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ABSTRACT: As natural killer (NK) cells eliminate cancer cells and virus-infected cells, as well as modulate various
other medical conditions, including aging-associated conditions such as neurodegenerative disorders, understanding
NK cell regulation is of considerable clinical importance. This article reviews the role of circadian processes (melatonin
and the cortisol system), aryl hydrocarbon receptor, and vagal nerve in the modulation of NK cell function, highlighting
the importance of the endogenous mitochondrial melatonergic pathway in NK cells. As circadian and exogenous
melatonin increase NK cell cytotoxicity, the presence of the endogenous melatonergic pathway may be of some
importance not only to NK function and immune checkpoint regulation but also from the efflux of melatonin, which
decreases tumor cell survival, proliferation, and metastasis, as well as decreasing immune checkpoint ligands, such as
programmed cell ligand 1 (PD-L1). NK cell melatonergic pathway regulation may therefore have significant impacts
not only on NK cell cytotoxicity but also on the intercellular interactions within tumors and other pathological
microenvironments. As melatonin has anti-viral effects, the regulation of the NK cell melatonergic pathway can
have wider impacts on how NK cells regulate viral infections, including in the course of viral-induced susceptibility
to neurodegenerative conditions. Recent data indicate that the endogenous melatonergic pathway is regulated by
interactions of signal transducer and activator of transcription (STAT)3 and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) dimer composition. As both STAT3 and NF-κB dimer composition modulate NK cells, their
interaction in the modulation of the NK cell melatonergic pathway will be important to determine. This has significant
future research and treatment implications, including improving the clinical efficacy of current treatment approaches
such as immune checkpoint inhibition and chimeric antigen receptor (CAR) NK cell therapy, and may accelerate a
means of preventing cancer.
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1 Introduction
The capacity of natural killer (NK) cells to kill emerging tumors has long been appreciated [1], although

it is still widely recognized that their potential has yet to be fully developed [2]. Tumors have developed
mechanisms and responses to inhibit NK cells and CD8+ T cells in the tumor microenvironment, primarily
by increasing the conversion of tryptophan to kynurenine by the induction of indoleamine 2,3-dioxygenase
(IDO) and the kynurenine efflux that activates the aryl hydrocarbon receptor (AhR) on NK cells and CD8+
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T cells to induce a state of ‘exhaustion’. This state of ‘exhaustion’ is characterized by a failure to upregulate
glycolysis and associated upregulation of the expression of immune checkpoints, such as programmed
cell death (PD)-1 [3]. The processes driving such a change in NK phenotype still await clarification but
involve the suppressed capacity to upregulate energy from glycolysis and, therefore, the enhanced energy
availability required for NK cells to have an effective cytotoxic capacity, especially in the prevention of tumor
initiation [4].

Numerous factors have been linked to alterations in NK cell function, including signal transducer
and activator of transcription (STAT)3 [5] and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) dimer composition [6]. STAT3 is activated by phosphorylation at Tyrosine 705 (canonical
and nuclear translocated) and Serine 727 (non-canonical and mitochondria translocated), with highly
distinct consequences [7]. STAT3Tyr705 interacts with NF-κB dimer composition to either suppress or
activate the melatonergic pathway, which is dependent upon an NF-κB dimer composition that varies
across different cell types [8]. The melatonergic pathway upregulation/downregulation may occur in the
nucleus and/or in mitochondria. Nuclear STAT3 interactions with NF-κB may therefore directly regulate the
nuclear melatonergic pathway genes or may regulate the kinases that lead to mitochondrial translocation
of STAT3Ser727. STAT3Ser727 binds to 14-3-3 and limits 14-3-3 mitochondria availability and therefore the
14-3-3 stabilization of Aralkylamine N-acetyltransferase (AANAT) in the initiation of the mitochondrial
melatonergic pathway [9]. STAT3 interactions with NF-κB dimer composition are therefore a powerful
determinant of melatonergic pathway induction or suppression. See Fig. 1.

Figure 1: Nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) dimer composition interacts with signal
transducer and activator of transcription 3 (STAT3) to modulate the melatonergic pathway and NK cell cytotoxicity.
Abbreviations: AANAT: aralkylamine N-acetyltransferase; IL: interleukin; JAK: Janus kinase; LETM1: Leucine Zipper
EF-hand containing Transmembrane protein 1; LETMD1: LETM1 domain-containing protein 1; MAMs: mitochondria-
associated membranes; miR: micro RNA; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells;
NLRP3: nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3; STAT3: signal trans-
ducer and activator of transcription 3; T2DM: type 2 diabetes mellitus
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Fig. 1 shows how canonical, nuclear translocating pSTAT3Tyr705 interacts with nuclear NF-κB dimer
composition to upregulate or downregulate the melatonergic pathway, with NF-κB dimer components
cell cell-specific. The melatonergic pathway may be induced in the nucleus, although it is more likely
to be present in mitochondria, where over 98% of pinealocyte melatonin is produced [10]. Nuclear
(green shade) translocated STAT3Tyr705 interacts with NF-κB dimer components (such as p65/50 and
p50/p50) to stimulate or inhibit the melatonergic pathway, with specific effects partly dependent upon cell
type [8]. Nuclear STAT3Tyr705 interactions with NF-κB dimer components may also modulate non-canonical,
mitochondria translocating pSTAT3Ser727, including alterations in specific kinases that phosphorylate and
activate pSTAT3Ser727. Across different cell types, mitochondrial pSTAT3Ser727 regulates many core aspects
of mitochondrial function, including: 1) mitochondria-associated membranes (MAMs), which powerfully
determine endoplasmic reticulum-derived Ca2+ influx into mitochondria, a key driver of alterations in
mitochondrial function; 2) pSTAT3Ser727 binds and attenuates mitochondrial 14-3-3 availability. 14-3-3
is necessary to stabilize AANAT and, therefore, crucial to the initiation of the melatonergic pathway.
Consequently, attenuation of 14-3-3 availability, including by miR-7, miR-375 and miR-451, suppresses the
melatonergic pathway; 3) In some cells, mitochondrial pSTAT3Ser727 can form a positive reciprocal feedback
loop with LETM1 domain-containing protein 1 (LETMD1), thereby regulating mitochondrial Ca2+ and K+
flux, with most data derived from brown adipocytes; and 4) Mitochondrial translocation of pSTAT3Ser727

