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ABSTRACT: Mitochondria are central regulators of cellular energy metabolism, redox balance, and survival, and their
dysfunction contributes to neurodegenerative, cardiovascular, and metabolic diseases, as well as aging. Beyond its role
as a circadian hormone, melatonin is now recognized as a key modulator of mitochondrial physiology. This review
provides an overview of the mechanisms by which melatonin can preserve mitochondrial function through multifaceted
mechanisms. Experimental evidence shows that melatonin enhances the activity of electron transport chain (ETC)
complexes, stabilizes the mitochondrial membrane potential (Δψ), and prevents cardiolipin (CL) peroxidation, thereby
limiting permeability transition pore (mPTP) opening and cytochrome c release. Through its direct radical scavenging
capacity and the upregulation of mitochondrial antioxidant defenses, melatonin protects against oxidative stress (OS)
and preserves mitochondrial DNA integrity. Melatonin also regulates mitochondrial dynamics by promoting fusion,
restraining excessive fission, and supporting quality control mechanisms such as mitophagy, unfolded protein response
(UPR), and proteostasis. Moreover, melatonin influences mitochondrial biogenesis and intercellular communication
through tunneling nanotubes (TNTs) and mitokine signaling. Thus, melatonin may represent a promising multi-
faceted therapeutic strategy for preserving mitochondrial homeostasis in a range of pathological conditions, including
neurodegeneration and cardiovascular and metabolic diseases. However, a significant translational gap still remains
between the promising preclinical data and the established clinical practice. Therefore, the aim of this review is to
provide a comprehensive synthesis of current knowledge on the mechanisms through which melatonin modulates
mitochondrial function and to discuss its potential therapeutic implications in neurodegenerative, cardiovascular, and
metabolic diseases.

KEYWORDS: Melatonin; mitochondrial bioenergetics; mitochondrial dynamics; oxidative stress; tunneling
nanotubes; mitokines

1 Introduction
Mitochondria are central to cellular metabolism, energy production, and homeostasis, serving as the

primary site for oxidative phosphorylation (OXPHOS) and ATP synthesis. Beyond energy production,
mitochondria also perform essential functions as signaling organelles, communicating with the nucleus
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and other organelles to maintain cellular homeostasis. This cross-talk allows cellular adaptation to stresses
and helps drive cell fate decisions in health and disease. Mitochondrial dynamics, which are maintained
through a process of continuous fusion and fission [1], are closely linked to energy metabolism and involved
in the formation and regulation of reactive oxygen species (ROS), mitochondrial permeability transition
pores (mPTPs), and apoptosis [2]. Neurodegenerative diseases, metabolic disorders, aging, as well as acute
neurodegeneration induced by ischemic insults are all linked to dysregulation in mitochondrial dynamics
and function. Therefore, a deeper understanding of the role of mitochondria in neurodegenerative diseases
is crucial for the development of effective pharmacological interventions.

Melatonin, a highly conserved and multifunctional molecule, is emerging as a critical regulator of
mitochondria, influencing bioenergetics, dynamics, and gene expression. Melatonin can be rapidly taken up
by mitochondria. In addition, mitochondria synthesize and release melatonin and have the type 1 G protein-
coupled receptor (GPCR) in the mitochondrial intermembrane space [3]. The finding that mitochondria
synthesize and release melatonin has stimulated research for a better understanding of the modulation of
mitochondrial bioenergetics and dynamics by melatonin. Melatonin mitochondrial synthesis provides a local
supply of melatonin to scavenge ROS, supporting mitochondrial function independently from the pineal
gland’s circadian production.

This review integrates current findings to elucidate melatonin’s multi-level regulation of mitochondria—
encompassing energy metabolism, dynamics, gene expression, and intercellular signaling, highlighting its
role in mitochondrial homeostasis and its therapeutic potential in a range of pathological conditions,
including neurodegeneration, and cardiovascular and metabolic diseases.

2 Melatonin and Mitochondrial Bioenergetics
Cellular energy production is maintained by mitochondria and is inevitably associated with the

generation of ROS, which can also function as signaling molecules that modulate cellular proliferation,
differentiation, and adaptive stress responses [4].

Electron transfer from Nicotinamide Adenine Dinucleotide (NADH) and Flavin Adenine Dinucleotide
(FADH2) to O2 occurs through the mitochondrial inner membrane electron transport chain (ETC) via
one-electron carriers, such as cytochromes and iron-sulfur proteins. Cytochrome c oxidase (Complex
IV) catalyzes the complete four-electron reduction of O2 to H2O. When this process is inefficient, the
formation of ROS occurs. The physiological production of ROS and reactive nitrogen species (RNS),
including superoxide anion (O2

•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and peroxynitrite
(ONOO−), during oxidative metabolism, justifies the presence of antioxidant defense systems within the
mitochondrion. These include soluble antioxidants such as reduced glutathione (GSH) and vitamin C, as
well as antioxidant enzymes such as manganese-dependent superoxide dismutase (MnSOD/SOD2), catalase
(CAT), and glutathione peroxidase (GPx) [5]. These direct and indirect scavengers conspire to maintain the
healthy redox state of the mitochondria. Alterations in mitochondrial function increase electron leakage
along the etc, enhancing ROS and RNS production that overwhelms antioxidant defenses and causes
oxidative stress (OS).

