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ABSTRACT: Yeast-based models have become a powerful platform in pharmaceutical research, offering significant
potential for producing complex drugs, vaccines, and therapeutic agents. While many current drugs were discovered
before fully understanding their molecular mechanisms, yeast systems now provide valuable insights for drug discovery
and personalized medicine. Recent advancements in genetic engineering, metabolic engineering, and synthetic biology
have improved the efficiency and scalability of yeast-based production systems, enabling more sustainable and cost-
effective manufacturing processes. This paper reviews the latest developments in yeast-based technologies, focusing
on their use as model organisms to study disease mechanisms, identify drug targets, and develop novel therapies. We
highlight key platforms such as the yeast two-hybrid system, surface display technologies, and optimized expression
systems. Additionally, we explore the future integration of yeast engineering with artificial intelligence (AI), machine
learning (ML), and advanced genome editing technologies like CRISPR/Cas9, which are expected to accelerate drug
discovery and enable personalized therapies. Furthermore, yeast-based systems are increasingly employed in large-
scale drug production, vaccine development, and therapeutic protein expression, offering promising applications in
clinical and industrial settings. This paper discusses the practical implications of these systems and their potential to
revolutionize drug development, paving the way for safer, more effective therapies.

KEYWORDS: Yeast; model organism; pharmaceutical research; drug discovery; synthetic biology; metabolic engineer-
ing; vaccine development; therapeutic proteins; machine learning; biopharmaceuticals

1 Introduction

Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom.
The first yeast originated hundreds of millions of years ago, and over 1500 species have been identified to
date, with new species continuously being discovered through ongoing taxonomic research and molecular
techniques [1,2]. Yeasts are estimated to constitute about 1% of all described fungal species. As a eukaryotic
model organism, yeasts were the first eukaryotic organism to have its genome sequenced, ushering in a
new era for humankind’s in-depth understanding of the functions of eukaryotic cells and the molecular
mechanisms of their life activities [3,4].

Compared to mammalian cells, yeast (e.g., Saccharomyces cerevisiae, Hansenula polymorpha, Yarrowia
lipolytica, Pichia pastoris) offers several unique advantages in biotechnology. Saccharomyces cerevisiae
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(baker’s yeast), a genetic model organism model organism in genetics, is widely used due to its well-
characterized genetic background, ease of culture, and comprehensive gene manipulation tools. Its ability
to undergo both asexual (budding) and sexual reproduction makes it particularly versatile for genetic
studies. It has been used extensively in genetic research, protein production, and fermentation processes
and is a cornerstone in industrial biotechnology [5,6]. Hansenula polymorpha, a methylotrophic yeast, is
especially valued for its ability to utilize methanol as a sole carbon source, making it ideal for the high-level
expression of recombinant proteins. It is commonly used to produce biopharmaceuticals and enzymes [7].
Yarrowia lipolytica, an oleaginous yeast, is renowned for its ability to accumulate lipids, making it useful in
biofuel production and the synthesis of fatty acids. It is also employed in the production of organic acids
and industrial enzymes [8]. Pichia pastoris, another methylotrophic yeast, has gained widespread use in
biotechnology due to its strong, tightly regulated alcohol oxidase (AOX1) promoter, which facilitates the
high-level expression of recombinant proteins. It is especially useful for producing proteins with complex
post-translational modifications, such as glycosylation, and is commonly used in both research and industrial
applications [9].

These yeasts offer the advantage of being genetically tractable and capable of efficient heterologous
gene expression. Their protein glycosylation pathways are highly conserved with those in mammalian
cells, making them suitable for producing human therapeutic proteins with the desired post-translational
modifications [10,11]. Additionally, the yeast system benefits from mature tools and extensive databases. E.g.,
the S. cerevisiae knockout collection, maintained by the Saccharomyces Genome Database (SGD) (https://
www.yeastgenome.org/, accessed on 12 December 2024), provides a comprehensive resource for genome-
wide knockout studies and protein interaction analyses [12]. This collection contains strains where each gene
in the S. cerevisiae genome has been systematically deleted, enabling large-scale functional genomics studies
(Table 1) [13].

Further, S. cerevisiae and other yeast species, such as Pichia pastoris, Yarrowia lipolytica, and Hansenula
polymorpha, have fully sequenced genomes, offering an invaluable resource for exploring gene regulatory
regions and identifying potential targets for genetic manipulation [14]. The S. cerevisiae genome was the first
eukaryotic genome to be sequenced, and subsequent efforts have led to the creation of various databases,
including the SGD and the Yeast Gene Order Browser, which catalog gene annotations, regulatory regions,
and gene interactions [15,16]. These resources enable researchers to conduct in-depth analyses of yeast
genetics, regulatory networks, and metabolic pathways, facilitating advancements in synthetic biology and
metabolic engineering [16].