enhances the mitochondrial translocation of the NLRP3 inflammasome, NF-κB and p65 with consequences
for patterned gene expression in both the nucleus and mitochondria. As LETM1/LETMD1 has a 14-3-3-
like matrix motif [11], LETM1/LETMD1 may bind AANAT and/or form a ‘dimer’ complex with 14-3-3,
being another possible route for STAT3Ser727 to modulate AANAT stabilization via 14-3-3 availability.
These pro-inflammatory processes in a given cell will have consequences for immediately adjacent cells
of the local microenvironment, via increased interleukin (IL)-6 and NLRP3 inflammasome-induced IL-
1β and IL-18 release, driving inflammatory processes in neighboring cells, including via released IL-6
activating JAK/pSTAT3/NF-κB to stimulate or suppress the melatonergic pathway in cells of the local
microenvironment. The specifics of pSTAT3 interactions with NF-κB dimer composition in NK cells over
the course of aging and aging-accelerating conditions, such as T2DM, will be important to determine.

STAT3 and NF-κB dimer composition are significant aspects of NK cell cytotoxicity regulation. STAT3
can enhance or suppress NK cell cytotoxicity, with variability proposed to be mediated by host cell-specific
factors [5]. As NF-κB dimer composition also regulates NK cell cytotoxicity, with the NF-κB component, c-
Rel, increasing perforin and granzyme B expression to enhance NK cell cytotoxicity [6], this would indicate
an interaction of STAT3 with NF-κB that may modulate the endogenous melatonergic pathway in NK cells, as
shown in several other cell types [8]. In macrophages, the shift from a pro-inflammatory M1-like phenotype
is driven by NF-κB c-Rel increasing melatonin production and efflux to have autocrine effects that shift
macrophages to an M2-like phenotype [12]. Exogenous melatonin has long been appreciated to increase NK
cell cytotoxicity [13], partly mediated by JAK3/STAT5 activation that increases T-bet [14]. This would indicate
the possible role of STAT3 interactions with NF-κB dimer composition in the modulation of NK cell function
by regulating the NK cell endogenous melatonergic pathway.

NK cell cytotoxicity varies over the circadian rhythm [15] and aging [16]. This would indicate a role
for aging-linked variations in pineal melatonin and its interaction with the rise in cortisol in the second
half of sleep in the modulation of NK cell function [17]. As aging is associated with a dramatic 10-fold
decrease in pineal melatonin between adolescence and the 9th decade of life [18], the suppressed availability
of pineal melatonin at night will regulate both STAT3 and NF-κB, as well as the numerous kinases that
can phosphorylate canonical and non-canonical STAT3 [19,20]. Melatonin generally suppresses STAT3
phosphorylation [19], indicating that the loss of pineal melatonin over aging may be intimately linked to
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alterations in the regulation of the melatonergic pathway across body cells, including NK cells. The loss of
pineal melatonin can also disinhibit the effects of the wider cortisol system [21], including in the regulation
of NK cell NF-κB and IL-6-induced JAK/STAT3 [22]. Such data indicate that the changes in night-time
dampening and resetting over the course of aging will modulate NK cells to influence their function and
cytotoxic capacity.

This article reviews the data about NK cell regulation and cytotoxicity, indicating a significant role for
STAT3 and NF-κB dimer composition interaction in the capacity of NK cells to kill tumors and virus-infected
cells. It is proposed that aging and aging-accelerating conditions, such as type 2 diabetes mellitus (T2DM),
will modulate the night-time circadian priming of NK cells, as well as having direct effects on NK cells that
modulate their cytotoxic capacity and therefore the increased emergence of tumors over the course of aging.

The changes in night-time dampening and resetting over aging are reviewed next.