The differential high reactivity of ROS and RNS makes the mitochondria not only their primary cellular
source but also the main target of their oxidative effects, generating a vicious cycle that promotes organelle
dysfunction. Lipids in the inner and outer mitochondrial membranes, soluble and membrane proteins, and
mitochondrial DNA (mtDNA), inevitably undergo nonspecific and random structural modifications as a
result of excessive production of ROS/RNS, with deleterious consequences for mitochondrial function [6].
During aging, chronic OS causes accumulating damage and imbalances the delicate equilibrium among ROS
production, mitochondrial fusion and fission, and mitophagy, thereby accelerating the aging process [7].
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2.1 Melatonin as a Mitochondrial Protector and Bioenergetic Modulator
Melatonin can counteract OS-linked detrimental effects directly, as a radical scavenger, or indirectly, by

promoting the activation of antioxidant enzymes [8]. Experimental evidence documents that mitochondria
are an important intracellular site of melatonin biosynthesis in all eukaryotic cells, suggesting that melatonin
could play a key role in counteracting oxidative and nitrosative stress [9]. Due to its amphiphilic nature,
melatonin also readily diffuses into the organelle or can enter the mitochondria via the PEPT1/2 oligopep-
tide transporters [10]. Both endogenously synthesized and exogenously administered melatonin directly
neutralize ROS [11,12] and also upregulate gene expressions and activities of mitochondrial antioxidant
enzymes, including MnSOD/SOD2, CAT, and GPx [12]. The indirect antioxidant effect occurs both through
transcriptional mechanisms, including activation of the Nuclear factor erythroid 2–related factor 2 (Nrf2)
pathway [13], and post-translational mechanisms, such as Sirtuins (SIRTs)-mediated deacetylation [14].

2.1.1 Mitochondrial Respiratory Chain Activity
Experimental evidence shows that melatonin can modulate mitochondrial bioenergetics, preserving

etc activity (summarized in Table 1). Martín and colleagues demonstrated that melatonin restored the
activity of complexes I (NADH: ubiquinone oxidoreductase) and IV (cytochrome c oxidase) in mitochondria
isolated from aged rat brain and liver, counteracting the age-related decline in oxidative phosphorylation
efficiency [15]. Similarly, melatonin improved complex I activity in mitochondria of animal models and
in humans with Parkinson’s disease [16–18]. In neuronal cells under hypoxia/reoxygenation conditions,
melatonin recovered the activity of the mtDNA-encoded complexes I, III (cytochrome bc1 complex), and IV,
protecting cells from oxidative damage induced by mitochondrial ROS [19]. Similar results were observed
in aortic endothelial cells, where melatonin treatment rescued mitochondrial bioenergetics impaired by
hypoxia/reoxygenation by targeting complex V (ATP synthase) [20]. Overall, melatonin improves electron
transfer through the etc by increasing the activity of all respiratory complexes, facilitating a more efficient
flow of electrons from NADH and FADH2 to molecular oxygen [21,22].

Table 1: Experimental evidence reported herein shows the melatonin-mediated restoration of electron transport chain
complex activities and bioenergetics

Model/Condition Species/Cell
type Measured variable Result Source

Aged brain and
liver mitochondria Rat

Activity of complex I
(NADH: ubiquinone
oxidoreductase) and

complex IV
(cytochrome c oxidase)

Restored activity;
counteracted age-related

decline in oxidative
phosphorylation

efficiency

[15]

Parkinson’s disease
models and

patients

Animal
models,
Human

Complex I activity Improved complex I
activity [16–18]

Hypoxia
/reoxygenation

Neuronal
cells

Activity of
mtDNA-encoded
complexes I, III
(cytochrome bc1
complex), and IV

Recovered activity;
protected from

oxidative damage
induced by

mitochondrial ROS

[19]

(Continued)
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Table 1 (continued)

Model/Condition Species/Cell
type Measured variable Result Source

Hypoxia
/reoxygenation

Aortic
endothelial

cells

Activity of complex V
(ATP synthase)

Rescued mitochondrial
bioenergetics impaired

by
hypoxia/reoxygenation

[20]

Note: ROS: reactive oxygen species.

2.1.2 Mitochondrial Membrane Potential and Cardiolipin Integrity
The positive effect of melatonin on the structural organization of the inner mitochondrial membrane

also preserves mitochondrial membrane potential (Δψ). Melatonin maintains the proton-motive force across
the inner mitochondrial membrane, enabling ATP synthase to convert ADP and inorganic phosphate
into ATP efficiently [23]. The ADP/ATP carrier (AAC) exchanges the ATP generated inside the organelle
for the cytosolic ADP as well as protons across the inner mitochondrial membrane. Cardiolipin (CL)
is a critical mitochondrial lipid essential for maintaining the ACC’s proper conformation, assembly, and
activity. By modulating the conformational changes between transport states, CL promotes proper carrier
assembly within the inner mitochondrial membrane, thereby reducing the H+ leak that contributes to
uncoupling energy conversion in mitochondria. Persistent OS causes CL peroxidation. This modification
alters the AAC configuration, compromising its structural integrity and transport activity, resulting in
defects in oxidative phosphorylation and the overall mitochondrial energy supply [24,25]. Melatonin can
protect CL from peroxidation, reducing the downstream consequences induced by cardiolipin oxidation and
preserving mitochondrial integrity [26]. Indeed, CL oxidation favors the formation of the mPTP that leads to
increased membrane permeability, Δψ collapse, mitochondria swelling, and cytochrome c release, initiating
mitochondrial apoptosis [27,28].

2.1.3 Oxidative Metabolism Enzymes
The positive impact of melatonin on mitochondrial redox balance contributes to preserving the

functionality of key enzymes in mitochondrial oxidative pathways, including fatty acid β-oxidation, pyruvate
oxidation, and the Krebs cycle. The enzyme subunits involved in these pathways, including those of succinate
dehydrogenase (etc complex II), are encoded by nuclear genes, synthesized outside the mitochondrion,
and imported via mitochondrial membrane translocase complexes (Translocase of the Outer Mitochondrial
Membrane [TOM], TOM20, TOM22, TOM40, and TOM70; and Translocase of the Inner Mitochondrial
Membrane (TIM), TIM22 and TIM23). Mitochondrial chaperones, including mitochondrial Heat Shock
Protein 70 (mtHsp70), Hsp60/Hsp10, and the Small Tim complexes, participate in both translocation and
proper folding of the imported proteins [29,30]. OS can negatively affect all post-translational steps of these
proteins, from import to proper folding and assembly into functional enzymatic complexes. By maintaining
mitochondrial redox homeostasis, melatonin can safeguard the structural and functional integrity of these
enzymatic complexes, ensuring the correct execution of oxidative metabolic processes necessary for the
efficient production of reduced cofactors (NADH and FADH2) required for oxidative phosphorylation. In
a murine model of type 2 diabetes, for example, exogenous administration of melatonin stimulated both
β-oxidation and the Krebs cycle, increasing the activity of hydroxyacyl-CoA dehydrogenase and citrate
synthase [31].
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2.1.4 Pyruvate Dehydrogenase (PDH) Complex
Melatonin can also impact the function of the pyruvate dehydrogenase (PDH) complex. The protective