However, when using yeast in new pharmaceutical research, there are also some drawbacks: firstly, there
is limited complexity: yeast cells have lower complexity than human cells, which may restrict the study and
understanding of specific drug effects [14,17]. Secondly, there is a lack of tissue structure: yeast, a single-celled
organism, lacks cellular tissue structure compared to complex multicellular tissues, which may affect the
testing and assessment of certain drugs’ effects [18]. Thirdly, there are limited metabolic pathways: yeast cells
have metabolic pathways that differ from human cells, meaning they may not fully mimic conditions within
the human body when assessing drug metabolism and drug interactions, as presented in Table 1 [5].
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Table 1: Advantages and disadvantages of using yeast in new pharmaceutical research

Aspect

Yeast cells

Mammalian cells

Advantages

Genetic manipulation [19]
Growth rate [20]
Culture conditions [21]
Model organism [22]

Metabolic engineering [23]

Easy and cost-effective genetic
manipulation
Fast growth and high cell
density
Simple and inexpensive
cultural conditions
Well-established model
organism with extensive tools
Easier metabolic pathway

More complex and expensive
genetic manipulation
Slower growth and lower cell
density
Complex and costly cultural
conditions
Closer to human physiology

More challenging metabolic

engineering engineering
High-throughput screening [24] Suitable for high-throughput Limited scalability for
screening high-throughput applications
Post-translational modifications [25] Lower-cost More accurate human-like
post-translational post-translational
modifications modifications

Cost [21] Lower production and Higher production and

maintenance costs maintenance costs

Disadvantages

Post-translational modifications [25]

Protein folding [26]
Cellular environment [21]
Disease modeling [23]
Drug metabolism [23]

Immune system studies [27]

Limited in human-like
post-translational
modifications
May not properly fold all
human proteins
Different from the human
cellular environment
Less suitable for modeling
human diseases
Different drug metabolism
pathways
Cannot be used for immune
system studies

Capable of complex
human-like modifications

Proper folding of human
proteins
Similar to the human cellular
environment
Better suited for modeling
human diseases
Human-like drug metabolism
pathways
Suitable for immune system
studies

Nevertheless, advances in yeast technology have paved the way for a variety of new genome-wide

screening approaches for new drug discovery. In the past, studies using yeasts enabled breakthroughs in
understanding basic cellular and molecular processes [22,28]. In recent years, yeasts are experiencing a
‘rebirth’ in fundamental and applied pharmaceutical research [16]. Various experimental strategies employ-
ing yeast aim to elucidate disease-related molecular events and uncover novel drugs [17,18]. This paper
summarizes the impact of yeast as an experimental tool for new pharmaceutical research and evaluates
biomedical research utilizing the yeast two-hybrid system. The recently applied and promising approach of
yeast surface display (YSD) technology in new drug discovery is also discussed.
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2 Yeast Genome Analysis and New Targets for Pharmaceutical Research

In 1996, Goffeau et al. [29] summarized the genome of baker’s yeast Saccharomyces cerevisiae laboratory
strain S288c, consisting of 12 million base pairs and over 6000 genes. This marked significant progress in
understanding eukaryotic organisms and established yeast as a model organism with a well-defined genetic
background in biomedical research. The availability of more than 6000 mutant strains of Saccharomyces
cerevisiae, created through various mutation methods, has greatly facilitated research across different fields.

Through the analysis of open reading frames (ORFs) in the Saccharomyces cerevisiae genome,
researchers later found that the functions of 60% of the ORFs were unknown [30]. When these ORFs were
compared with the functional genes of humans and other mammals (e.g., rats, mice, cows, and sheep)
reported in GenBank, it was discovered that 31% of them had high homology with mammalian functional
genes. Notable examples include the yeast genes RASI and RAS2 (which are homologous to mammalian
RAS genes), MSH2 (yeast homolog: MSH2, mammalian homolog: MSH2), MLHI (yeast homolog: MLH],
mammalian homolog: MLHI), IRA2 (yeast homolog: IRA2, mammalian homolog: IRAK2), SGSI (yeast
homolog: SGSI, mammalian homolog: WRN), and TELI (yeast homolog: TELI, mammalian homolog:
ATM) [31,32]. This indicates a significant level of similarity between these yeast ORFs and their mammalian
counterparts. The homology percentage was calculated at the DNA level and is estimated to be between 60%
and 85%, depending on the gene. By constructing deletion mutants of these homologous genes in yeast, it
becomes possible to screen compounds for activity, leveraging the conserved functions between yeast and
mammalian systems [33,34]. Lum et al. [35] established a yeast mutant library containing 3503 heterozygous
allelic deletions. They used the principle that different mutants have varying sensitivities to drugs, thus
affecting their growth, to analyze 78 antimicrobial and antiviral drugs, including 5-fluorocytosine. They
screened some of these drugs for their targets. They found that the enzyme lanosterol synthase in the sterol
biosynthesis pathway was the target of anti-cardiovascular drugs. At the same time, Ribosomal ribonucleic
acid (rRNA) processing was identified as a potential target of the cell growth inhibitor 5-fluorouracil [35-37].
Establishing a method for screening drug targets using heterozygous alleles in yeast has provided new insights
for drug research and accelerated the study of drug activity, side effects, and chemical toxicity. Besides, the
study of yeast genes such as GAL4, LEU, TRP, HIS, ADE, and CDC25 has provided additional screening
markers for establishing a yeast two-hybrid system, yeast surface display system, and yeast expression
system [35,38].

