis using the STRING database identified eight Hub
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genes (GJA1, PTK7, PRICKLE1, SFRP1, RUNX2, FBN2, PIK3R1, and KCNJ2), each exhibiting ≥5
direct interactions within the network (Fig. 5B).
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membership (MM) and gene significance (GS) values. (B) Protein-protein interaction (PPI) network of 185
WGCNA-identified Hub genes analyzed via STRING database.
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Table 1: Representative enrichment analysis of the Darkorange module genes.

Pathway Term Name Log(q) Names of Genes that Were Enriched in the Pathway

GO:0044057, regulation of
system process −5.16

ADRB1, ADRB2, AGTR2, APOA1, CRHBP, ACE, EDNRA,
FGF13, GJA1, GRM1, HRH2, INHA, KCNE1, KCNJ2, KCNJ3,

MYOG, PTGER3, RGS4, SCN2B, SCT, TH, TNNT3, BVES,
NLGN1, TMEM98, CACNG4, EHD3, CELF4, TMEM38A,

KCNH6, NPNT, NCMAP, GABRB1, GABRP, GRIA1, GRID1,
MPP2, P2RX7, PIEZO2, MYH1, MYOM1, NMUR1, UTS2,

CNTNAP2, KCNA4, TSC1, SLC24A3, LRRC55, SYNE2, PTK7,
RAC3, MICAL2, MTSS1, USH1C, ABI2, AVIL, TNIK, EVL,

ANTXR1, CGNL1

GO:0001822,
kidney development −3.48

AGTR2, ACE, EDNRA, HMGCS2, PTK7, ROBO2, SFRP1, SOX4,
TSC1, PROM1, MTSS1, BCL2L11, ADAMTS6, KIF26B, FRAS1,

AMER1, NPNT, FREM2, GDF6

GO:0044089, positive
regulation of cellular

component biogenesis
−3.34

APOA1, P2RX7, PIK3R1, SFRP1, TSC1, ST8SIA2, HRK,
MAP4K4, MTSS1, BCL2L11, ABI2, AVIL, NLGN1, FLRT3,
FLRT2, CNTNAP2, RGCC, CALY, EVL, ATF7IP, LRRN1,

BHLHB9, AJUBA, NAV3, BMF, CGNL1, FGF13, KCNJ2, MDK,
NTF3, RAC3, RGS4, ADRB2, SLC25A5, SYT9, LDB1

GO:0000902,
cell morphogenesis −3.32

CDH8, CRMP1, EDNRA, EFNB3, MDK, NTF3, P2RX7, PIK3R1,
ROBO2, ST8SIA2, KALRN, MAP4K4, ULK2, ABI2, DPYSL4,
IGF2BP1, CSPG5, BVES, LAMB4, NTNG1, NLGN1, TNIK,

FLRT3, FLRT2, CNTNAP2, SEMA6D, ANTXR1, LHX4, NTN5,
RNF165, GPR37, NRTN, RAC3, NREP, USH1C, CTHRC1,

TNNT3, SOX30, NCMAP, APOA1, CTSG, CX3CR1,
CCL8, GPNMB

GO:0007507,
heart development −3.20

COL2A1, ACE, EDNRA, FZD2, GJA1, PTK7, ROBO2, SNAI2,
SOX4, TH, TSC1, FZD1, DNAH11, DHRS3, MICAL2, BVES,
ADAMTS6, FLRT3, FLRT2, SMYD4, PRICKLE1, C1orf127,

RBM24, RBM20, FREM2, LRRC10, ZC4H2

GO:1901888, Regulation of
cell junction assembly −3.16

ACE, ROBO2, SFRP1, SNAI2, TSC1, ST8SIA2, FZD1, LDB1,
MAP4K4, NLGN1, FLRT3, FLRT2, CNTNAP2, LRRN1, BHLHB9,

KIF1A, CDH8, FRMPD4, ABI2, CPEB3, FOXO6

GO:0002009,
morphogenesis of an

epithelium
−2.78

EDNRA, FZD2, GJA1, PGR, PTK7, SFRP1, SOX4, TSC1, FZD1,
MICAL2, MTSS1, FLRT3, SOSTDC1, KIF26B, HHIP, FRAS1,
ARHGAP24, AJUBA, CTHRC1, PRICKLE1, NPNT, FREM2,

