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ABSTRACT: Background: The population of Fontan patients, patients born with a single functioning
ventricle, is growing. There is a growing need to develop algorithms for this population that can predict
health outcomes. Artificial intelligence models predicting short-term and long-term health outcomes for
patients with the Fontan circulation are needed. Generative adversarial networks (GANs) provide a solution
for generating realistic and useful synthetic data that can be used to train such models. Methods: Despite
their promise, GANs have not been widely adopted in the congenital heart disease research community
due, in some part, to a lack of knowledge on how to employ them. In this research study, a GAN was used
to generate synthetic data from the Pediatric Heart Network Fontan I dataset. A subset of data consisting
of the echocardiographic and BNP measures collected from Fontan patients was used to train the GAN.
Two sets of synthetic data were created to understand the effect of data missingness on synthetic data
generation. Synthetic data was created from real data in which the missing values were imputed using
Multiple Imputation by Chained Equations (MICE) (referred to as synthetic from imputed real samples). In
addition, synthetic data was created from real data in which the missing values were dropped (referred to as
synthetic from dropped real samples). Both synthetic datasets were evaluated for fidelity by using visual
methods which involved comparing histograms and principal component analysis (PCA) plots. Fidelity
was measured quantitatively by (1) comparing synthetic and real data using the Kolmogorov-Smirnov
test to evaluate the similarity between two distributions and (2) training a neural network to distinguish
between real and synthetic samples. Both synthetic datasets were evaluated for utility by training a
neural network with synthetic data and testing the neural network on its ability to classify patients that
have ventricular dysfunction using echocardiograph measures and serological measures. Results: Using
histograms, associated probability density functions, and (PCA), both synthetic datasets showed visual
resemblance in distribution and variance to real Fontan data. Quantitatively, synthetic data from dropped
real samples had higher similarity scores, as demonstrated by the Kolmogorov–Smirnov statistic, for all but
one feature (age at Fontan) compared to synthetic data from imputed real samples, which demonstrated
dissimilar scores for three features (Echo SV, Echo tda, and BNP). In addition, synthetic data from dropped
real samples resembled real data to a larger extent (49.3% classification error) than synthetic data from
imputed real samples (65.28% classification error). Classification errors approximating 50% represent datasets
that are indistinguishable. In terms of utility, synthetic data created from real data in which the missing
values were imputed classified ventricular dysfunction in real data with a classification error of 10.99%.
Similarly, utility of the generated synthetic data by showing that a neural network trained on synthetic data
derived from real data in which the missing values were dropped could classify ventricular dysfunction in
real data with a classification error of 9.44%. Conclusions: Although representing a limited subset of the
vast data available on the Pediatric Heart Network, generative adversarial networks can create synthetic
data that mimics the probability distribution of real Fontan echocardiographic measures. Clinicians can use
these synthetic data to create models that predict health outcomes for Fontan patients.
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1 Introduction

Over the next 20 years, the global population of patients with the Fontan circulation is projected
to double [1]. Unfortunately, there are no predictive models for estimating time-to-Fontan failure
in this population. Fontan failure is defined as the overt failure of the single ventricle or organs.
Researchers have identified predictors for Fontan failure [2–6]. However, the high variance in
surgical procedures and patient characteristics has led to few prognostic models that quantify
dynamic risk throughout a patient’s life. In addition, the lack of large, publicly available data on
patients with the Fontan circulation represents a bottleneck in the use of machine learning and
deep learning models for this population.

The Fontan circulation is the culmination of a series of staged surgical procedures that reroute
the circulation of patients born with single ventricle anatomy. The goal of the Fontan circulation is
to make the single ventricle the sole pumping source of the systemic and pulmonary circulations.
More specifically, most single ventricle patients undergo a three-staged surgical procedure which
starts with the Blalock-Taussig shunt, which occurs immediately after birth. This initial surgery
is followed by a, Bidirectional Glenn shunt, which occurs approximately 3–6 months after birth.
Finally, the Fontan procedure, which occurs approximately 2–5 years after birth results in the final
Fontan circulation [7]. While the series of procedures has saved many lives, patients with the
Fontan circulation still face short-term and long-term medical complications, like a progressive
decrease in ventricular systolic and diastolic function. Predicting adverse medical events in this
population continues to be a challenge. The use of artificial intelligence to predict health outcomes
in the broader congenital heart disease community is gaining traction but has yet to directly benefit
patients with the Fontan circulation.