Additionally, recent advances in genome editing technologies, such as CRISPR-Cas9, could facilitate
the use of yeast as a model organism for advancing drug discovery. CRISPR-Cas9 requires whole genome
sequences to design and guide RNA (gRNAs) in targeting relevant genes. This system is very effective
in Saccharomyces cerevisiae and other yeasts, such as Pichia pastoris, Yarrowia lipolytica, and Hansenula
polymorpha, primarily due to their efficient homology-directed DNA repair mechanisms. Interestingly,
other unconventional yeasts have also reported high success rates, suggesting that many genomes can be
modified using the CRISPR-Cas9 system (Fig. 1) [39,40]. For example, in the heat-tolerant methylotrophic
yeast Ogataea polymorpha, CRISPR-Cas9-assisted multiplexed genome editing successfully introduced all
the genes required for resveratrol biosynthesis, as well as genes for the biosynthesis of human serum albumin
and cadaverine [39]. These new biotechnological applications provide a promising avenue for developing
subsequent drugs [41].



BIOCELL. 2025;49(5)

Donor DNA

Circular-to-linear

transformation

817

Donor DNA
| Er———
| Exeeeseennena QN v s
Linearised sgRNA pool
T .
T —

Linearised Cas9-sgRNA
expression vector
O T Ty

( a ) ( b ) Recombination

event

Repair Mechanisms
Following DSBs:

Outcomes of Repair Pathways: o i Cas9
HDR: precise, template-guided \ha“’“;?\%e ——Guide RNA
integration of donor DNA seoV

. 5’ 3.
NHEJ: leads to indels or random 3 5
integrations at the break site Geng\mic ISR b . PAM
DNAS e T oddence
Libie dadiisieg
‘ ) . L . T Donor
Circularization via Repair LILSDNA
repair mechanisms TTITTTTITTTI T I T
T < —— LIS LU
NHEJ HDR
(Non-Homologous (Homology-Directed
End Joining) Recombination)

(c) (d)

Figure 1: Schematic Overview of Cas9-Mediated DNA Editing and Repair Pathways in Yeast. a. Input: the initial
inputs include donor DNA templates for homology-directed repair (HDR), a pool of single guide Ribonucleic acid
(sgRNAs) targeting specific loci, and a Cas9-sgRNA expression vector. These constructs are typically circular before
the transformation process. b. Transformation: circular DNA constructs are linearized and introduced into yeast cells
through transformation. Linearized donor DNA, sgRNA pools, and Cas9-sgRNA expression vectors are prepared for
subsequent recombination events. c. DSB Induction and Repair: the Cas9-sgRNA complex induces double-strand
breaks (DSBs) at target genomic sites. Cellular repair mechanisms are activated with two main pathways: (1) Homology-
Directed Repair (HDR), which uses donor DNA as a template for precise integration, and (2) Non-Homologous
End Joining (NHE]J), which is error-prone and may result in insertions or deletions. d. Repair Outcomes: depend on
the pathway utilized. HDR facilitates precise integration of donor DNA, while NHE] leads to random or imprecise
modifications. The circularization of DNA may occur as part of the repair mechanisms, ensuring vector stability
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3 Yeast Two-Hybrid (Y2H) System in Biomedical Research

Briickner et al. [42] established a yeast two-hybrid system (Y2H) to detect protein-protein interactions
by using the Gal4 transcriptional activator of the yeast Saccharomyces cerevisiae. The Gal4 protein activates
the transcription of a gene involved in galactose utilization, forming the basis of selection [43]. In a Y2H
system, the premise is that the activation of the downstream reporter gene(s) occurs through the binding of a
transcription factor to an upstream activating sequence (UAS) [44]. The transcription factor is split into two
fragments: the DNA-binding domain (BD) and the activating domain (AD). The BD binds to the UAS, while
the AD activates transcription [45]. A known functional protein is typically used as the ‘Bait, and proteins
that may interact with the ‘Bait’ are used as the ‘Prey’ The interaction between the ‘Bait’ and the ‘Prey’ is
verified by the expression and detection of reporter genes [46].

To date, yeast two-hybrid technology has been expanded to study a broader range of intermolecular
interactions [47]. Variants include the reverse two-hybrid system for studying interactions between proteins
and small-molecule inhibitors, the single-hybrid system for studying interactions between DNA and pro-
teins, the three-hybrid system for studying interactions between RNA and proteins, and another three-hybrid
system for studying interactions between small molecules and proteins in a ligand-dependent manner [48].
The differences among these systems lie in selecting reporter genes and the ‘Prey. Additionally, they differ
in selecting the reporter gene and the ‘Bait’ or ‘Prey’ expression vector. Yeast two-hybrid systems have been
widely used in biomedical research [49]. Their widespread application is expected due to their relative
affordability, lack of need for specialized large equipment, and feasibility in any molecular biology laboratory
with reasonable throughput (Fig. 2) [50].

One of the primary applications of the yeast two-hybrid (Y2H) system in drug discovery is the
identification of protein-protein interactions that are critical for disease progression [51]. By mapping these
interactions, researchers can pinpoint potential drug targets. The yeast two-hybrid system continues to be a
cornerstone in the field of drug discovery. Its ability to uncover protein-protein interactions and facilitate the
screening of potential inhibitors makes it an essential tool for identifying and validating new drug targets [52].
As technology advances, its role in drug discovery is likely to become even more prominent, contributing to
the development of more effective and targeted therapies [53]. In the following section, we will discuss the
latest advancements and progress in yeast two-hybrid systems within biomedical research.