ACTG2, ROBO2, SNAI2, CCND1, RAC3, WNT9A, LDB1, TNIK,
AMER1, NOTUM, MPP2, P2RX7, ANKRD6, AGTR2, RUNX2,

MDK, SOX30, ACE, CCL8, FGF18, BCL2L11, ESM1, E2F8,
COL2A1, MSH2, SOX15, CUL4A, ARNT2, FBXW8, CELF4,

TET1, MCM2

GO:0016055,
WNT signaling pathway −2.28

CCND1, EDNRA, FZD2, PTK7, RAC3, SFRP1, WNT9A, FZD1,
LDB1, TNIK, SOSTDC1, CTHRC1, AMER1,

PRICKLE1, NOTUM

GO:0090175, Regulation of
establishment of
planar polarity

−2.06 FZD2, PTK7, SFRP1, FZD1, ANKRD6, CTHRC1, PRICKLE1

Note: Hub genes are highlighted in bold.

3.4 Dysregulated Cell Polarity-Related Signaling Pathway in TOF

After the identification of the Hub genes, we observed that five Hub genes were significantly
enriched in pathways governing epithelial morphogenesis, in which SFRP1, PRICKLE1 and PTK7
were mainly involved in the establishment of planar cell polarity in epithelial morphogenesis
(Table 1). To further validate these results, we used two TOF transcriptomic datasets (GSE26125 and
GSE35776) for GSVA. The results suggest that epithelial polarization-related pathways (embryonic
epithelial morphogenesis pathway and anterior-posterior axis specification in embryos pathway)
and their upstream noncanonical WNT signaling are also inactivated, whereas the canonical WNT
signaling are activated (Fig. 6A). Therefore, the next analysis focused on five genes involved
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in the morphological and polarity development of embryonic epithelial cells: GJA1, PTK7,
PRICKLE1, SFRP1 and RUNX2. Clustering of 1357 dysregulated biological processes identified
through GSVA revealed predominant involvement in metabolic regulation, organogenesis, signal
transduction, macromolecular assembly in organelles, and cell cycle/proliferation (Fig. 6B).
These findings align with established pathobiological mechanisms underlying congenital cardiac
malformations, reinforcing the hypothesis that disrupted epithelial polarity and WNT signaling
dynamics contribute to TOF pathogenesis.
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Figure 6: Differential pathway activity and functional clustering between TOF and healthy control.
(A) Differential pathway activity scores between TOF and controls quantified by Gene Set Variation Analysis
(GSVA) across GSE26125 and GSE35776 datasets. (B) Functional similarity clustering of differentially active
pathways from GSVA.
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3.5 Methylation Modifications on GJA1, PRICKLE1, PTK7, and RUNX2 in TOF

To investigate the potential causes of epithelial morphogenesis pathway disruption, we
analyzed the mutational landscapes of GJA1, PTK7, PRICKLE1, SFRP1 and RUNX2 in two
whole-exome sequencing cohorts (the US CHD cohort [26] and the UK TOF cohort [27]). In the US
CHD cohort, two novel de novo variants were identified in conotruncal defect patients: a missense
mutation (GJA1:c.121768138C>G) and a synonymous variant (PTK7:c.43106663C>T). Additionally,
a loss-of-function mutation in PTK7 and SFRP1 was detected in control subjects. The UK cohort
revealed two rare RUNX2 mutations (Table 2). Given the rarity of coding sequence alterations, we
hypothesized alternative regulatory mechanisms and interrogated methylation profiles using the
GSE62629 dataset. Strikingly, promoter hypermethylation was consistently observed in TOF cases
for GJA1, PRICKLE1, RUNX2, and PTK7, suggesting transcriptional repression of these polarity
regulators (Table 3).