The use of artificial intelligence (AI) to predict health outcomes in the congenital heart disease
community, a broader population including Fontan patients, has increased in the last five years.
AI includes machine learning and deep learning models that can be used to classify, stratify, and
predict various outcomes in a population given an array of features. For example, Mayourian
et al. developed a convolutional neural network (a deep learning model) to detect biventricular
pathophysiology in congenital heart disease patients using electrocardiogram (ECG) signals [8].
Similarly, Mayourian et al. also developed a convolutional neural network trained on ECG data
to predict 5-year mortality in pediatric and adult CHD patients [9]. Both studies relied on ECG
data collected internally at Boston Children’s Hospital. Zeng et al. created a k-means clustering
model that considered blood pressure, patient surgical information, and demographics to predict
post-operative complications in CHD patients after surgery [10]. Lastly, Smith et al. developed a
machine learning-based survival model to predict five-year transplant-free survival among infants
with hypoplastic left heart syndrome using data from the Pediatric Heart Network (PHN) [11].
This represents the only model trained on publicly accessible data for the congenital heart disease
community.

Publicly available medical data on patients with the Fontan circulation is scarce but needed to
train machine learning and deep learning models that estimate the timing of Fontan failure or for
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adverse event detection. The PHN Fontan I dataset [12] is the only freely available Fontan patient
dataset in the United States. The cohort consists of 546 Fontan patients with multiple categorical,
serological, exercise testing and hemodynamic measurements. In subsequent studies, the Fontan
2 [13] and Fontan 3 [14] datasets would represent the only freely accessible longitudinal Fontan
dataset, once released. Researchers have already demonstrated that early-stage catheterization
measurements predict short-term post-Fontan surgery outcomes [15]. More broadly, researchers
have also demonstrated that longitudinal data is more critical for predicting long-term outcomes
compared to cross-sectional data alone [16]. Given that most studies that identify predictors of
Fontan circulatory failure are limited to single-center data or meta-analysis studies, the lack of
longitudinal data for this population is a problem that deters the development of machine and
deep learning models. Generative algorithms can address the scarcity of data needed for the
development of Fontan-specific models.

Generative algorithms, AI models that can synthesize data in the form of images or tabular
data, can generate large amounts of records representative of real longitudinal Fontan endogenous
measurements. There are numerous methods to achieve this, with one method being the use
of generative adversarial networks (GANs) [17]. GANs use two competing neural networks, a
generator and a discriminator, which use real data samples to create synthetic samples with similar
probability distributions. GANs have been developed to create synthetic electronic health records
[18]. Time-series GANs have also been used to create dynamic and the time-dependent clinical
measurements [19]. As a result, generating longitudinal hemodynamic, exercise, and serological
data that closely resembles the statistical distribution of Fontan patient measurements is feasible
and can be leveraged for training data-hungry models. To date, studies have relied on identifying
covariates that are associated with Fontan’s failure to quantify the risk that a patient will need a
medical intervention.

In this study, the generation of synthetic data from a subset of features in the PHN Fontan
I dataset is described. The overall goal of this study is to demonstrate the method by which to
generate synthetic data from any of the PHN databases to encourage the training of predictive
models in the congenital heart disease field. A secondary goal is to create a synthetic training
dataset that contains commonly measured doppler echocardiography features that can be used to
classify ventricular dysfunction in Fontan patients.