3.1 Study of Protein Interactions

Protein-protein interactions (PPIs) occur throughout a cell and are essential for understanding cellular
functions. Studying these interactions in model organisms enhances our understanding of biological
processes, aids in deciphering disease mechanisms, and helps in identifying potential drug targets and
screening new therapeutics [54]. By constructing DB-Bait and AD-Prey yeast expression vectors, interactions
between proteins can be detected using reporter genes. In this context, we will refer to the protein used
in the DB vector as ‘Bait’ and the protein used in the AD vector as ‘Prey’ in the subsequent sections.
Additionally, indirect interactions between different proteins can be investigated through host endogenous
protein-mediated methods [55]. For example, early studies demonstrated that the HIV-encoded Rev protein
interacts with the yeast nucleoprotein RipI [56]. Further research using the yeast two-hybrid system revealed
that this interaction is mediated by Crmlp in yeast [54].
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Figure 2: Overview of yeast two-hybrid system (Y2H), a genetic technique that detects protein-protein interactions: in
a Y2H system, the expression of a reporter gene requires activation through the binding of a transcription factor to an
upstream activating sequence (UAS). The UAS consists of two independent domains: the DNA-binding domain (BD)
and the activation domain (AD). The BD binds to the UAS, while the AD activates transcription (a). The protein fused
to the BD is called the Bait, and the one fused to the AD is referred to as the Prey. Without Bait-Prey interaction, the
AD domain cannot initiate gene expression (b). However, when the Bait and Prey interact, the BD binds to the DNA,
localizing the AD upstream of the reporter gene, resulting in the expression of the reporter gene (c)

3.2 Discovery of New Proteins and New Functions of Proteins

Using a protein with a known function as ‘Bait, new proteins can be discovered from cDNA libraries as
‘Prey, and new functions of known proteins can also be identified. For example, Fananas-Pueyo et al. [57]
transformed all predicted open reading frames (ORFs) in yeast into MATa (mating type a) and MAT«a
(mating type alpha) strains as ‘Bait’ or ‘Prey’ by ligating them with DB or AD, respectively. In S.cerevisiae,
MATa and MATa represent the two mating types, where MATa is the a-type and MATa is the alpha-type,
each having distinct roles in the mating process. These strains are used to facilitate the identification of
protein interactions in the yeast two-hybrid system. They then transformed these constructs into MATa
and MATa yeasts to form ‘Bait pools’ and ‘Prey pools. By selecting 96 positive clones from each pool and
systematically comparing the results, they identified 183 pairs of interacting proteins, more than half of
which were previously unreported [58]. These new protein interactions may be related to different transport
modes of substances in yeast [59]. Besides, other targets for screening aptamers using yeast two-hybrid
systems include the transcription factor signal transducer and activator of transcription 3 (Stat3) and the
tyrosine kinase avian erythroblastic leukemia viral oncogene homolog 2 (ErbB2). Constitutive activation of



820 BIOCELL. 2025;49(5)

Stat3 has been observed in various tumors, while ErbB2 is overexpressed in numerous cancers, including
breast, ovarian, bladder, and lung cancers [60]. Therefore, investigating the oncogenic functions of these two
proteins through a yeast two-hybrid system may open new therapeutic avenues for cancer research [61].

3.3 Antigen-Antibody Interaction Studies

Existing techniques for detecting antigen-antibody interactions are based on in vitro immunoreactivity.
However, the interactions of drugs, especially peptides and proteins, with normal components in the body
are highly complex and challenging to determine using conventional immunological studies [62]. Therefore,
evaluating drug immunotoxicity and/or immunogenicity during safety assessments is difficult with standard
methods. Mehta et al. [63] linked various tumor suppressor p53 and T antigen mutants (produced via PCR)
to DB or AD to form fusion proteins, using LacZ as the reporter gene to establish a new reliable detection
method. They detected interactions between 34 types of mutant p53 and the T antigen, and these mutant p53
proteins were also found in tumor patients. The gradual improvement of this method is expected to bring
significant advancements to the preclinical safety evaluation of drugs.

Zhang et al. [62] developed an antigen-antibody co-display (AACD) system for detecting interactions
between G-protein-coupled receptors (GPCRs) and single-chain variable fragments (scFvs) using a split-
ubiquitin-based yeast two-hybrid (YTH) system. This system was engineered by fusing a transmembrane
peptide to anchor scFv antibodies to cell membranes, allowing co-display of the GPCRs on cell membranes.
They further optimized the topology and key elements of the scFv fusion proteins, creating an AACD system
that can rapidly determine the association between GPCRs and their candidate antibodies. This innovation
shortens the research cycle for off-target detection and epitope recognition [64].

3.4 Screening for New Drugs

The transfer process of pathogenic bacteria or viruses after invasion is related to specific proteins on their
surfaces. Some proteins on the surface of host cells may become the ‘targets’ for these pathogens. Compounds
that bind to these specific proteins on bacteria or viruses could potentially prevent them from invading
normal tissues or cells, achieving therapeutic and preventive purposes [65]. Using various screening methods
to identify compounds that bind to specific proteins on the surface of these pathogens makes it possible
to prevent their invasion of normal tissues or cells. This targeted binding can serve both therapeutic and
preventive functions [66].