action of this indoleamine relies on its ability to mitigate the inhibitory effects of hypoxia inducible 1α
(HIF-1α)/pyruvate dehydrogenase kinase (PDK) pathway on PDH. This is especially important under
conditions of OS. OS may upregulate the HIF-1α/PDK axis, leading to PDH inhibition [32] by damaging
essential cofactors, such as lipoate, a well-known target of reactive species [33]. Melatonin’s positive effect
on PDH may result from its influence on mitochondrial redox homeostasis [34,35] and can have significant
implications for mitochondrial melatonin synthesis. By promoting the activity of PDH, melatonin can
aid in its intramitochondrial production since the end product of PDH is acetyl coenzyme (acetyl CoA),
which is a required co-substrate for melatonin synthesis. In Warburg-metabolizing cells, enhanced glycolysis
is accompanied by elevated mitochondrial ROS production, etc alterations, indicative of mitochondrial
dysfunction. Under these conditions, the cytosolic glycolytic pathway is increased, whereas the oxidative
metabolism of pyruvate in the mitochondrion is strongly inhibited [35]. This inhibition is further reinforced
by OS–induced activation of the HIF-1α/PDK axis, leading to PDH inhibition [32]. It has been hypothesized
that the shift toward glycolytic metabolism in cancer cells results from decreased mitochondrial melatonin
levels, secondary to limited acetyl-CoA formation from pyruvate due to reduced PDH activity, and as
a consequence of the impaired redox homeostasis associated with melatonin deficiency [36]. In tumor
models, melatonin has been shown to restore mitochondrial oxidative metabolism, counteracting glycolytic
metabolism, and part of its anticancer activity has been attributed to these actions [34,37].

The ability of melatonin to upregulate PDH function under OS can be particularly relevant in the central
nervous system (CNS), where this enzyme plays a crucial role in supporting the tricarboxylic acid cycle
(TAC). PDH represents the sole pathway for generating the acetyl-CoA required both for fatty acid synthesis
destined for myelin production, melatonin synthesis, and the TCA cycle, generating the reduced cofactors
(NADH and FADH2) necessary for oxidative phosphorylation. Neurons have a negligible ability to perform
β-oxidation, and rely almost exclusively on pyruvate as a source of acetyl-CoA and as an energy source.
Therefore, maintaining PDH activity in neurons is essential. In this context, the neuroprotective effects of
melatonin observed in numerous models of neurodegeneration [38,39] may be, at least in part, attributed to
this protective action on the PDH complex by locally produced melatonin.

2.1.5 Melatonin and Oxidative Stress in the Clinical Settings
The protective effects of melatonin at the mitochondrial level likely underlie the systemic benefits

observed in clinical settings in which OS has destructive effects. Melatonin’s influence on mitochondrial
bioenergetics may be relevant to metabolic syndromes [40] and cardiovascular diseases [41,42], where
mitochondrial dysfunction represents a common pathological feature. Clinical studies have highlighted the
therapeutic potential of melatonin in metabolic syndrome and diabetes, where chronic nutrient excess and
OS compromise mitochondrial function and promote insulin resistance [43]. Several studies have confirmed
the efficacy of melatonin in counteracting oxidative damage in most of the complications of premature birth,
such as bronchopulmonary dysplasia (BPD) [44], retinopathy of prematurity (ROP) [45,46], necrotizing
enterocolitis (NEC) [47], intracerebral hemorrhage (ICH) [48], periventricular leukomalacia, and punctate
white matter lesions. These conditions may be part of one entity defined as “the free radical disease of
neonatology” [49]. A recent study by Perrone et al. reported that plasma melatonin concentrations in
newborn infants undergoing surgery increased physiologically from the pre- to the postoperative period.
Administration of exogenous melatonin during the postoperative period reduced both lipid and protein
peroxidation, suggesting a role for melatonin in the physiological defensive response against surgery-
associated OS and supporting a potential role for melatonin in protecting neonates from the harmful
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consequences of OS [50]. Melatonin also reduced post-operative OS-mediated pain in pediatric surgical
patients, an effect that was concomitant with the modulation of circulating SIRT1 levels [51]. These findings
support the potential clinical application of melatonin for managing post-operative pain in the pediatric
population, including neonates. Some of the effects of melatonin on OS are summarized in Fig. 1.

Figure 1: Effects of melatonin on the electron transport chain and reactive oxygen species (ROS) production. Note:
Melatonin can stimulate the activity of electron transport chain (ETC) complexes I (NADH dehydrogenase), II
(succinate dehydrogenase), III (cytochrome bc1 complex), IV (cytochrome c oxidase), and V (ATP synthase), promoting
efficient electron flow and ATP synthesis. Melatonin can also stabilize the mitochondrial membrane potential (Δψm)
and preserve cardiolipin (CL), a phospholipid essential for maintaining etc integrity. By reducing electron leakage
primarily at complexes I and III, melatonin can reduce mitochondrial ROS generation, preventing oxidative damage to
mtDNA, lipids, and proteins, and maintaining pyruvate dehydrogenase (PDH) function and metabolic efficiency. TCA
cycle: TriCarboxylic Acid cycle. Created by BioRender.com

3 Melatonin and Mitochondrial Dynamics

3.1 Mitochondrial Fission and Fusion
Mitochondria constantly divide and fuse, and keeping this equilibrium is critical for healthy cells [52].