2 Methods

2.1 Data Source

The PHN Fontan I dataset comes from a cross-sectional study in which Fontan patients were
enrolled from seven hospitals in the United States between 2003–2004 [12]. The study enrolled a
total of 546 Fontan patients with an age range between 6–8 years old. The study includes parental
and child functional health questionnaires and hemodynamic measures of ventricular health taken
by Doppler echocardiography (Doppler Echo), ECG, cardiac magnetic resonance imaging (MRI),
maximal exercise testing, and resting B-type natriuretic peptide (BNP) concentration. In addition,
medical records that include ventricular morphology, pre-Fontan cardiac anatomic diagnosis, and
age at various staged surgical procedures are also included.
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2.2 Data Pre-Processing

All data files were downloaded in comma-separated values (CSV) format and imported into
R and R Studio. The primary goal of this study was to demonstrate the generation of synthetic
data from a public database from the PHN. To demonstrate this, synthetic data was generated
from a portion of the Fontan I dataset. Specifically, synthetic data was generated on the Doppler
echo measurements since these are measurements commonly taken during routine cardiovascular
monitoring visits. The secondary goal of this study was to use the synthetic dataset to predict the
ventricular functional status of Fontan patients, to demonstrate utility. As a result, a new subset of
data, which included 24 features (shown in Table 1) and one classifier, the presence or absence of
ventricular dysfunction was created. Missing data was handled in two ways: (1) imputation using
Multiple Imputation by Chained Equations (MICE) and (2) dropping subjects that had missing
data. The imputation algorithm went through 10 iterations. For each iteration, imputed values
were updated based on the latest estimates from the other variables’ distributions. All tests for
fidelity and utility yielded two separate results, one for synthetic data created from real data
samples (referred to as synthetic data from real imputed samples) in which the missing values were
imputed and one for synthetic data created from real data in which subjects with missing values
were dropped from the dataset (referred to as synthetic data from real dropped samples). A block
diagram of this process is shown in Fig. 1.

Table 1: Features used in generating synthetic data from PHN Fontan I.

Feature Description

Age @ Enrollment Age of patient at PHN enrollment

Age @ Fontan Surgery Age of patient at Fontan surgery

Number of Associations Number of significant associated anatomic diagnoses

Number of Procedures Number of cardiac surgical procedures prior to most recent Fontan

Fenestration (Y/N) Presence of fenestrations in Fontan circulation

Cardiac Surgery (Y/N) Patient has undergone cardiac surgery

Number of Cardiac Surgeries Number of cardiac surgeries

Post-Fontan Catheterizations (Y/N) Patient has undergone a cardiac catheterization procedure

Stroke Events (Y/N) Patient has experienced a stroke event

Number of Stroke Events Number of stroke events the patient has experienced

Seizure (Y/N) Patient has experienced a seizure

Thrombosis (Y/N) Patient has experienced a thrombosis event

Number of Thrombosis Number of thrombosis events the patient has experienced

PLE (Y/N) Patient has been diagnosed with protein losing enteropathy (PLE)

Arythmias (Y/N) Patient has an arrythmia

Number Arythmias Number of arrythmia events experienced by the patient

Echo BSA Body surface area (BSA) take at the echocardiography procedure, units: m2

Echo SV Ventricular stroke volume measured during the echocardiography procedure, units: mL

Echo dpdt Derivative of left ventricular pressure with respect to time, dP/dt, units: mmHg/s

Echo tde Tissue Doppler peak early diastolic velocity, units: cm/s

Echo tda Tissue Doppler peak late diastolic velocity, units: cm/s

BNP BNP assay result, units: pg/mL

Dominant Ventricle Ventricular dominance in patient
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Figure 1: Block diagram showing the two methods that synthetic data was generated from the Fontan public use da-
taset on the Pediatric Heart Network. 
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2.3 Synthetic Data Generation

Synthetic data was generated using a tabular generative adversarial network (tabGAN) on
Python. For synthetic data from real imputed samples, the real dataset contained 546 subjects. For
synthetic data from real dropped samples, the real dataset contained 286 subjects (after dropping
subjects with missing values). To train the discriminator of the GAN, 80% of the real data, in both
scenarios, was used for training while 20% was used for testing. The hyperparameters for the GAN
are shown in Table 2. The gen_x_times parameter, which is a parameter used to indicate how many
synthetic samples to generate, was varied for this study but was set to 1 for the results shown
in this research. In total, the synthetic data from real imputed samples totaled to 532 synthetic
subjects. The synthetic data from real dropped samples totaled 219 synthetic subjects. The final
synthetic datasets were then combined with their respective real datasets and each subject was
labeled “Synthetic” and “Real” for testing synthetic data fidelity and utility. These mixed datasets
were saved as CSV files.
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Table 2: Hyperparameters of the tabGAN.