A gene fragment encoding a specific protein from a pathogen can be used as ‘Bait’ by linking it to a
DNA-binding domain (DB), while a cDNA library or random sequences serve as ‘Prey’ by attaching to an
activation domain (AD). These constructs are transformed into yeast, enabling the identification of ‘Prey’
proteins or peptides that bind to the bait. This approach was first demonstrated by Zhu et al. [67] using a
yeast two-hybrid system to screen for hormone-receptor interactions, identifying a proinsulin mutant with
high binding affinity to the Insulin-like Growth Factor 1 (IGF-1) receptor, a potential candidate for drug
screening in diabetes treatment. Similarly, researchers have also optimized a high-throughput assay for HBx-
DDBI interactions in S. cerevisiae, suggesting its potential for discovering therapeutic agents for chronic
hepatitis B [68].

4 Yeast Surface Display System and New Drug Screening

Yeast surface display (YSD) is a “whole-cell” platform used for the heterologous expression of proteins
immobilized on the yeast’s cell surface. From 10,000 to 1,000,000 copies of the fusion protein can be expressed
on the surface of each yeast cell [69]. Substances that interact with these gene products can be identified
by displaying target gene products with unknown functions or products related to specific pathological
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processes on the yeast cell wall [70]. This approach helps to study the functions of unknown genes and can
lead to the discovery of new drug targets or the screening of new lead compounds for disease treatment. YSD
is a promising technology that is not yet optimized for biotechnological applications [71].

Yeast surface display technology is based on the study by Tepari¢ et al. [72] on a glycoprotein in the
yeast cell wall. They showed that a- and a-agglutinin are two types of mannose proteins in the yeast cell
wall. The a-agglutinin consists of two parts: Agal and Aga2. Agal is covalently linked to B-glucan in the
inner layer of the yeast cell wall, while Aga2 binds to Agal through two disulfide bonds and is displayed
on the cell surface. The most commonly used yeast surface display system originally developed by Wang, a
single-chain variable fragment (scFv) was genetically engineered to be fused to the C-terminus of Aga2, with
a GAL4 promoter inserted upstream of Aga2 [73]. Under galactose induction, the scFv was expressed and
displayed on the surface of the yeast. This setup allowed the corresponding ligands to be easily detected from
a library of random mutants using flow cytometry (Fig. 3) [73]. Orr et al. [74] further developed this method
by ligating the Vbeta8 domain of a soluble T-cell receptor and an antibody mutant targeting the c-myc epitope
to the C-terminus of scFv, displaying it on the surface of yeast cells. They then used flow cytometry with
a fluorescent marker to detect scFv mutants with higher affinity for the T-cell receptor [74]. These studies
demonstrated that this method can be used to analyze antigenic epitopes, particularly for binding sites of
eukaryotic secretory or cell surface proteins.

c-myctag |l

COOH

Yeast cell

Figure 3: Overview of the Yeast Surface Display (YSD) system, a biotechnological technique used for the cell surface
expression of heterologous proteins, which are fused to the C-terminus of the mating agglutinin protein Aga2. YSD
construct includes two epitope tags: a hemagglutinin (HA) tag between Aga2p as well as a c-myc tag. Agalp is anchored
to the inner layer of the yeast cell wall, while Aga2p binds to Agalp through two disulfide bonds. Induction of protein
expression results in surface display of the fusion protein through disulfide bond formation of Aga2p to Agalp

Other applications for YSD include library screening, whole-proteome studies, bioremediation, vaccine
and antibiotic development, biosensor production, ethanol production, biocatalysis, and new drug discov-
ery [75]. In a recent study, Wang et al. [73] developed a new method for high-throughput rapid extracellular
antigen profiling using yeast surface display technology to discover autoantibodies against medically relevant
autoimmune targets. By displaying 2688 barcoded human extracellular proteins on the yeast surface
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and comparing them to patient serum immunoglobulins, they identified relevant antigens from sorted
yeast using next-generation sequencing. This approach led to the identification of several autoantibodies
present in autoimmune polyglandular syndrome type 1 and systemic lupus erythematosus conditions in
autoimmune patients [76,77]. In addition, Lopez-Morales et al. [78] used YSD to study the evolution of the
SARS-CoV-2 receptor-binding domain (RBD) and the propensity of mutations to evade immunological
recognition. By displaying a library of receptor-binding domains (RBDs) on the surface of yeast cells,
researchers can analyze the antibody-binding properties of various viral variants through deep mutation
scanning and next-generation sequencing. In the case of SARS-CoV-2, the RBD is part of the spike protein,
which binds to the angiotensin-converting enzyme 2 (ACE2) receptor on human cells. By mapping mutations
in the RBD, researchers have identified several mutations that enhance ACE2 binding, providing insights
into the potential for viral immune escape. This approach has been particularly valuable for studying SARS-
CoV-2 variants. By optimizing the YSD workflow, researchers have mapped binding affinities between the
SARS-CoV-2 RBD and different classes of antibodies, offering predictive insights into how mutations may
impact antibody recognition and suggesting potential future variants of concern. The study of viral mutations
and their capacity to evade immune recognition is critical, and yeast models offer a robust platform for
investigating these mutations at a high throughput. Additionally, the ability to screen for novel antibodies or
vaccine candidates in yeast systems may help mitigate the risks associated with emerging viral variants.