2 Circadian Changes in Night-Time Dampening and Resetting over Aging
The loss of pineal melatonin over aging and aging-associated conditions disinhibits the glucocorticoid

receptor (GR)-α, thereby changing how body cells, including immune cells, are dampened and reset at
night, with consequences for a host of diverse, aging-linked medical conditions, including neurodegenerative
diseases [23] and cancer [24]. This is also relevant to processes proposed to accelerate aging, such as
type 2 diabetes mellitus (T2DM) [25], where pineal melatonin may be suppressed via an increased gut
permeability and the rise in circulating lipopolysaccharide (LPS) that activates toll-like receptor (TLR)4
on pineal microglia to increase tumor necrosis factor (TNF)α to suppress pineal melatonin [26]. As pineal
melatonin suppresses gut permeability and associated gut dysbiosis [27], the loss of pineal melatonin over
aging will have wider systemic effects, including via the suppression of the gut microbiome short-chain fatty
acid, butyrate, which, like melatonin, suppresses cytoplasmic GR-α nuclear translocation [28] and optimizes
mitochondrial function systemically [29]. Pineal melatonin suppression may therefore be linked to wider
systemic changes that further disinhibit GR-α, leading to alterations in the wider cortisol system, including
an enhanced GR-β/GR-α ratio, and GR localization site, which can be cytoplasm, plasma membrane,
mitochondrial membrane, and/or mitochondrial matrix. The GR-β and GR-α are present in NK cells as in
other circulating leukocytes [30], with the raised pro-inflammatory cytokines evident in cancer and viral
infection enhancing the GR-β/GR-α ratio. An increased GR-β/GR-α ratio, significantly more evident in
males, suppresses the capacity of cortisol and corticosteroids to dampen inflammatory activity [31], mediated,
at least in part, by GR-β attenuating the capacity of GR-α to suppress NF-κB [32]. It requires investigation
whether an increase in GR-β/GR-α ratio modulates the specific NF-κB dimer composition and therefore
whether the melatonergic pathway is up- or down-regulated.

The suppression of pineal melatonin and gut butyrate may therefore have diverse effects as a conse-
quence of changes in GR activation, subtype, and localization site. This may be further confounded by
enhanced cortisol and local pro-inflammatory cytokine induction of local cortisol production by 11 beta
11β-hydroxysteroid dehydrogenase (11β-HSD)1 [33–35], as commonly occurs in many types of cancer, with
increased 11β-HSD1 in cells neighboring NK cells suppressing NK cell cytotoxicity [36]. Night-time changes
in pineal melatonin and cortisol over the course of aging and aging-accelerating conditions are shown
in Fig. 2.

Fig. 2 shows how pineal melatonin can dramatically decrease over aging, whilst T2DM suppresses pineal
melatonin to accelerate aging-associated changes. Over aging, nighttime and morning CAR cortisol levels
remain similar. Importantly, suppressed melatonin interacts with cortisol effects. This can happen by several
means, including melatonin’s suppression of adrenal cortex cortisol production as well as the suppression
of the nuclear translocation of the cytoplasmic glucocorticoid receptor (GR)-α, via which most of cortisol’s
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effects have been investigated. The suppression of pineal melatonin over aging and T2DM may therefore act
to disinhibit the influence of cortisol on how body cells and systems, including NK cells, are prepared for the
coming day. Heightened GR-α activation (as to pro-inflammatory cytokines) increases 11β-hydroxysteroid
dehydrogenase 1 (11β-HSD1) and local cortisol production. Heightened GR-α leads to a negative feedback
including GR-β induction, that attenuates GR-α activation as well as having GR-β independent effects on
transcription, whilst inhibiting the capacity of GR-α to suppress NF-κB. How aging/T2DM suppressed
melatonin modulates the GR localization site (cytoplasm, plasma membrane, mitochondrial membrane, or
mitochondrial matrix) is unknown, but is likely to add another layer of complexity to the changes occurring
in the course of dampening and resetting at night over aging and aging-accelerating conditions. Other
factors decreased over aging and T2DM, including gut microbiome-derived butyrate and Bcl2-associated
athanogene (BAG)1, also prevent GR-α nuclear translocation but are not included for clarity [17].

Figure 2: Circadian melatonin and cortisol changes over aging and Type 2 Diabetes Mellitus (T2DM). Abbreviations:
11β-HSD1: 11 beta hydroxysteroid dehydrogenase; CAR: cortisol awakening response; T2DM: type 2 diabetes mellitus

The changes in pineal melatonin and the cortisol system have implications for the regulation of all
body cells, including NK cells. Melatonin can upregulate or downregulate canonical and non-canonical
STAT3 [37] as well as modulate NF-κB dimer composition [38], indicating that pineal melatonin may regulate
the mitochondrial melatonergic pathway by several means that may be dependent on the specific cell and
circumstances. In contrast to the stimulatory effects of melatonin on NK cell function and cytotoxicity,
cortisol via the GR-α suppresses NK cell cytotoxicity and can epigenetically increase NK levels and efflux of
pro-inflammatory cytokines, including IL-6 [22,39], a major inducer of the JAK/STAT3 pathway. Heightened
night-time cortisol/melatonin ratio will therefore suppress NK cell function, which is a significant contrib-
utor to the accumulation of senescent cells, given that NK cells are important to the immunosurveillance
of senescent cells [40] as well as emerging tumor cells. Consequently, the aging-linked changes in circadian
night-time dampening and resetting will have consequences for wider aspects of NK cell function, including
potentiating the aging-linked increase in ‘inflammaging’.