Hyperparameter Value

gen_x_times 1

bottom filter quantile 0.001

top filter quantile 0.999

pregeneration fraction 0.2

batch size 500

epochs 500

early stopping patience 25

Adversarial model parameters

metrics rmse (root mean squared error)

max depth 2

max bin 100

learning rate 0.02

random seed 42

n estimators 500

2.4 Synthetic Data Fidelity

Synthetic data fidelity, defined as having similar probability distribution as the real data, was
measured both qualitatively and quantitatively. Qualitatively, histograms and probability density
functions for each feature, both real and synthetic, were also plotted and visually compared. In
addition, the principal component analysis plots (PCA) were also used to visualize the resemblance
of the synthetic data to real data. Quantitative measures of fidelity were carried out in two ways (1)
comparing synthetic and real data using Kolmogorov-Smirnov test to evaluate the similarity of
two distributions and (2) using a post-hoc classifier in which a generic neural network (128 layers)
was used to classify if samples were real or synthetic. The neural network was trained on 80%
of the mixed dataset and tested on 20% of the rest of the data. The classification error was used
as the quantitative measure of fidelity. Scores near 50% were indicative of synthetic data that is
indistinguishable from real data.

2.5 Synthetic Data Utility

Synthetic data utility, defined as data being as useful as real samples in making predictions
(for example, training a model with synthetic and testing that model with real data), was measured
quantitatively. Synthetic data should resemble the predictive characteristics of real data. This
was demonstrated by training a generic neural network (128 layers) to classify if patients had
ventricular dysfunction based solely on 24 features (shown in Table 1). The neural network is a deep
feedforward network (designed for regression tests) consisting of five layers: An input layer that
matches the dimensionality of the input features, three hidden layers with 64, 32, and 16 neurons,
respectively, and an output layer. Each of the hidden layers Rectified Linear Unit (ReLU) activation
function. The training process for the neural network is set with a patience level of 500 epochs and
a minimum delta of 0.001 to restore the best weights once convergence is detected. Table 3 contains
the hyperparameters used on the neural network.
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Table 3: Hyperparameters Neural Network.

Hyperparameter Value

Number of hidden layers 3
Number of neurons per hidden layer

1st layer 64
2nd layer 32
3rd layer 16

Dropout rate 0.3
Optimizer 32

Loss Function Mean Squared Error
Batch size 32

Number of epochs 1000
Early stopping patience 500 epochs

Minimum delta for early stopping 0.001

The neural network was trained with synthetic data and tested with real data (train on synthetic
test on real). A total of 100% of the synthetic data was used to train the neural network and 100%
of the real data was used to test the model. The classification error was used as the quantitative
measure of utility. A low classification error signifies a model that the synthetic data acts as a useful
surrogate for real samples in training a machine learning model.

3 Results

The histograms and probability density functions of synthetic data generated from real imputed
samples are shown in Fig. 2. The histograms include the distribution of eight continuous features.
The histograms and probability density functions of synthetic data generated from real dropped
samples is shown in Fig. 3. The density functions in black represent the real data with imputed
values and the red probability density functions represent the associated synthetic data generated
by the tabGAN. In addition, the PCA plots of the real and synthetic data in both imputed and
dropped cases are shown in Fig. 4a and Fig. 4b, respectively, with real data samples in black and
synthetic data samples in red.

Similarity of both synthetic data samples and real samples using the two-sample
Kolmogorov-Smirnov test are shown for each continuous feature in Table 4. The bold signifies
a KS-Statistic value that rejects the null hypothesis that the data samples came from the same
distribution and the bold with an asterisk signifies a p-value that is less than 0.05.

The misclassification error for the neural network trained on identifying real data (with missing
values imputed) versus synthetic data is 65.2% as shown in the confusion matrix in Fig. 5a. The
misclassification error for a neural network trained on identifying ventricular dysfunction in Fontan
patients with synthetic data, derived from real data in which the missing data was imputed, as the
primary training set is 10.99%. The confusion matrix for this experiment is shown in Fig. 5b. The
false positive rate for this model is 4.8% and the false negative rate is 6.2%. The F1 score is 93.44%.