Interestingly, yeast two-hybrid and Yeast surface display techniques focus on protein-protein interac-
tions (including ligand-receptor interactions), and the combination of these two techniques will facilitate the
development of vaccines as well as new pharmaceutical research [27]. E.g., to obtain a soluble antibody with
high stability and correct folding after intracellular expression, Tristin-Manzano et al. [27] attached the scFv
fragment of the antibody to the activation domain (AD) of the transcription factor VP16 and the antigen
to the DNA-binding domain (DB) of LexA. They established a yeast surface display method to demonstrate
the interaction between the antigen and the antibody using His3 and LacZ as reporter genes. When an
antigen-antibody interaction occurs, the combination of AD and DB initiates the expression of the reporter
genes, which can be detected using a nutrient-deficient medium or the blue-white spotting method. This
method allows for the screening of antigen-specific antibody fragments from the scFv mutant display library,
providing a valuable platform for vaccine development.

5 Optimizing the Yeast Expression System for New Drug Development

The use of genetic engineering to address the issue of ‘drug sourcing’ is a focal point and a hot topic in
the field of biomedicine. Various peptides or proteins have been successfully expressed in prokaryotic cells,
eukaryotic cells, animal mammary glands, plants, and other systems [79]. Yeast, as a model organism with
extensive genetic background research, has emerged as a prominent system for exogenous gene expression.
Its rapid growth, ease of genetic manipulation, and ability to complete post-translational processing of
eukaryotic proteins or peptides make yeast a major platform for exogenous gene expression [80]. Brooks
et al. [81] were the first to express an exogenous gene in Saccharomyces cerevisiae. They ligated the Liver-
expressed antimicrobial peptide D (LelF-D) gene upstream of the ethanol dehydrogenase I gene, resulting
in the expression of biologically active LeIF-D in yeast at a rate of 1 x 10® molecules/cell. Saccharomyces
cerevisiae has been utilized for expressing heterologous proteins for a significant period, owing to its extensive
history in the fermentation industry. The completion of the yeast’s full sequence analysis further solidified its
position as a popular expression system. In a study by Bhattacharya et al. [82], a S.cerevisiae mutant deficient
in four enzymes related to ergosterol metabolism was genetically engineered. This mutant was then modified
to incorporate an enzyme derived from Hypericum perforatum (St. John'’s Wort), a plant known for its use in
hydrocortisone synthesis, enabling the yeast to produce hydrocortisone. When cultured in a simple carbon
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medium, the mutant exhibited high expression levels. Subsequently, the cultured mutant produced a steroid
hormone suitable for treating patients with arthritis and adrenocortical insufficiency. This innovative work
holds promise for producing small molecule compounds through biotransformation technology.

However, researchers have identified some limitations in using Saccharomyces cerevisiae as a model
organism for expressing exogenous proteins: the exogenous gene vector commonly used in the transgenic
system of Saccharomyces cerevisiae is a 2 pm add-on plasmid. This vector is genetically unstable and prone
to loss during cell proliferation, leading to instability in engineered strains and ultimately affecting the
production of recombinant proteins [83]. Additionally, Saccharomyces cerevisiae contains an al-3 glycosidic
bond at the end of its core polysaccharide. The presence of this glycosidic bond increases the antigenicity of
recombinant proteins, posing a significant challenge in developing these proteins or peptides into drugs [84].

Recently, the yeast Pichia pastoris has become more widely used in the production of exogenous
proteins. This yeast features a robust promoter, the alcohol oxidase 1 (AOX1) promoter, which is activated
in the absence of a repressive carbon source such as glucose and utilizes methanol as the sole carbon
source. This promoter ensures strict regulation and high efficiency in the expression of exogenous genes [85].
Additionally, the expression system often employs integration plasmids as vectors for exogenous genes,
allowing the transfected genes to integrate into the yeast genome and replicate synchronously with genomic
DNA. This integration reduces the likelihood of gene loss, resulting in stable engineered strains [86].

Moreover, since this expression system commonly utilizes integration plasmids as exogenous gene
vectors, the transferred genes can integrate into the yeast genome and replicate in parallel with genomic
DNA, reducing the likelihood of loss and resulting in relatively stable engineered strains capable of achieving
high expression levels [87]. For example, the novel vector pIB4a developed by Gurkan et al. [88] enables
the expression of C6.5, a functional single-chain antibody fragment targeting the surface glycoprotein HER2
(human epidermal growth factor receptor 2) found on ovarian and breast cancer cells, at up to 70 mg/L. This
level of expression holds promise for commercial production applications.