3 Aryl Hydrocarbon Receptor and Kynurenine Pathway
Activation of the aryl hydrocarbon receptor (AhR) on NK cells by tumor-derived kynurenine is a

major target for tumor cells and viral infections, as it can induce a state of ‘exhaustion’ in NK cells [41,42],



6 BIOCELL. 2026;50(2):2

although AhR effects on NK cell cytotoxicity are complex and variable [43]. The tumor achieves NK
‘exhaustion’ by pro-inflammatory cytokine-induced indoleamine 2,3-dioxygenase (IDO) and 11β-HSD1-
derived cortisol activation of the GR-α to induce tryptophan 2,3-dioxygenase (TDO). IDO and TDO convert
tryptophan to kynurenine, which is released by tumors and virus-infected cells to suppress NK cells via AhR
activation [41,42,44]. The AhR is normally expressed in the cytosol and, upon activation, translocates to
the nucleus where it regulates a diverse array of genes, including those with a xenobiotic response element.
The AhR is also expressed on the mitochondrial membrane, where limited data in other cells indicate its
regulation of the voltage-dependent anion channel (VDAC)1 and, therefore mitochondrial Ca2+ flux [45].

AhR activation also modulates the melatonergic pathway via the upregulation of cytochrome P450
(CYP)1B1 and CYP1A2 that can hydroxylate melatonin and/or O-demethylate melatonin to its precursor, N-
acetylmelatonin (NAS), thereby suppressing melatonin levels and availability [46]. The O-demethylation of
melatonin to NAS may be especially problematic in cancer, given that NAS is a brain-derived neurotrophic
factor (BDNF) mimic via the activation of the BDNF receptor, tyrosine receptor kinase (Trk)B [47]. Should
NAS be released by NK cells and CD8+ T cells in the course of AhR activation-induced ‘exhaustion’, NK
cells and CD8+ T cells may not only be inhibited from killing cancer cells but may also provide trophic
support via NAS activation of TrkB, perhaps especially on cancer stem-like cells, where TrkB activation
increases proliferation and survival [48]. Consequently, the role of the AhR in NK cells may be considerably
more complex than typically modelled should the melatonergic pathway be present in NK cells, as seems
highly likely.

The role of the AhR in NK cell regulation is further complicated by AhR modulation of both STAT3
and NF-κB, as shown across diverse cell types. The AhR is in intimate crosstalk with NF-κB, including the
NF-κB components, p65 and RelB [49–51], which increases IL-22 to potentiate tumor cell survival and pro-
liferation [52]. AhR activation can increase NF-κB-induced pro-inflammatory cytokines and chemokines,
including IL-6, which is a major inducer of the JAK/STAT3 pathway [53]. The AhR can also directly modulate
NF-κB activation, whilst AhR activation can also modulate STAT3, indicating complex interactions [54].
The AhR can therefore have complex effects on STAT3 interactions with NF-κB dimer composition and
consequently on the mitochondrial melatonergic pathway. This may be congruous with AhR activation on
NK cells suppressing the mitochondrial melatonergic pathway, including via nuclear STAT3 interactions with
NF-κB dimer composition and/or STAT3Ser727 mitochondrial translocation, thereby contributing to NK cell
‘exhaustion’. This requires experimental investigation, with incorporation of the mitochondrial melatonergic
pathway likely to contribute to a fuller understanding of the invariably ‘complex’ effects of the AhR. How the
AhR may interact with other regulators of the melatonergic pathway in the modulation of NK cell function
is shown in Fig. 3.

Seven points in Fig. 3 (red numbered squares) highlight how factors regulating the tryptophan mela-
tonin pathway modulate NK cells. (1) The AhR modulates both STAT3 and NF-κB dimer composition and,
therefore, may be intimately associated with melatonergic pathway regulation, including by STAT3Ser727

suppression of 14-3-3 stabilization of AANAT. (2) AhR/CYP1B 1/CYP1A2 O-demethylates melatonin to NAS
and also hydroxylates melatonin, to suppress melatonin availability/effects whilst increasing NAS, which, if
released, can activate TrkB to increase tumor stem cell survival and proliferation, indicating that ‘exhausted’
NK cells may paradoxically be a source of trophic support for tumor cells. (3) AhR interactions with NF-κB
can increase pro-inflammatory cytokines, such as IL-6, which activate the JAK/STAT3 pathway to induce
STAT3 interactions with NF-κB dimer composition, whilst also increasing IDO and the conversion of
tryptophan to kynurenine to activate the AhR. (4) Hyperglycemia-derived methylglyoxal, via protein-protein
interactions with tryptophan, not only suppresses tryptophan but also tryptophan-derived kynurenine
pathway products that can activate the AhR, thereby changing the consequence of AhR activation. (5) Diet
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(and possibly the gut shikimate pathway) is crucial for tryptophan availability and, therefore, the tryptophan
necessary for GR-induced TDO and cytokine-induced IDO to convert tryptophan to kynurenine. (6)
Pineal melatonin and gut microbiome-derived butyrate have reciprocated negative interactions with pro-
inflammatory cytokines and GR activation, with pineal melatonin and gut butyrate also increasing sirtuin-3,
which disinhibits the PDC to increase mitochondrial acetyl-CoA for the conversion of serotonin to NAS in
the initiation of the melatonergic pathway. (7) Factors acting to regulate the tryptophan-melatonin pathway
are closely associated with alterations in NK function and NK cell interactions with local microenvironment
cells and, therefore, in homeostatic intercellular interactions.