The misclassification error for the neural network trained on identifying real data (with missing
values dropped) versus synthetic data is 49.3% as shown in the confusion matrix in Fig. 6a. The
misclassification error for a neural network trained on identifying ventricular dysfunction in Fontan
patients with synthetic data, derived from real data in which the missing data was dropped, as the
primary training set is 9.44%. The confusion matrix for this experiment is shown on Fig. 6b. The
false positive rate for this model is 3.1% and the false negative rate is 6.3%. The F1 score is 94.36%.
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Figure 2: Histograms and probability density functions for real data with imputed values for missing data (shown in 
black) and histograms and probability density functions for synthetic data generated by the tabGAN (in red). 
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Figure 3: Histograms and probability density functions for real data in which missing data was dropped (shown in 
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Figure 4: (a) PCA plots overlaying the distribution along the two principal components for synthetic samples gener-
ated from real data in which the missing values were imputed and (b) PCA plots overlaying the distribution along the 
two principal components for synthetic samples generated from real data in which the missing values were dropped. 
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Table 4: Two-sample Kolmogorov-Smirnov Test to Evaluate Similarity of Two Distributions.

Imputed Real Data Dropped Real Data

Feature Kolmogorov–Smirnov
statistic (D) p-value Kolmogorov–Smirnov

statistic (D) p-value

Age @ Fontan Surgery 0.0389 0.8111 0.1339 0.0075*
Echo BSA 0.0460 0.6221 0.0680 0.4673
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BNP 0.1375 0.0001* 0.0528 0.7882Congenit Heart Dis. 2025;volume(issue) 11 
 

  
(a) (b) 

Figure 5: (a) Confusion matrix quantifying fidelity of synthetic samples generated from real data in which the missing 
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Figure 6: (a) Confusion matrix quantifying fidelity of synthetic samples generated from real data in which the missing 
data was dropped and (b) confusion matrix quantifying utility of synthetic samples generated from real data in which 
the missing data was dropped. 

4 Discussion 
Synthetic Fontan I data generated from tabGAN, is similar and as useful as real data from the PHN 

database in classifying ventricular dysfunction. As demonstrated qualitatively, the synthetic data generated 

Figure 5: (a) Confusion matrix quantifying fidelity of synthetic samples generated from real data in which
the missing data was imputed and (b) confusion matrix quantifying utility of synthetic samples generated
from real data in which the missing data was imputed.
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Figure 6: (a) Confusion matrix quantifying fidelity of synthetic samples generated from real data in which
the missing data was dropped and (b) confusion matrix quantifying utility of synthetic samples generated
from real data in which the missing data was dropped.

4 Discussion

Synthetic Fontan I data generated from tabGAN, is similar and as useful as real data from the
PHN database in classifying ventricular dysfunction. As demonstrated qualitatively, the synthetic
data generated has a similar probability density function for key features as evidenced by Fig. 2.
In addition, the PCA plots show sample distribution along the first two principal components
that are similar for both real and synthetic data. More specifically, when comparing the histogram
plots of synthetic data from real imputed samples, the variance is preserved when compared to the
histogram plots of synthetic data from dropped real samples. For example, Echo dpdt, a measure
of ventricular contractility, shows a larger range in the synthetic data from imputed samples (Fig. 2)
than the synthetic data from dropped samples (Fig. 3). This is in large part because when samples
were dropped in the latter case, it constituted 47.6% of the data dropped. The reduced variance is
also confirmed in the PCA plots shown in Fig. 4, where the variance along principal component 2
is more pronounced for synthetic data from imputed real samples. As a result, if the variance of the
data is an important feature to preserve, imputing missing real data appears to be a better option
than dropping missing values.