Table 2: Hub gene mutations in the CHD cohort.

Gene Name
UK Cohort (n = 829

TOF)

US Cohort (n = 2871 CHD)

De Novo Mutations
(Case/Control)

LoF Mutations
(Case/Control)*

Homozygous/Compound
Heterozygous Mutations

(Case/Control)

SFRP1 0/0 0/0 0/1 0/0

PRICKLE1 0/0 0/0 0/0 0/0

GJA1 0/0 1/0 0/0 0/0

PTK7 0/0 1/0 0/1 0/0

RUNX2 2/0 0/0 0/0 0/0

*LoF, loss-of-function. The LoF mutations in the two patients were frameshift mutations and splice-site mutations.

Table 3: Differential methylation analysis of Hub gene promoter regions.

Gene Name Transcript Genomic
Coordinates

SLIM-Corrected
p Value

Differential
Methylation Value (%)

GJA1 NM_000165 chr6:121756559 8.9E−94 43.1 [35.0–51.2]
PRICKLE1 NM_001144883 chr12:42878912 5.0E−103 41.4 [35.2–47.6]

RUNX2 NM_001015051 chr6: 45295333 1.5E−48 33.5 [26.9–40.1]
RUNX2 NM_001015051 chr6: 45295367 2.4E−69 38.7 [24.8–52.6]

PTK7 NM_152881 chr6: 43042751 7.4E−51 29.3 [24.1–34.5]

3.6 Expression of GJA1 and SFRP1 in Embryonic OFT-Derived Cells

Systematic analysis of the candidate genes in TOF bulk RNA-seq data (GSE36761, 22 TOF cases
vs 8 controls) revealed: All candidate genes (GJA1, PTK7, PRICKLE1, SFRP1 and RUNX2) showed
significant upregulation in TOF myocardial tissues, as visualized in Supplementary Fig. S1.

We used two single-cell datasets to analyze the expression of these genes in different locations
and at different times in the embryo. The results revealed the selective expression of GJA1 and
SFRP1 in human embryonic hearts at 4.5–9 gestational weeks (Carnegie CS13-CS23) (Table 4) [24].
GJA1 was expressed in trabecular ventricular myocardium, whereas SFPR1 was expressed in
OFT/large vessels, mediastinal mesenchyme and vessels (Table 4). Similar expression patterns
were also found in mouse hearts at the embryonic age of E7.75–9.25 days (Carnegie CS9-CS13) [25].
GJA1 demonstrated ubiquitous expression across critical cardiac lineages, including multipotent
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progenitors, NCC, endocardial cells, lateral plate mesoderm (LPM), and paraxial mesoderm (PM)
cells (Fig. 7). SFRP1 exhibited stage-specific enrichment, predominantly in multipotent progenitors,
mesodermal structural cells, and NCC, LPM and epicardial cells at E8.25 and E9.25 (Fig. 6). PTK7
was only slightly expressed in the LPM and PM, RUNX2 was virtually absent in the heart, and
PRICKLE1 was expressed in trace amounts in the heart (Fig. 7).

Table 4: Cell type-specific expression profiles of Hub genes in human embryonic heart.

Gene Name Source of Cell Tissue Fold Change§ p Value

GJA1 Trabecular ventricular myocardium 0.28 3.75E−23
GJA1 Atrial myocardium −0.46 1.28E−27
GJA1 Outflow tract/large vessels −0.28 3.13E−05
GJA1 Atrioventricular mesenchyme & vessels −0.35 2.25E−06
SFRP1 Compact ventricular myocardium −0.35 7.56E−10
SFRP1 Trabecular ventricular myocardium −0.45 1.36E−10
SFRP1 Outflow tract/large vessels 0.79 4.79E−54
SFRP1 Mediastinal mesenchyme & vessels 1.06 1.02E−41