Mitochondrial fission mainly requires the recruitment of the dynamin-related protein 1 (DRP1) from the
cytosol to the outer mitochondrial surface. Mitofusin 1 (MFN1) and mitofusin 2 (MFN2) on the outer mito-
chondrial membrane coordinate with the protein optic atrophy 1 (OPA1) on the inner membrane to regulate
mitochondrial fusion [53]. Melatonin promotes fusion by increasing the fusion-related mitochondrial genes
MFN1, MFN2, and OPA [30]. In a model of neuronal ischemic injury, melatonin was found to enhance
MFN2 and OPA1 expression and reduce DRP1 expression, contributing to mitochondrial reshaping and
function recovery [30]. In myocardial ischemia/reperfusion injury, the restorative effect of melatonin on
mitochondrial fusion was linked to activation of the adenosine monophosphate-activated protein kinase
(AMPK), which stabilizes OPA1 [54]. Moreover, melatonin can inhibit mitochondrial fission by regulating
the fission-related genes DRP1 and Fis1 [55,56]. Ding et al. showed that melatonin downregulated Fis1
expression and prevented the translocation of DRP1 to the mitochondria surface in the hearts of rats
subjected to myocardial injury, by reducing DRP1 phosphorylation at the Ser616 site, which is linked to its
activation [57]. The beneficial effects of melatonin on both cardiac and neural dysfunctions were concomitant
with upregulation of SIRT1-Peroxisome proliferator-activated receptor Gamma Coactivator 1α (PGC1α)

http://BioRender.com
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and inhibition of the expression of DRP1 [58,59]. Protective actions of melatonin on mitochondria were
also observed in cadmium-induced nephrotoxicity, with a significant reduction of the cadmium-induced
nephrotoxic effect [59]. Melatonin also decreased excessive Ca2+ concentration, stabilizing cardiolipin to
prevent mitochondrial fragmentation and swelling during oxidative damage [60,61]. The collective effects of
melatonin on mitochondrial dynamics are summarized in Fig. 2.

Figure 2: Effects of melatonin on mitochondrial dynamics. Note: Schematic representation showing how melatonin
can regulate mitochondrial quality control through the coordinated modulation of fusion and fission. Melatonin can
promote mitochondrial fusion by upregulating mitofusin 1 (MFN1), mitofusin 2 (MFN2), and optic atrophy protein
1 (OPA1), which facilitate the merging of the outer and inner mitochondrial membranes to maintain mitochondrial
network connectivity and bioenergetic efficiency. Conversely, melatonin can inhibit excessive mitochondrial fission by
downregulating dynamin-related protein 1 (Drp1) and fission protein 1 (Fis1), preventing mitochondrial fragmentation
and dysfunction. Upstream of these effects, melatonin can also modulate several signaling pathways and molecular
regulators, including AMP-activated protein kinase (AMPK), sirtuin 3 (Sirt3), the Hippo–YAP pathway, calcium
homeostasis, cardiolipin preservation, and peroxisome proliferator–activated receptor gamma coactivator 1-alpha
(PGC1α). Through the integrated actions on these pathways, melatonin can reduce mitochondrial ROS production,
preserve mitochondrial morphology, and enhance overall mitochondrial integrity and cellular homeostasis. Created by
BioRender.com

3.2 Mitochondrial Quality Control: Mitophagy and Proteostasis
In response to various physiological signals or external stimuli, complex and highly dynamic mito-

chondrial quality control mechanisms sustain cellular function and homeostasis. Besides mitochondrial
dynamics, these processes involve mitochondrial biogenesis and mitophagy.

Mitochondrial biogenesis is a process by which cells enhance the expression of nuclear and mitochon-
drial genes to increase the size and number of mitochondria. Conversely, mitochondrial dynamics regulate
mitochondrial health through cycles of fission and fusion. Mitophagy is usually activated when damage
is severe or prolonged to selectively remove dysfunctional or damaged mitochondria. The components of
degraded mitochondria are subsequently renewed by protein and mitochondrial biogenesis. In this scenario,
mitochondria and endoplasmic reticulum (ER) are key regulatory hubs in maintaining cell homeostasis and
have a synergistic relationship mediated by mitochondria-ER contact sites [62]. Melatonin can affect ER
stress, mitochondrial unfolded protein response (UPRmt), and mitophagy. In the rat model of a peripheral
nerve injury and in the Schwann cell line, melatonin enhances mitophagy through the PTEN-induced
putative kinase 1 (PINK1)/Parkin pathway, promoting the clearance of damaged mitochondria, supporting

http://BioRender.com
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peripheral nerve repair [63]. In mice with diabetic nephropathy or diabetic cardiomyopathy, melatonin
enhances Parkin-mediated mitophagy, which contributes to mitochondrial quality control [64]. In a diabetic
cardiovascular mouse model, the treatment with melatonin 100 μmol/L for 4 h promotes Parkin translocation
via inhibition of Mammalian sterile 20-like kinase 1 (Mst1) phosphorylation [65]. In a rat of subarachnoid
hemorrhage model, the process of mitophagy activated by melatonin after brain injury has been associated
with the inhibition of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome,
which can reduce the inflammatory response, depressing pro-inflammatory cytokine levels and ROS pro-
duction [66]. Notably, a recent study on neonatal rats with hypoxia/ischemia-induced white matter damage
reported that melatonin (10 mg/kg/day, from postnatal days 3 to 6) inhibited excessive PINK1/Parkin-
mediated mitophagy, suggesting that melatonin can exert a context- and condition-dependent regulation of
mitophagy aimed to maintain cellular homeostasis [67].