Quantitively, the synthetic-real classifier demonstrated a classification rate of 65.28% when
the synthetic data was derived from real data in which the missing values were imputed. The
synthetic-real classifier demonstrated a classification rate of 49.3% when the synthetic data was
derived from real data in which the missing values were dropped. As a benchmark, a trained neural
network that cannot distinguish between real and synthetic data samples would perform at a 50%
classification error. Given the limited availability of national-level Fontan patient cardiovascular
data, using GANs to generate synthetic data are promising surrogates for use in creating datasets
with many samples for use in machine learning and deep learning models. Specifically, when
the synthetic data is generated from real data in which the missing values are dropped, trained
classifiers have a harder time distinguishing real from synthetic data.
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At least for the Fontan I dataset, dropping missing values versus imputing missing values with
MICE is more advantageous for mimicking the probability distribution of the original data. As seen
in Table 4, only the “Age at Fontan” feature resulted in a Kolmogorov–Smirnov statistic (D), 0.1339
(p-value = 0.0075), in which the similarity of the synthetic data was not statistically like the real data.
When missing values are imputed using the MICE algorithm, the synthetic data generated becomes
more dissimilar than the real data. If imputation must be used, various imputation algorithms
should be compared.

The usefulness of synthetic data generated from tabGAN is promising, at least with respect
to classifying patients with ventricular dysfunction given standard echocardiography measures,
BNP measurements, and the number of surgical procedures. In fact, a neural network trained on
only synthetic data derived from real data in which the missing values were imputed and tested
only on real data was able to achieve an accuracy of 89.01% (taken as 100%-classification error). A
neural network trained on only synthetic data derived from real data in which the missing values
were dropped and tested only on real data was able to achieve an accuracy of 90.56% (taken as
100%-classification error%). These classification errors demonstrate the utility of synthetic data in
training machine learning classifiers.

In terms of clinical significance, researchers and clinicians can use synthetic data generated
from in-house or internal databases to train complex machine learning and deep learning models.
In this study, a neural network was trained on synthetic data with the goal to classify if a patient
had ventricular dysfunction solely based on echocardiographic measures and BNP serological
measures. When the neural network was trained with synthetic data, there was a difference in
performance of the neural network dependent on how the synthetic data was derived. The neural
network trained with dropped real data had a better false positive rate (3.1% versus 4.8%), higher
specificity (78.6% versus 69.4%), and improved precision (96.2% versus 94.3%) when compared
to when it was trained with imputed real data. This demonstrates that synthetic data acts as an
adequate surrogate for real data in training machine learning models and that these models can
predict Fontan patient functional status from a limited pool of commonly measured features.

There were some limitations to this study. First, only a subset of the vast dataset available on
PHN was used. Echocardiographic measures were the focus of this study. However, Fontan patient
data is complex, containing information about cardiovascular anatomical diagnosis, information
about post-Fontan cardiovascular procedures, medication, valve issues, and much more. Data on
maximal exercise capacity, which contain measures that have been shown to be very predictive of
ventricular dysfunction, were also omitted. In addition, ventricular dysfunction was simplified as
a binary variable. In fact, ventricular dysfunction in Fontan patients has many phenotypes. As a
result, future research should focus on including more of these features, to approximate the medical
records more accurately.

5 Conclusions

In this paper, the generation of two synthetic datasets from the Pediatric Heart Network
Fontan I dataset was demonstrated. A dataset of 546 real subjects was used and missing values
were handled in two ways: (1) imputing using MICE and (2) dropping the missing values. Upon
generation of the synthetic data from these two scenarios, fidelity and utility of the synthetic
datasets was calculated. Using histograms, probability density functions, and PCA, similarity in the
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distribution between synthetic data and real data were visually alike. Quantitatively, the synthetic
data approximated a coin-flip guess in classifying real from synthetic samples (as evidenced by
the 65.28% and 49.3% classification error). In addition, the utility of both synthetic datasets was
shown. Specifically, a neural network trained on synthetic data was able to classify ventricular
dysfunction from echocardiographic measures and BNP with misclassification rates of 10.99% and
9.44%. The classification error for this model trained on synthetic data derived from real data in
which the missing values were imputed was 10.99%. The classification error for this model trained
on synthetic data derived from real data in which the missing values were dropped was 9.44%.
Overall, this represents the first attempt at generating synthetic data for cross-sectional data for the
Fontan population.
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