§denotes log-transformed fold change differences.
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Given the essential roles of NCC and aSHFC in the development of the OFT, we observed the
expression patterns of five Hub genes. Our analysis revealed that GJA1 was significantly expressed
in the aSHFC-derived multipotent progenitors, posterior second heart field (pSHF) cells, and
branchiomeric muscle progenitors, with progressive downregulation culminating in near-complete
silencing at E9.5 (Fig. 7). In contrast, SFRP1 maintained stable expression in aSHF and pSHF, and
both SFRP1 and GJA1 began to be expressed in large quantities in NCC at E8.25 (Fig. 7). PTK7 and
PRICKLE1 were weakly expressed in these three types of cells, whereas RUNX2 was not expressed
(Fig. 8). Thus, the GJA1, SFRP1, PRICKLE1 and PTK7 genes were ultimately identified as candidate
pathogenic genes of TOF.
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Figure 8: Expression profiles of Hub genes in mouse hearts at embryonic ages E7.57, E8.25, and E9.25. 
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4 Discussion

In this study, we constructed WGCNA network to identify disease-associated modules,
subsequently prioritizing eight Hub genes through PPI network analysis. Functional enrichment
revealed five genes (GJA1, PTK7, PRICKLE1, SFRP1 and RUNX2) converging on epithelial
morphogenesis pathways, particularly planar cell polarity (PCP) signaling. Epigenetic profiling
demonstrated promoter hypermethylation in GJA1, PRICKLE1, PTK7 and RUNX2, aligning with
observed PCP pathway inactivation. In addition, developmental validation across NCC and aSHFC
lineages confirmed the GJA1 and SFRP1 expression, while RUNX2 showed no detectable expression
in human or murine cardiac progenitors. Thus, the GJA1, SFRP1, PRICKLE1 and PTK7 genes
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were ultimately identified as candidate pathogenic genes of TOF. Our findings implicate epithelial
polarity pathways as central mechanistic drivers of TOF, highlighting their therapeutic potential
for congenital heart disease.

Cardiac development initiates from a linear epithelial tube with arteriovenous polarity,
requiring precisely orchestrated epithelial morphogenesis involving cellular polarity establishment.
Cell polarity is a basic attribute of various cells and manifests as asymmetry in morphology,
macromolecule distribution and function, including apicobasal polarity (ABP) and PCP, which
play important roles in embryonic organogenesis and development [28–31]. Notably, aSHFC
exhibit hallmarks of an atypical ABP epithelium, with a single cilium at the apex and basally
enriched dynamic actin-rich filopodia [32,33]. Disruption of these polarized features triggers aSHFC
proliferative arrest and ectopic differentiation, ultimately impairing heart tube elongation and OFT
morphogenesis [32,34–37]. In addition, epithelial cell polarity dysregulation has been shown to
induce embryonic OFT truncation, perturbing ventriculoarterial alignment and culminating in the
cardinal pathological features of TOF [38,39]. Therefore, the dysregulation of epithelial cell polarity
and related pathways is a potential mechanism of the embryopathogenesis of TOF.

GJA1 encodes connexin 43 (Cx43), which is a critical component of myocardial gap junctions
that mediates intercellular communication [40]. Online Mendelian inheritance in humans catalogs
pathogenic information on GJA1 (MIM* 121014), which associated with ventricular septal defects
and hypoplastic left heart syndrome. A cohort study of 152 TOF patients identified GJA1 point
mutations in only 5.3% of cases (8/152). however, murine models showed neither congenital heart
defects nor reduced viability upon monoallelic or biallelic Gja1 knockout [41]. Paradoxically, Rhee et
al. reported that Gja1 knockout mice exhibit conus malformation and coronary artery abnormalities,
with mechanistic analyses revealing Cx43-microtubule interactions as essential regulators of
cellular polarity [42]. Another study has demonstrated that cardiomyocytes in children with
TOF exhibit reduced Cx43 expression and an abnormally diffuse distribution across the cell surface,
resembling patterns seen in immature tissues [43]. Thus, these observations suggest potential
genetic mechanisms underlying GJA1 dysregulation that extend beyond conventional genetic
sequence variations, possibly involving DNA methylation patterns identified in our investigation
or alternative epigenetic regulatory pathways.