Proteostasis, or protein homeostasis, requires precise control from protein synthesis to degradation,
involving folding and conformational maintenance to preserve the cellular proteome. When challenged by
aging and stress, altered proteostasis enhances aging-associated pathologies [39]. Under stressor conditions,
the mitochondrial protein folding environment is also usually challenged, resulting in the accumulation
of misfolded proteins that must be degraded to avoid excessive production of ROS and the reduction of
mitochondrial respiration [68]. UPRmt is a specific protective mechanism mediating the transcriptional acti-
vation programs of mitochondrial chaperones, proteases, and antioxidant enzymes to rehabilitate damaged
mitochondria. Melatonin activates UPRmt to preserve the osteogenic potential of senescent Bone Marrow-
derived Mesenchymal Stem Cells (BMSCs) via Protein Disulfide Isomerase-6 (PDI-6) up-regulation [69].
Many studies, however, have shown that melatonin exerts neuroprotective effects against ischemic stroke by
alleviating ER stress [70,71]. Indeed, melatonin can directly or indirectly interfere with ER-associated sensors
and the downstream targets of the UPR, impacting cell death, autophagy, and inflammation. For example, in
leptin-induced muscle wasting, melatonin ameliorates muscle bioenergetics by reducing the accumulation
of protein aggregates to counteract ER stress [72]. In newborn rats after hypoxia–ischemia brain injury,
15 mg/kg melatonin decreased ischemic infarct size and ER stress [71]. In cultured neurons after oxygen-
glucose deprivation (OGD) injury, pretreatment with melatonin (10–100 mmol) reduced phosphorylation of
both Protein Kinase RNA-like Endoplasmic Reticulum Kinase (p-PERK) and eukaryotic Initiation Factor 2
alpha (p-eIF2α), and decreased neuronal apoptosis [73]. In contrast, recent findings highlight the promotion
of ER stress for the anticancer effect of melatonin. For example, melatonin induced PERK-ATF4 activation,
triggering apoptosis in human choriocarcinoma cells [74]. However, the effects of melatonin on ER stress and,
in particular, on the UPRmt remain poorly explored. A summary of experimental evidence linking melatonin
to key mitochondrial regulatory pathways reported herein is shown in Table 2.

Table 2: Experimental evidence reported herein linking melatonin to key mitochondrial regulatory pathways of
Mitochondrial Dynamics, Mitophagy, and Proteostasis

Model/System Study type Effect of melatonin Molecular
targets/Pathways Reference

Neuronal ischemic
injury (rat) Preclinical

↑MFN2, ↑ OPA1, ↓
DRP1: improved
mitochondrial
morphology &

function

Mitochondrial
fusion/fission proteins [30]

(Continued)
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Table 2 (continued)

Model/System Study type Effect of melatonin Molecular
targets/Pathways Reference

Myocardial
ischemia/reperfusion

(rat)
Preclinical

Restores
mitochondrial fission

and fusion

Mitochondrial
fusion/fission proteins [54]

Myocardial injury
(rat) Preclinical

↓ Fis1, ↓ DRP1
translocation: inhibits

fission

DRP1
phosphorylation

(Ser616)
[57]

Cadmium-induced
nephrotoxicity Preclinical

Preserves
mitochondrial

morphology, ↓ ROS
Fusion/fission balance [60]

Peripheral nerve
injury (rat & Schwann

cells)
Preclinical

↑Mitophagy:
clearance of damaged

mitochondria
PINK1/Parkin [63]

Diabetic nephropa-
thy/cardiomyopathy

(mouse)
Preclinical

↑ Parkin-mediated
mitophagy:

mitochondrial quality
control

Parkin [64]

Diabetic
cardiovascular model Preclinical Promotes Parkin

translocation
↓Mst1

phosphorylation [65]

Subarachnoid
hemorrhage (rat) Preclinical

↑Mitophagy: ↓
NLRP3

inflammasome, ↓ ROS
PINK1/Parkin, NLRP3 [66]

Neonatal
hypoxia/ischemia

(rat)
Preclinical

Inhibits excessive
mitophagy: preserves
cellular homeostasis

PINK1/Parkin [67]

Senescent BMSCs Preclinical
Activates UPRmt:

preserves osteogenic
potential

PDI-6, UPRmt [69]

Ischemic stroke
(newborn rat) Preclinical ↓ ER stress: ↓ neuronal

apoptosis p-eIF2α [71]

Muscle wasting
(leptin-induced) Preclinical

↓ protein aggregates:
improved

bioenergetics
ER stress pathways [72]

Choriocarcinoma cells Preclinical ↑ ER stress: triggers
apoptosis PERK-ATF4 [74]

Note: Abb: ATF4: Activating transcription factor 4; BMSCs: Bone marrow–derived mesenchymal stem cells; DRP1:
Dynamin-related protein 1; ER: Endoplasmic reticulum; Fis1: Mitochondrial fission 1 protein; MFN2: Mitofusin 2;
Mst1: Mammalian sterile 20-like kinase 1; NLRP3: NOD-like receptor family pyrin domain–containing 3; OPA1: Optic
atrophy 1; PDI-6: Protein disulfide isomerase 6; PERK: Protein kinase RNA-like endoplasmic reticulum kinase; PINK1:
PTEN-induced putative kinase 1; p-eIF2α: Phosphorylated eukaryotic initiation factor 2 alpha; ROS: Reactive oxygen
species; UPRmt: mitochondrial Unfolded Protein Response; YAP: Yes-associated protein.
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4 Melatonin and Mitochondrial Gene Regulation
Mitochondrial function depends not only on the dynamic remodeling of the organelle but also on the

precise regulation of its genome. Melatonin has recently emerged as a modulator of mitochondrial gene
expression, translation, and genome stability, acting as a guardian of mitochondrial integrity under both
physiological and stress conditions.