Castro et al. [89] observed that although the N-terminus of human interferon p1 secreted and expressed
in Pichia pastoris was identical to that of the natural product, the secreted protein was partially N-
glycosylated, potentially affecting its biological activity. To address this issue, Hamilton et al. [90] developed
a strategy to delete endogenous yeast genes associated with the glycosylation pathway. They then introduced
five enzymes or proteins, including mannosidases (I and II), N-acetylglucosaminyltransferases (I and
IT), and UDP-N-acetylglucosaminyltransferase, into the yeast genome. This led to the formation of a
human-like glycosylation pathway, specifically the N-acetylglucosamine (GlcNAc)2-mannose (Man)3-N-
acetylglucosamine (GlcNAc)2 (GlcNAc2Man3GIcNAc2) pathway, within the yeast cells. This modification
facilitated the expression of human N-glycosylated glycoproteins, improving the quality of the expressed
proteins. This establishment of the expression system serves as a foundation for the large-scale production
of human glycoproteins for medicinal purposes and offers a valuable tool for studying the conformational
relationships of glycoproteins.

Furthermore, since the plasmid vector with a yeast gene AOX promoter was utilized in the expression
system of Pichia pastoris, requiring methanol for inducing the expression of exogenous genes, it posed
challenges for industrial production due to methanol’s flammability and volatility [91]. To address this issue,
Arjmand (2024) [92] proposed replacing the AOX promoter with the Formaldehyde Dehydrogenase 1 (FLD1)
promoter. This promoter can induce the expression of exogenous genes when methanolamine is the sole
nitrogen source. Additionally, the FLDI promoter offers advantages such as high tunability, making it a
promising alternative for industrial applications.
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In addition to protein and peptide expression and production, transgenic yeast holds potential for vari-
ous applications such as vaccine development, drug screening model construction, and pathogenesis studies.
For instance, pathogenic bacteria and fungi frequently form biofilms upon invading host tissues, which
provide protection and render drug treatments ineffective [93]. Biofilm formation is a well-documented
mechanism in pathogens like Pseudomonas aeruginosa and Candida albicans, contributing to their resistance
to both the host immune response and antimicrobial therapies. Further research into biofilm formation
mechanisms could aid in developing new antimicrobial drugs [94]. Bouyx et al. [95] investigated biofilm
formation and genesis using Saccharomyces cerevisiae as a model and found that yeast adhesion is related
to its surface glycoprotein. Interestingly, when knocking out this glycoprotein-encoding gene (FLOII) along
with its regulatory gene (FLOS8), the adhesion between mutant yeast and other yeasts was eliminated. Since
homologues of the FLOII gene also exist in some pathogenic fungi like Candida albicans, Saccharomyces
cerevisiae could serve as a model for studying pathogenic bacteria invasion and pathogenesis, as well as for
the rapid screening of antimicrobial drugs [96].

6 Conclusion Remarks

The rapid advancements in engineering yeast for pharmaceutical research have revolutionized the field
of drug discovery and development. The comprehensive analysis of the yeast genome has provided invaluable
insights into new targets for pharmaceutical research, leveraging the remarkable genetic similarities between
yeast and higher eukaryotes [97]. The identification and functional analysis of yeast genes homologous
to human disease genes have opened new avenues for understanding disease mechanisms and identifying
potential drug targets [98].

The Y2H system has emerged as a powerful tool for studying protein-protein interactions, offering a
high-throughput method to map complex interaction networks. This system has significantly contributed
to identifying drug targets, understanding viral pathogenesis, and exploring the molecular underpinnings
of various diseases, including neurodegenerative disorders and cancer [99]. The integration of Y2H with
next-generation sequencing and CRISPR-Cas9 technology further enhances its potential, providing a more
detailed and dynamic view of protein interactions and genetic interactions [70].

The YSD system has become an essential platform for new drug screening and development. By
displaying peptides and proteins on the yeast cell surface, this system allows for the rapid screening of large
libraries for binding affinity and specificity, facilitating the identification of therapeutic candidates. The YSD
systems ability to mimic mammalian post-translational modifications and present complex antigens has
made it an invaluable tool in vaccine development and antibody engineering [100].

Optimizing the yeast expression system has been crucial for producing high yields of recombinant
proteins, essential for developing new drugs and therapeutic agents. Advances in metabolic engineering,
synthetic biology, and genome editing have led to more efficient and scalable production processes [23]. The
flexibility and robustness of yeast as a production platform make it ideal for manufacturing a wide range of
pharmaceuticals, from simple peptides to complex biologics [20].

In conclusion, engineering yeast has become a cornerstone of modern pharmaceutical research,
offering versatile and powerful platforms for drug discovery, screening, and production. The continued
development and refinement of yeast-based technologies promise to enhance the efficiency and sustainability
of pharmaceutical manufacturing processes, ultimately leading to safer and more effective therapies for
treating human diseases. As research progresses, the integration of these yeast-based systems with emerging
technologies will likely yield even more significant breakthroughs, paving the way for innovative therapeutic
solutions and transforming the landscape of modern medicine.
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7 Future Perspectives

The future of engineering yeast for pharmaceutical research is poised to bring transformative changes
to drug discovery and development. As we continue to harness the power of yeast, several promising avenues
and emerging technologies are expected to shape the next generation of pharmaceutical research.

7.1 Integration with Artificial Intelligence and Machine Learning

The integration of Artificial Intelligence (AI) and Machine Learning (ML) with yeast-based systems
is rapidly transforming the landscape of pharmaceutical research. By harnessing the power of Al and
ML, researchers can analyze vast and complex datasets generated from yeast genome studies, protein-
protein interaction networks, and high-throughput screening assays [101]. These technologies enable the
identification of novel drug targets, prediction of therapeutic efficacy, and optimization of experimental
workflows, ultimately accelerating the drug discovery process.