Figure 3: Shows how the Aryl hydrocarbon receptor (AhR) (blue) and other natural killer (NK) regulators, such as
methylglyoxal and cortisol/GR activation, may act on the tryptophan-melatonin pathway (green shade) to modulate
NK cell function and interactions with other microenvironment cells. Abbreviations: 5-HT: serotonin; 5-HTP: 5-
hydroxytryptophan; AADC: aromatic-L-amino acid decarboxylase; AANAT: aralkylamine N-acetyltransferase; AhR:
aryl hydrocarbon receptor; ASMT: acetylserotonin methyltransferase; CYP: cytochrome P450; GR: glucocorticoid
receptor; IDO: indoleamine 2,3-dioxygenase; JAK: Janus kinase; LAT-1: large amino acid transporter 1; NAS: N-
acetylserotonin; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NK: natural killer; PDC:
pyruvate dehydrogenase complex; ROS: reactive oxygen species; STAT3: signal transducer and activator of transcription
3; TDO: tryptophan 2,3-dioxygenase; TPH: tryptophan hydroxylase; TrkB:: tyrosine receptor kinase B

4 Vagal Nerve, Melatonergic Pathway, and NK Cells
As highlighted in Fig. 2, attenuated pineal melatonin can have significant impacts on cellular and

systemic processes over aging and aging-accelerating conditions such as T2DM. As well as the loss of
melatonin’s direct antioxidant, anti-inflammatory, and mitochondria-optimizing effects, this has a number
of implications for wider dampening processes, including vagal nerve activation, which may be induced
by melatonin both directly and via melatonin’s induction of oxytocin [55–57]. The suppression of pineal
melatonin and gut microbiome-derived butyrate’s inhibition of the GR-α enhances cortisol activation of the
GR-α, which can have complex effects on vagal nerve function, including its suppression [58]. However, this
may be confounded by the disinhibited cortisol effects at the GR-α and GR-β as well as the GR localization
site (cytoplasm, plasma membrane, mitochondrial membrane, and/or mitochondrial matrix), with diverse
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effects that are dependent on GR subtype and site. Raised cortisol effects, like heightened levels of pro-
inflammatory cytokines, induce local production via 11β-HSD1 [33–35]. As such, many of the differential
effects of cortisol may occur in the absence of any prolonged rise in cortisol levels per se that are significantly
regulated by suppressed pineal melatonin and gut butyrate, culminating in alterations in vagal nerve-induced
dampening and resetting, including at night.

The dampening effects of the vagal nerve over the circadian rhythm are driven by acetylcholine (ACh)
release that activates ACh receptors, especially the alpha 7 nicotinic acetylcholine receptor (α7nAChR). The
α7nAChR generally suppresses immune cell activation, partly mediated by the upregulation of specialized
pro-resolving mediators (SPMs) [59] that are proposed to drive a shift in NF-κB dimer component
composition, either directly or via IL-10 [60], leading to an NF-κB dimer that interacts with nuclear
pSTAT3 to upregulate the melatonergic pathway [8,9]. Vagal nerve activation increases IL-10 production in
macrophages [61], via the induction, release, and autocrine effects of local melatonin [62], with released IL-10
increasing NK cell cytotoxicity [63], possibly via STAT3 interactions with NF-κB, inducing the mitochondrial
melatonergic pathway, as in other cell types [8]. Pineal melatonin also increases α7nAChR [64], being
another aspect of how suppression of pineal melatonin attenuates systemic dampening by the vagal nerve in
the course of inflammation resolution.

The vagal nerve also modulates NK cell function, with vagotomy decreasing NK cell numbers [65].
Data indicate that vagal nerve stimulation decreases transforming growth factor (TGF)-β1 and macrophage
polarization, thereby indirectly, and perhaps more directly, increasing NK cell cytotoxicity [65,66]. Vagal
nerve activation also increases CD8+ T cell cytotoxicity [67], indicating wider benefits of vagal stimulation
in the tumor microenvironment [66]. A recent meta-analysis shows that suppressed vagal nerve activation
is associated with decreased overall survival in cancer patients [68], whilst vagal nerve stimulation is
proposed to have benefits in tumor management, including glioblastoma multiforme (GBM) via IL-6
downregulation [69]. The vagal suppression of IL-6 has numerous consequences, including the attenuation of
the IL-6/JAK/STAT3 pathway and the interface of STAT3 with NF-κB dimer composition in the modulation
of the mitochondrial melatonergic pathway [70]. The vagal nerve is therefore an important contributor to
anti-inflammatory processes, including in the course of night-time dampening and resetting, and thereby
intimately linked to the regulation of pineal and local melatonin [70]. This links to data showing tumors
to emerge from alterations in night-time processes, including the aging-associated decrements in pineal
melatonin production [71].