4.1 Mitochondrial DNA Transcription and Integrity
Melatonin influences key mitochondrial transcription factors, such as mitochondrial transcription

factor A (TFAM), the master regulator of mitochondrial DNA (mtDNA) maintenance and expression. In the
HEK293-APPswe cell model of Alzheimer’s disease, melatonin treatment has been shown to increase TFAM
expression together with upstream transcriptional regulators such as PGC-1α (peroxisome proliferator-
activated receptor gamma coactivator 1-alpha) and nuclear respiratory factors 1 and 2 (Nrf1/2) [75]. This
upregulation enhances the transcription of mtDNA-encoded genes essential for the respiratory chain,
including cytochrome c oxidase subunit 1 (COX1) and NADH dehydrogenase subunit 1 (ND1), thereby
supporting mitochondrial biogenesis and energy metabolism. At the same time, melatonin also protects
mtDNA structure from ROS-induced damage. Both in vitro and in vivo studies indicate that oxidative
stress significantly decreases mtDNA copy number and induces strand breaks and mutations [76–78].
Experimental data show that melatonin supplementation preserves mtDNA copy number, reduces oxidative
lesions, and prevents inflammatory response in aging and neurodegeneration [19,79]. Indeed, mtDNA
is highly susceptible to oxidative damage due to its proximity to the etc, and the absence of protective
histones makes it a primary target of redox imbalance. In this context, melatonin acts not only as a
potent scavenger of ROS but also as a regulator of mitochondrial quality control pathways, thereby
limiting oxidative lesions, deletions, and mutations that would otherwise compromise the stability of the
mitochondrial genome. Both experimental in vitro and in vivo studies have demonstrated that melatonin
preserves mtDNA integrity [80]. In a murine model of Parkinson’s disease, melatonin injection (7.5, 15,
or 30 mg/kg, i.p.) dose-dependently prevented reduced DNA oxidative damage, as shown by decreased
immunoreactivity of 8-hydroxyguanine, a biomarker of DNA oxidation [81]. Moreover, melatonin mitigates
OS associated with the canonical 4977-bp mtDNA deletion in cybrid cells by suppressing mitochondrial
ROS production, preventing mPTP opening, sustaining membrane potential, and inhibiting cytochrome
c-mediated apoptosis [82]. Melatonin also reduces mtDNA oxidative damage in brain tissues exposed to
microcystin, due to its potent hydroxyl radical scavenging activity [83]. Melatonin preserves mtDNA within
the organelles in hippocampal neurons, reducing its release into the cytosol under ischemic conditions
and thereby maintaining mitochondrial integrity [20]. By maintaining mtDNA stability, melatonin helps
safeguard mitochondrial function across multiple stress contexts, including aging, neurodegeneration,
and bioenergetic challenges, ultimately contributing to cellular resilience under both physiological and
pathological conditions.

Epigenetic mechanisms can also represent crucial layers of melatonin-mediated control of mitochon-
drial gene expression. Melatonin has been shown to influence the activity and expression of key epigenetic
enzymes, including DNA methyltransferases (DNMTs) [84]. In human dental pulp cells, melatonin promotes
odontogenic differentiation by suppressing DNA methylation through the downregulation of DNMT1 and
methyl-CpG-binding protein 2 (MeCP2) expression [85]. Conversely, when used in combination with
chemotherapeutic agents, melatonin shows pronounced synergistic cytotoxic effects against brain tumor
stem cells and malignant A172 glioma cells by enhancing DNA methylation at the promoter region of the
protoncogene ABCG2/BCRP [86]. Melatonin can also modulate histone acetyltransferases (HATs) and his-
tone deacetylases (HDACs), influencing chromatin remodeling. In multipotent neural stem cells, melatonin
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promotes neuronal differentiation by specifically increasing histone H3 lysine 14 (H3K14) acetylation and
enhancing the activity of the HATs CREB-binding protein (CBP) and p300 [87]. In addition, by activating
SIRT1 and SIRT3, melatonin enhances the deacetylation of transcriptional coactivators and antioxidant
enzymes, such as PGC-1α [88,89], FOXO3a [90,91], and MnSOD [92], promoting mitochondrial biogenesis
and ROS detoxification.

Several studies have shown that melatonin also affects the microRNAs (miRNAs) networks. A recent
study of Gou and colleagues showed that melatonin improves OS-induced injury in the retinopathy of
prematurity by targeting miRNA-23a-3p/Nrf2 axis [46]. In human bronchial epithelial cells, melatonin
antagonized the aerobic glycolysis induced by nickel by blocking miRNA-210 [93]. In human cholangiocytes,
melatonin protection against OS-induced apoptosis and inflammation was also associated with miRNA-
132 upregulation and miRNA-34 downregulation [94]. In arsenic-treated rats, melatonin counteracted liver
injury by inhibiting the hypoxia- or ROS-induced miRNA-34a elevation, restoring SIRT1 expression and
improving mitochondrial dynamics and bioenergetics [95]. Interestingly, melatonin supports osteogenic
differentiation and mineralization of human jawbone-derived osteoblastic cells through the modulation of
miRNA-181c, a miRNA that influences mitochondrial gene expression and energy metabolism [96].

4.2 Post-Transcriptional Regulation and Protein Synthesis
Beyond its transcriptional effects, melatonin can influence mitochondrial protein synthesis by modu-

lating ribosomal activity within the organelle, primarily through activation of the AMPK–PGC1α signaling
pathway. In cardiomyocytes subjected to hypoxia/reoxygenation, melatonin stimulated AMPK, which
upregulated PGC1α, TFAM, Nrf2, and SIRT3, increasing mtDNA replication and synthesis of proteins
critical for the etc and ATP production [97]. Likewise, in Alzheimer’s disease cell models, melatonin,
increasing PGC1α, Nrf1, Nrf2, and TFAM expression, improved the mtDNA/nuclear DNA (nDNA) ratio,
restored ATP production, and respiratory chain activity. In hepatic cells, melatonin protects mitochon-
drial integrity from cadmium toxicity by activating the SIRT1-PGC1α axis, enhancing both mitochondrial
mass and function [46]. In porcine embryos, melatonin prevents mitochondrial dysfunction induced by
rotenone by increasing SIRT1 and PGC1α expression, thereby sustaining ATP synthesis and mitochondria
biogenesis [98]. Similar results were also found in ischemic neurons, where the treatment with melatonin
preserves mitochondrial proteins such as TOM20, TIM23, and HSP60, upregulates fusion mediators MFN2
and OPA1, and enhances SIRT3 and PGC1α-dependent biogenesis, parallel reducing ROS production and
supporting mitochondrial translation [30]. Through all these mechanisms, melatonin can indirectly promote
mito-ribosomal function and the synthesis of mitochondria-encoded subunits required for etc assembly
and OXPHOS.