SFRP1, a soluble member of the SFRP family, functions as a canonical WNT signaling antagonist by
competitively binding to WNT ligands through its conserved frizzled-like cysteine-rich domain [44,45].
During murine cardiac development (between E8.5 and E12.5), SFRP1 and WNT8 are localized
specifically in cardiomyocytes, but neither detected in the pericardium nor the endocardium [46].
This localization pattern aligns with our observations in human and mouse embryonic hearts within
the cardiogenic zone and OFT. Co-immunoprecipitation assays confirmed direct binding between
SFRP1 and WNT8, establishing their functional interplay during cardiogenesis [46]. Gibb et al. reported
that differentiating cardiomyocytes robustly upregulate SFRP1 expression to antagonize canonical
WNT signaling, thereby facilitating OFT morphogenesis [47]. These findings suggest a critical role for
SFRP1 in OFT development and its potential involvement in TOF pathogenesis.

The PRICKLE1 protein, a core component of the PCP pathway, is essential for establishing
both PCP and ABP in embryonic cells [48]. PRICKLE1 knockout mice exhibit failures in distal
visceral endoderm migration and mesoderm formation, leading to early embryonic lethality [48].
Additional studies demonstrate that embryonic loss of PRICKLE1 disrupts cellular polarity, causing
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disorganized myocardial fiber alignment and OFT malformations [49,50]. Chiapparo et al. further
associated PRICKLE1 deficiency with OFT defects, identifying it as a downstream target of MESP1
that regulates migration velocity, polarity, and directional movement of cardiovascular progenitor
cells [51].

PTK7, a member of the protein tyrosine kinase (PTK) family, is a transmembrane glycoprotein
critical for embryonic development and tissue homeostasis [52,53]. Structurally, it comprises
seven extracellular immunoglobulin-like domains, a transmembrane region, and an intracellular
pseudokinase domain lacking catalytic activity, enabling its role as a co-receptor and signaling
scaffold [52]. As a core PCP regulator, PTK7 coordinates tissue morphogenesis via non-canonical
WNT signaling [54]. Studies in mice reveal that Ptk7 mutations can induce severe neural tube
defects alongside multisystem anomalies, including cardiac malformations such as double outlet
right ventricle and ventricular septal defects [55,56]. However, the role of PTK7 in OFT development
and TOF pathogenesis requires further investigation.

This study has several limitations. First, as a retrospective investigation, its conclusions are
inherently constrained by the sample size limitations of the database analyzed; future prospective
studies with larger, multi-center cohorts are warranted to validate these findings. Second, while
DNA methylation is a well-studied epigenetic modification, other mechanisms such as histone
modifications, non-coding RNA regulation, and chromatin accessibility also play critical roles in
gene regulation. Thus, it is necessary to explore these additional layers of epigenetic regulation
in future studies. Finally, while partial molecular mechanisms of GJA1 and PRICKLE1 have
been documented in prior research, comprehensive validation through integrated in vitro and in
vivo experimental models remains essential to elucidate the detailed pathogenic mechanisms and
functional interplay among all four candidate genes identified in this work.

5 Conclusion

In summary, our study systematically dissects dysregulated signaling networks in in TOF. We
identified GJA1, SFRP1, PRICKLE1, and PTK7 as critical modulators of epithelial cell polarity in
TOF. These coordinated epigenetic, transcriptional, and functional perturbations collectively define
a pathogenic cascade that translates cellular polarity defects into macroscopic cardiac structural
malformations. Our findings implicate epithelial polarity pathways as central mechanistic drivers
of TOF, highlighting their therapeutic potential for congenital heart disease.
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