Pineal melatonin, via the pineal recess and third ventricle [72], as well as exogenous melatonin induces
oxytocin, which not only activates the vagal nerve [55–57,73] but may also directly modulate NK cells via
the robust regulation of C-type lectin-like receptors (CTLRs) in the NK gene complex, which significantly
modulates NK cell function, as do CTLRs in other immune cells [74]. How pineal melatonin, including
via oxytocin, regulates the vagal nerve to alter inflammatory activity is shown in Fig. 4. Importantly,
in contrast to the anti-inflammatory effects of melatonin/oxytocin/vagal nerve stimulation across most
immune cells, melatonin/oxytocin/vagal nerve stimulation enhances NK cell numbers and cytotoxicity.
As the anti-inflammatory effects of vagal nerve stimulation require the upregulation of local melatonin
production at the site of inflammation, mediated by melatonin/oxytocin/vagal ACh/α7nAChR/SPMs/NF-
κB dimer composition interactions with sSTAT3, the local regulation of the melatonergic pathway will
determine vagal nerve effects [75]. Whether the NK activating effects of melatonin/oxytocin/vagal nerve
stimulation are similarly dependent upon the induction of the melatonergic pathway in NK cells will be
important to determine.
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Figure 4: Pineal melatonin, oxytocin, vagal nerve, local melatonin, and gut dysbiosis/permeability modulate NK cells.
Abbreviations: α7nAChR: alpha 7 nicotinic acetylcholine receptor; NF-κB: nuclear factor kappa-light-chain-enhancer
of activated B cells; PVN: Paraventricular Nucleus; SPMs: specialized proresolving mediator; STAT3: signal transducer
and activator of transcription 3

Fig. 4 shows how pineal melatonin directly and especially via increasing PVN oxytocin activates the
vagal nerve, which releases acetylcholine (ACh) onto several ACh receptors, including the α7nAChR. Activa-
tion of α7nAChR generally dampens immune-inflammatory activity, mediated by upregulating specialized
proresolving mediators (SPMs) that change the NF-kB dimer composition, allowing NF-kB to interact with
nuclear STAT3 to upregulate the melatonergic pathway, which drives inflammation resolution. This would
be one mechanism whereby vagal nerve activation increases NK cell number and cytotoxicity, the latter
primarily driven by local melatonin, as with pineal melatonin over the circadian rhythm. As pineal melatonin
increases the α7nAChR [64], this may be another route whereby suppressed pineal melatonin modulates
wider processes of dampening and resetting, including by the vagal nerve and its modulation of NK cells.
Pineal and vagal nerve-driven local melatonin [75] also helps maintain the integrity of the gut barrier, leading
to decreased gut dysbiosis and circulating lipopolysaccharide, whilst increasing gut microbiome-derived
butyrate that enhances NK cell cytotoxicity.

This has a number of future research and treatment implications.

5 Future Research Implications
Is the melatonergic pathway evident in NK cells? If so, is it regulated by the interactions of canonical

and non-canonical STAT3 with NF-κB dimer composition to modulate the NK cell tryptophan-melatonin
pathway? If the melatonergic pathway is evident in NK cells, do the effects of NAS and melatonin have
intracrine and/or intramitochondrial effects, or are NAS and/or melatonin effluxed to have autocrine and
paracrine effects, as occurs in macrophages and microglia [62,76].

Are the generally stimulating effects of IL-10 on NK cell cytotoxicity via increased OXPHOS and
glycolysis [63] mediated by alterations in canonical and noncanonical STAT3 interactions with the NF-κB
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dimer composition and therefore the induction of the NK cell mitochondrial melatonergic pathway, as
evident in other cell types [8].

Are the NK activating effects of melatonin/oxytocin/vagal nerve stimulation dependent upon the
induction of the melatonergic pathway in NK cells, paralleling vagal-induced local melatonin in the
dampening of inflammatory processes in preclinical models [75]?

Is the mitochondrial melatonergic pathway evident in the vagal nerve? If so, would this be regulated by
STAT3 interaction with NF-κB dimer composition? Does the regulation of the putative vagal melatonergic
pathway modulate vagal function and therefore systemic dampening and resetting across body organs and
tissues?

Does AhR activation on NK cells suppress the mitochondrial melatonergic pathway, including
via nuclear STAT3Tyr705 interactions with NF-κB dimer composition and/or STAT3Ser727 mitochondrial
translocation?

Does the tumor-induced pro-inflammatory cytokine induction of IDO and/or cortisol/GR-α induc-
tion of TDO increase kynurenine to activate the AhR/CYP1B1/CYP1A2 pathway, leading to an increased
NAS/melatonin ratio, with any effluxed NAS from NK cells increasing the survival and proliferation of tumor
cells [77]?

Quercetin shows some efficacy in enhancing NK cell cytotoxicity under conditions of NK cell activation
in cancer [78]. As quercetin quenches methylglyoxal [79], does quercetin increase tryptophan availability in
NK cells? Does quercetin suppress RAGE/STAT3 activation to upregulate the tryptophan-melatonin pathway
availability? The naturally occurring 3-O-glucoside of quercetin, isoquercetin, inhibits STAT3 activation [80],
indicating that quercetin and isoquercetin, via STAT3 modulation, may regulate the melatonergic pathway,
including in NK cells. The impacts of quercetin and isoquercetin on STAT3 (canonical and non-canonical)
interactions with NF-κB dimer components in NK cells will be important to determine in future research,
with potential implications across a diverse range of aging-associated conditions.