4.3 Stress Response and Mitochondrial Resilience
In addition to regulating energy production and mitochondrial biogenesis, melatonin can enhance

mitochondrial resilience by engaging stress-adaptive pathways and fine-tuning chaperone-mediated protein
quality control, thereby helping mitochondria maintain integrity and function under stressful conditions.
Experimental evidence indicates that melatonin stimulates the expression of mitochondrial heat shock
proteins (HSPs), which are crucial for preserving proteostasis under cellular stress conditions. In human
mesenchymal stem cells under oxidative stress, treatment with melatonin upregulated mitochondrial iso-
form HSPA1L belonging to the HSP70 family, facilitating Parkin recruitment to mitochondria, leading to
mitophagy activation and apoptosis reduction [99,100]. Melatonin also preserves mitochondrial chaperones
in neuronal cells. In hippocampal HT22 cells, melatonin maintained the HSP60 expression affected by
ischemic insult, together with TOM20 and TIM23 [30]. These effects sustained mitochondrial protein
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import, biogenesis, and functional recovery, reducing ROS levels and preventing collapse of ATP produc-
tion [19,30]. These findings are also supported by in vivo experimental studies. Systemic administration of
melatonin in a mouse model of Parkinson’s disease increased the expression of HSP70 in dopaminergic
neurons, which correlated with improved mitochondrial morphology, reduced α-synuclein aggregation, and
modulation of autophagy [101]. After cerebral ischemia, melatonin significantly increased the expression of
HSP70 mRNA in the cortex and hippocampus of adult rats, which correlated with improved neurological
outcomes and reduced neuroapoptosis [101]. By enhancing these stress-adaptive responses, melatonin can
preserve mitochondrial integrity and function, even in the face of oxidative or metabolic stress.

5 Melatonin and Intercellular Mitochondrial Trafficking
Intercellular trafficking of mitochondria is an emerging biological process through which functional

mitochondria are transferred from donor to recipient cells, particularly under conditions of stress or
injury [96]. This exchange represents a key adaptive response to maintain cellular homeostasis and has been
documented in several pathological contexts, including ischemia/reperfusion injury, neurodegeneration,
metabolic disorders, tissue damage, and cancer [30,102]. Multiple mechanisms mediate mitochondrial
transfer, among which tunneling nanotubes (TNTs) represent the most prominent and best-studied path-
way [103]. TNTs are actin-based cytoplasmic bridges that enable the direct exchange of organelles, including
mitochondria, as well as signaling molecules between donor and recipient cells, and play a central role
in stress response and tissue repair [103,104]. While alternative pathways, such as microvesicle-mediated
transfer and cell fusion, also contribute to mitochondrial exchange, TNT-mediated trafficking appears to be
the dominant mechanism in maintaining cellular homeostasis under stress. Indeed, the formation of TNTs
is strongly upregulated under conditions of oxidative stress, inflammation, or cellular injury, and is closely
associated with increased expression of mitochondrial fusion proteins (e.g., MFN2, OPA1) and biogenesis
regulators such as PGC1α and SIRT3 [30,105].

Increasing evidence suggests that melatonin plays a crucial role in enhancing both the efficiency of
mitochondrial trafficking and the preservation of mitochondrial function [105]. We recently found that
melatonin enhances TNTs formation and improves the mitochondrial transfer between ischemic neurons,
thereby supporting the rescue of damaged cells [30,106]. These mechanisms are schematically summarized
in Fig. 3. Importantly, melatonin-mediated mitochondrial transfer enhances the regenerative potential of
mesenchymal stem cells (MSCs) through complementary mechanisms involving both direct cell-to-cell
communication (via TNTs) and cell-free pathways (extracellular vesicles/exosomes). On the cell-to-cell
side, melatonin promotes TNT formation and stabilizes mitochondrial networks, thereby increasing the
likelihood of mitochondrial donation from MSCs to injured cells and supporting tissue survival under
ischemic and inflammatory stress. Actions are summarized in recent reviews addressing TNTs, MSCs, and
tissue regeneration, which also emphasize the ability of melatonin to reduce ROS accumulation, modulate
ER stress and autophagy/mitophagy, and preserve MSC functionality after transplantation [106,107]. In
parallel, melatonin preconditioning (MT-preconditioning) significantly enhances the secretome of MSCs.
MT-preconditioning improves mitochondrial quality by activating SIRT1/SIRT3–AMPK signaling, pro-
moting mitochondrial biogenesis, and attenuating senescence [108]. In a preclinical model, melatonin has
been shown to reverse oxidative stress-induced premature senescence in MSCs via the SIRT1-dependent
pathway [109,110]. Consistently, melatonin promotes angiogenesis in MSCs by regulating SIRT1/3 and
sustaining mitochondrial activity and autophagic responses [110]. Conversely, extracellular vesicles (EVs)
released by melatonin-pretreated MSCs also display cytoprotective properties, preserving mitochondrial
function in hypoxic target cells, attenuating inflammation and senescence [111,112].
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Figure 3: Effects of melatonin on mitochondrial transfer via tunneling nanotubes (TNTs). Note: Schematic represen-
tation illustrating how melatonin can enhance intercellular mitochondrial trafficking under cellular stress conditions.
Melatonin promotes the formation and stabilization of TNTs—thin, F-actin–based cytoplasmic channels that mediate
direct communication between adjacent cells. Through this mechanism, melatonin can facilitate the transfer of
healthy, functional mitochondria from donor to recipient cells, thereby rescuing damaged or energy-deprived cells
from oxidative stress, hypoxia, and ischemic injury. Melatonin’s effects on TNT-mediated mitochondrial transfer
involve the regulation of cytoskeletal dynamics, mitochondrial motility, and membrane potential stability. By restoring
mitochondrial respiration and ATP production in recipient cells, melatonin can contribute to enhanced cellular
survival, improved bioenergetic recovery, and tissue regeneration following injury. Created by BioRender.com