AT and ML algorithms are particularly adept at uncovering hidden patterns and correlations in large-
scale biological data. For example, ML models can analyze genetic sequences and protein interactions to
predict the functional outcomes of specific genetic modifications in yeast [102]. This ability to predict
the effects of genetic alterations in yeast models enables a more targeted approach to drug development
and pathway engineering. Furthermore, Al-driven approaches are being used to optimize yeast strains
for the efficient production of therapeutic proteins, improving yields and reducing costs associated with
biopharmaceutical manufacturing [103].

One of the key areas where Al and ML are making an impact is in the design of synthetic biology
circuits within yeast. These circuits often involve complex gene interactions, and predicting their behavior
is a challenging task. Al and ML models, particularly deep learning techniques, can simulate these gene
regulatory networks, providing insights into how synthetic constructs might behave in vivo. This allows for
the design of more robust and predictable yeast-based biosystems for drug production [102].

In high-throughput drug screening, Al-powered tools can enhance the analysis of large datasets
by identifying potential drug candidates with higher accuracy and efficiency. These tools can analyze
patterns in compound-library screening results, identify promising drug-like molecules, and predict their
interactions with yeast-expressed target proteins [101]. Additionally, AI algorithms can assist in the identi-
fication of oft-target effects, toxicity risks, and the potential for drug resistance-critical factors in the drug
development process.

The integration of Al and ML also enables adaptive learning in yeast engineering processes. As data from
experimental trials are collected, ML models can continuously learn from these experiments, improving their
predictive capabilities over time. This iterative approach can lead to more refined yeast strains and optimized
fermentation processes, enhancing the scalability and productivity of therapeutic molecule production [103].

Moreover, the combination of AI with next-generation sequencing and genome editing technologies
such as CRISPR-Cas9 has the potential to revolutionize the precision of yeast-based genetic engineering.
Al tools can predict the most effective CRISPR guide RNAs, thereby reducing off-target effects and
improving the efficiency of gene editing. This synergy between Al and advanced genome-editing techniques
is likely to play a crucial role in the development of next-generation yeast platforms for pharmaceutical
applications [104].

In summary, Al and ML have the potential to significantly enhance the capabilities of yeast-based
systems in drug discovery and production. Their ability to analyze complex biological data, predict genetic
outcomes, and optimize experimental designs will not only streamline the drug development process but
also enable more eflicient and sustainable manufacturing of therapeutics. As these technologies continue
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to evolve, they will play an increasingly vital role in shaping the future of pharmaceutical research
and biotechnology.

7.2 Advanced Genome Editing Techniques

The ongoing advancements in genome editing technologies, particularly CRISPR-Cas systems, will
further enhance the precision and efliciency of genetic modifications in yeast. These tools will enable more
complex and targeted manipulation of yeast genomes, facilitating the study of intricate gene functions and
interactions [39]. Additionally, the development of novel CRISPR variants and delivery methods will expand
the applicability of genome editing in diverse yeast strains [87].

7.3 Synthetic Biology and Metabolic Engineering

The field of synthetic biology will continue to play a crucial role in engineering yeast for pharmaceutical
applications. The design and construction of synthetic gene circuits and metabolic pathways will enable
the production of novel and complex biomolecules. Innovations in metabolic engineering will optimize
yeast metabolism for higher yields and improved scalability of biopharmaceuticals [105]. The development
of orthogonal systems and synthetic promoters will provide greater control over gene expression and
metabolic flux.

7.4 Expanding the Yeast Toolkit

The exploration and utilization of non-conventional yeast species will diversify the toolkit available
for pharmaceutical research. Yeast species such as Pichia pastoris, Yarrowia lipolytica, and Kluyveromyces
lactis offer unique metabolic capabilities that make them particularly valuable for various biotechnological
applications [106]. Pichia pastoris is known for its high capacity for methanol utilization, making it a
robust expression system for recombinant protein production, particularly for complex proteins requiring
post-translational modifications such as glycosylation. Yarrowia lipolytica, an oleaginous yeast, excels in
lipid metabolism, allowing it to efficiently produce lipids and biofuels, as well as valuable pharmaceuticals
like biopolymers and enzymes [107]. Additionally, Kluyveromyces lactis is a strong candidate for dairy-
related applications, capable of efficiently fermenting lactose and producing recombinant proteins with high
yield [108]. By leveraging these species’ specific metabolic advantages, researchers can develop tailored solu-
tions for a wide range of pharmaceutical applications, including protein production, vaccine development,
and bioremediation [109].

In conclusion, the potential of engineering yeast for pharmaceutical research remains vast and promis-
ing. As technological advancements continue to evolve, yeast-based systems are expected to become more
refined, offering enhanced capabilities for the production of safer, more effective, and scalable therapeutic
agents. By leveraging these innovations, researchers can accelerate the development of novel pharmaceutical
treatments, optimizing drug discovery processes and improving the overall efficiency of therapeutic devel-
opment [110]. These advancements hold the key to overcoming current challenges and driving progress in
modern medicine, ultimately facilitating the creation of more targeted and personalized therapies [111].
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