NK cell cytotoxicity decreases over aging and is associated with a wide range of aging-linked conditions,
including dementia, tumors, and susceptibility to severe viral infection [40]. Preclinical data show quercetin
to increase the proportion and maturation of NK cells over aging, with consequent suppression of an array
of diverse aging-linked conditions [81]. Is this particularly relevant in T2DM-driven accelerated aging via
quercetin suppression of methylglyoxal to increase the tryptophan-melatonin pathway, including in NK
cells? Does increased tryptophan-melatonin pathway availability [82] underpin the classical causal modelling
of quercetin benefits in T1DM and T2DM, such as decreasing pro-inflammatory cytokine release, increasing
glucose uptake, optimizing pancreatic β-cell function and insulin release, as well as inhibiting α-glucosidase
and DPP-IV enzymes, thereby prolonging the half-life of glucose-dependent insulinotropic polypeptide
(GIP) and glucagon-like peptide-1 (GLP-1) [83]. The interface of quercetin with NK cell function may
therefore provide a more refined understanding of NK cell function and regulation, and how this interfaces
with the regulation of the mitochondrial melatonergic pathway.

Sleep deprivation decreases NK cell number and function, which is proposed to be mediated by
decreased melatonin and raised cortisol levels that induce β2-adrenergic receptors (β2-AR) activation in
NK cells [84]. Does sleep deprivation impact on NK cell melatonergic pathway regulation, possibly via the
interactions of STAT3 and NF-κB dimer composition?

Is Bcl2-associated athanogene (BAG)-1 present in NK cells, and does it decrease over aging in these cells
as occurs in many other cells [85]? Would BAG-1 suppress GR-α nuclear translocation and take the GR-α
to the mitochondrial matrix, as shown in other cell types [86]? Is there a suppression of BAG-1 levels in NK
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cells over aging, leading to a compensatory increase in other BAGs, including BAG-6, which blocks NKp30
to suppress NK cell function [87]?

Is LETMD1 present in the mitochondria of NK cells? If so, does it form a positive feedback loop with
pSTAT3Ser727 to modulate the mitochondrial melatonergic pathway?

Does an increased GR-β/GR-α ratio in NK cells modulate the specific NF-κB dimer composition as well
as NF-κB levels [32], thereby regulating the NK melatonergic pathway?

People on the autistic spectrum (ASD) show suppressed NK cell activity [88,89]. Interestingly, ASD is
strongly linked to suppressed melatonergic pathway induction across diverse systemic and CNS cells [90],
which has been proposed to be driven by prenatal alterations in placental melatonin production coupled to
an increased cortisol influence in prenatal and early post-natal crucial developmental windows [70]. There is
some association of ASD with increased cancer risk [91] and death arising from severe SARS-CoV-2 infection
during the COVID-19 pandemic [92]. Whether this is driven by suppressed melatonergic pathway availability
in NK cells directly and/or via an increased type 2 diabetes mellitus (T2DM) presence in ASD [93] and
therefore raised levels of methylglyoxal to suppress tryptophan availability for the tryptophan-melatonin
pathway [94] and/or decreased melatonin/oxytocin/vagal nerve activation requires further investigation.

6 Treatment Implications
The presence and regulation of the melatonergic pathway in NK cells have significant implications

for improving current treatment approaches for NK cell-associated conditions, including cancer and viral
infections. A large and growing body of data indicates the clinical relevance of adjunctive melatonin
in the treatment of cancer [95,96] and viral infections [97,98], which is typically modelled as driven
by melatonin’s antioxidant and anti-inflammatory effects. However, melatonin can significantly modulate
immune checkpoints, including via miR-138 [99] regulation and suppression of programmed cell death
(PD)-1 and cytotoxic T-lymphocyte-associated molecule 4 (CTLA-4) [100,101], indicating that targeting the
regulation of the NK melatonergic pathway may provide a less toxic way of inhibiting immune checkpoints.
Any melatonin released by NK cells would also be expected to suppress PD-L1 in tumor cells, as shown in
hepatocellular carcinoma cells [102], as well as having wider consequences in the tumor microenvironment.

There is a growing appreciation of the clinical utility of CAR NK cell therapy [103]. CAR attachment
to NK cells enhances their capacity to recognize tumor cells, whilst decreasing potential side effects of CAR
T cell therapy and overactive NK cells, such as cytokine release syndrome [103]. Improvements in CAR NK
cell therapy are widely expected to make CAR NK cell therapy the major treatment of many cancers and in
other NK-linked conditions [104,105]. Clearly, investigation of the presence and regulation of the NK cell
melatonergic pathway will have significant impacts on NK cell function and potentially on the intercellular
communication within the tumor microenvironment, including by the efflux of melatonin to suppress
PD-L1 on cancer cells [102]. Investigation of the presence and regulation of the melatonergic pathway in
NK cells may therefore have significant clinical implications. This may be of particular importance in the
treatment of glioblastoma multiforme (GBM), where treatment outcomes are currently very poor [106].
Preclinical and in vitro studies indicate that CAR NK cell therapy is likely to have clinical efficacy in GBM
treatment, including when combined with other currently available treatments, such as immune checkpoint
inhibitors [107]. Investigation of the regulation of the NK cell melatonergic pathway should refine the nature
of GBM treatment development, including the role, if any, of the astrocyte melatonergic pathway that was
first shown to be present in 2007 [108]. Investigating and incorporating the pSTAT3/NF-κB/melatonergic
pathway across GBM microenvironment cells will enhance physiological understanding and should drive
the development of much-needed novel treatments.
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Notably, NK cell cytotoxicity is powerfully determined by the circadian rhythm, with increased
cytotoxicity occurring at night and in the early morning [109]. NK cell prevention of cancer pathogenesis
is therefore an aspect of night-time dampening and resetting [110], with an aging-associated decrease in
pineal melatonin and relatively disinhibited cortisol effects, attenuating the NK cell cytotoxicity efficacy in
tumor elimination.