Collectively, these findings support an integrated framework whereby melatonin safeguards MSC
viability and stemness through anti-senescence and anti-apoptotic actions, while concurrently enhancing
their capacity for mitochondrial donation via TNTs and enriching the pro-regenerative profile of MSC-
derived EVs, including pro-angiogenic and tissue-repair mediators. Notably, melatonin’s ability to potentiate
TNT-mediated mitochondrial transfer acquires particular relevance in the context of anastasis, the process
by which cells recover after the initiation of apoptosis [113]. By facilitating the delivery of functional mito-
chondria, melatonin enables stressed or partially apoptotic cells to restore bioenergetics, reverse apoptotic
signaling, and regain normal function. This concerted mechanism underscores the therapeutic relevance of
the MSC–melatonin axis under several stress conditions, highlighting its potential as a promising strategy
for translational applications.

6 Melatonin and Mitokines: Dual Regulators of Mitochondrial Stress Signaling
While melatonin safeguards mitochondrial performance through local mechanisms inside

mitochondria—where it enhances energy production, protects mitochondrial structure, and regulates
quality—recent research has highlighted its interplay with mitokines, endocrine messengers of
mitochondrial stress that link mitochondrial function to systemic cellular communication [114].

Mitokines are signaling molecules secreted as part of the mitochondrial stress response that help mito-
chondria to maintain their functional state beyond the cell and to coordinate systemic adaptations [115]. Their
release can occur in an autocrine manner, when the producing cell responds to its own signals; in a paracrine
manner, influencing neighboring cells within the same tissue; or in an endocrine manner, when circulating
mitokines reach distant tissues and organs [116]. In mammals, fibroblast growth factor 21 (FGF21) and
growth differentiation factor 15 (GDF15) are the most studied mitokines that function as endocrine signals,

http://BioRender.com
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modulating systemic energy metabolism and appetite control [117], while humanin acts locally to confer
cellular protection, especially in neurons [118]. Mitokine secretion is typically induced by mitochondrial
stressors such as bioenergetic imbalance, OS, or activation of the UPRmt [119]. Once released, mitokines exert
endocrine-like effects that influence systemic metabolic and physiological processes. Mitokines coordinate
adaptive programs that enhance metabolic flexibility, promote fatty acid oxidation, and increase cellular
stress resistance, playing a pivotal role in regulating inter-tissue communication and maintaining metabolic
homeostasis [119].

Melatonin modulates the secretion of mitokines. Indeed, melatonin, which stabilizes mitochondrial
function, reduces the need for mitokines secretion in response to mitochondrial stress, preserving mito-
chondrial functions and also directly modulates their release. For example, in ischemic hippocampal HT22
cells, melatonin treatment not only protected mitochondrial structure and function following oxygen–
glucose deprivation and reoxygenation [30], but also increased the early release of FGF21 in response to
mitochondrial injury, improving neuronal survival [19]. Similar results were also observed in in vivo studies
showing FGF21 upregulation after melatonin administration in both C57BL/6 mice subjected to MCAO and
hypoxic-ischemic neonatal rats, promoting functional recovery [120,121].

7 Conclusions and Future Perspectives
Mitochondrial dysfunction is a hallmark of many pathological conditions, including neurodegenera-

tive and cardiovascular diseases, metabolic disorders, and aging. Excessive production of ROS, defective
OXPHOS, collapse of the mitochondrial membrane potential, impaired mitochondrial dynamics, and
instability of mtDNA collectively drive disease progression by disrupting energy homeostasis, calcium
signaling, and cell survival pathways. Within this complex scenario, melatonin, acting at multiple levels, is
a key molecule that possesses the ability to preserve mitochondrial function and resilience and should not
be considered only as a potent antioxidant but also as a master regulator of mitochondrial physiology, with
broad therapeutic implications. Indeed, the beneficial effects of melatonin have been repeatedly observed in
experimental models of acute and chronic brain and peripheral injury, and increasing research is confirming
its utility in age-related neurodegenerative diseases.

Beyond this, melatonin’s effects on mitochondrial bioenergetics may also be relevant to metabolic
syndromes and cardiovascular diseases, where mitochondrial dysfunction is a common pathological feature.
Several preclinical and clinical studies have highlighted the therapeutic potential of melatonin in metabolic
syndrome and diabetes, where chronic nutrient excess and OS compromise mitochondrial function and
promote insulin resistance.

Nevertheless, a significant translational gap remains between promising preclinical data and established
clinical practice. Closing this gap necessitates future research to determine precise therapeutic protocols
(dosing, duration, population) and to clarify the underlying, and likely tissue-specific, mechanisms of action.
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6. Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, et al. Mitochondrial oxidative
stress—a causative factor and therapeutic target in many diseases. Int J Mol Sci. 2021;22(24):13384. doi:10.3390/
ijms222413384.

7. De Gaetano A, Gibellini L, Zanini G, Nasi M, Cossarizza A, Pinti M. Mitophagy and oxidative stress: the role of
aging. Antioxidants. 2021;10(5):794. doi:10.3390/antiox10050794.

8. Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, et al. Melatonin: an ancient molecule
that makes oxygen metabolically tolerable. J Pineal Res. 2015;59(4):403–19. doi:10.1111/jpi.12267.

9. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ. Mitochondria and chloroplasts
as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in
eukaryotes. J Pineal Res. 2013;54(2):127–38. doi:10.1111/jpi.12026.

10. Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, et al. Human transporters, PEPT1/2, facilitate melatonin
transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J Pineal Res.
2017;62(4):e12390. doi:10.1111/jpi.12390.

11. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises
but over delivers. J Pineal Res. 2016;61(3):253–78. doi:10.1111/jpi.12360.
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