Quercetin and/or isoquercetin may have enhanced NK cell treatment benefits by upregulating the
tryptophan-melatonin pathway, including via altering the interactions of STAT3 and NF-κB with distinct
dimer components.

A ketogenic diet can increase NK levels, especially cytotoxic CD56dim, to enhance NK cell response
without increasing CD69 expression [111]. In other cells, a ketogenic diet increases the local melatonergic
pathway and melatonin receptors [112]. Whether a ketogenic diet, via STAT3 and NF-κB dimer interactions,
upregulates the NK melatonergic pathway to enhance cytotoxic CD56dim NK cell effects will be important
to determine. A ketogenic diet also increases the cytolytic capacity of CD8+ T cells [113], which is also
potentiated by melatonin [114], possibly indicative of a similar importance of the endogenous melatonergic
pathway in CD8+ T cells.

Nanoparticle- and exosome-encapsulated melatonin may be preferentially targeted to distinct cells,
thereby increasing local concentration effects and coupled to a decrease in melatonin metabolism [95].
The mitochondria-targeting nanoparticle, Mito-Mel, has an effect that is 100-fold enhanced in comparison
to free melatonin [115]. The refinement of such treatments will enhance the efficacy of melatonin in the
modulation of NK cells and CD8+ T cells, as well as when utilized as an adjuvant to current pharmaceutical
treatments. Future research on the regulation of the melatonergic pathway would be expected to further
refine melatonin’s clinical utility, as well as identify ways to specifically, and perhaps dynamically, target the
melatonergic pathway in NK cells and other cell types.

There is a growing appreciation of the role of NK cells across a range of diverse medical conditions,
including subarachnoid hemorrhage [SAH] [116]. The relevance of the IL-6/STAT3/NF-κB pathway in
modulating NK cell cytotoxicity in SAH is highlighted by data showing the importance of pSTAT3 inhibition
in limiting the IL-6/STAT3 pathway driven inflammation in SAH [117] It will be important for future
clinical research to investigate the roles of canonical and non-canonical pSTAT3 and their interactions
with NF-κB dimer composition in modulating the NK cell melatonergic pathway and cytotoxicity. As
SAH also impairs glymphatic system function in clinical studies [118] and the interrelated meningeal
lymphatic system function in preclinical studies [119,120], the role of NK cell driven inflammation in
glymphatic/meningeal lymphatic system dysfunction will be important to clarify. As pineal (and possibly
local melatonin) enhances glymphatic and meningeal lymphatic system function by upregulating astrocytic
end-feet aquaporin (AQP)4 [121], the interface of pineal, local, and NK cell melatonergic pathway in SAH
and glymphatic/meningeal lymphatic system interactions will be important to clarify to improve SAH
treatment outcomes.

Other neurotraumas are associated with decreased NK cell number and cytotoxicity, such as brain
ischemia [122] and chronic spinal cord injury [123] in correlation with trauma severity. Investigation of the
interactions of canonical and non-canonical pSTAT3 and NF-κB dimer composition in the modulation of
the up- or down-regulation of the NK cell melatonergic pathway should refine treatment for these still poorly
managed conditions.
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7 Conclusions
The capacity of NK cells to kill cancer cells and virus-infected cells, as well as modulate many

other medical conditions, clearly indicates the importance of investigating the presence and regulation of
core processes in NK cells. As indicated above, the mitochondrial melatonergic pathway may be a core,
unrecognized aspect of NK cell function, and may integrate many disparate bodies of data on NK cell
function, including suppression in T2DM, as well as by methylglyoxal and aging. The capacity of exogenous
melatonin to enhance the cytotoxicity of NK cells would indicate that the presence of an endogenous
melatonergic pathway may be of some importance to optimized NK cell function. Whether the NK cell
melatonergic pathway is regulated by canonical and noncanonical pSTAT3 interactions with NF-κB dimer
composition, as found in a wide array of other human cell types, will be important to determine and should
provide a mechanism to increase the robustness of NK cell responses, including in solid tumors, where their
efficacy is currently limited. As NK cells are particularly important in the early detection and elimination
of cancer, the investigation, regulation, and targeting of the NK cell melatonergic pathway should improve
the attainment of the ultimate goal of cancer prevention. This article has been published as a preprint [124],
which the current article will replace.
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