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ABSTRACT: Objectives: Non-small cell lung cancer (NSCLC) represents a formidable malignancy characterized by
its marked metastatic potential and intrinsic resistance to therapeutic interventions. The identification of potential
biomarkers delineating the progression and metastatic cascade of NSCLC assumes paramount importance in fostering
advancements toward enhanced patient outcomes and prognostic stratification. Methods: The expression level of the
actin-related protein 2/3 complex; subunit 1A (ARPC1A) in NSCLC was evaluated using The Cancer Genome Atlas
(TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases; along with the LinkedOmics database
for co-expression genes. Further verification of ARPC1A expression in normal lung cells and NSCLC cells; as well as
in normal tissues and lung cancer tissues; was performed using quantitative real-time reverse transcription PCR (RT-
qPCR) and Western blotting. The function of ARPC1A was explored through Gene Set Enrichment Analysis (GSEA)
and immune infiltration analysis; followed by functional experiments for validation. Results: ARPC1A is upregulated
in NSCLC and is associated with unfavorable clinical prognoses. Additionally, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis highlights a potential link between the ARPC1A gene and the cell
cycle and p53 signaling pathways. ARPC1A also promotes cell proliferation and resistance to chemotherapeutic drugs,
thereby enhancing the oncogenic potential of NSCLC. Relevant cell-based experiments confirm that targeted inhibition
of ARPC1A effectively suppresses cellular migratory and invasive capabilities. The immune infiltration analysis showed
a close association between ARPC1A expression and various immune components, suggesting ARPC1A may interact
with the tumor microenvironment. Mechanistically, ARPC1A promotes cell migration by stimulating the epithelial-
to-mesenchymal transition (EMT). Conclusion: The study results revealed the potential of ARPC1A as a valuable
prognostic biomarker for NSCLC. Additionally, the associated mechanisms provide insights that may pave the way for
therapeutic interventions for NSCLC patients.
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1 Introduction
Lung cancer, a heterogeneous disease traditionally categorized into small cell lung cancer (SCLC) and

non-small cell lung cancer (NSCLC) [1], NSCLC is described as the predominant subtype, accounting for
approximately 85% of all lung cancer incidences [2]. NSCLC is usually diagnosed at an advanced stage and
is prone to distant metastases, and 5-year survival remains low [3]. Evolution in technological landscapes,
notably with the advent of next-generation sequencing (NGS) and the inception of comprehensive databases
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cataloging human tumor molecular profiles, has revolutionized the understanding of NSCLC pathogenesis
from conventional histopathological classifications toward intricate molecular and genetic profiling at the
single-cell level [4].

Subsequently, treatment paradigms for NSCLC have witnessed substantial transformations encompass-
ing patient-specific targeted therapies and immunomodulatory interventions [4]. Recent developments in
uncovering the molecular biology of oncogenesis and cancer metastasis have provided crucial mechanical
insights into the progression of NSCLC [5,6]. Nonetheless, an exhaustive elucidation of the precise regulatory
frameworks underpinning lung cancer progression remains an imperative area for further exploration.

The actin-related protein 2/3 complex (Arp2/3), pivotal for actin filament branching, comprises two
distinct ARPC1 subunit isoforms, ARPC1A and ARPC1B, with the latter exhibiting prominent expression
in hematopoietic cells [7]. These isoforms, arising from ARPC1A and ARPC1B, share a noteworthy 68%
amino acid sequence homology while encompassing six WD40 repeat motifs, predictive of a beta-propeller
conformation [8,9]. Notably, ARPC1A has been characterized as a modulator of migration and invasion
in pancreatic cancer [10] and prostate cancer [11]. Moreover, ARPC1A regulates ferroptosis via the signal
transducer and activator of transcription 3 (STAT3) signaling pathway in prostate cancer [12].

Herein, our study reveals elevated ARPC1A expression levels in NSCLC tissues compared to neighbor-
ing normal counterparts. Bioinformatic analyses underscore a correlative link between heightened ARPC1A
expression and adverse prognostic outcomes in NSCLC cohorts. Coupled with associations with epithelial-
mesenchymal transition (EMT), our findings delineate the capacity of ARPC1A in dictating NSCLC cell
migration, proliferation, and drug resistance. Additionally, our analysis suggests that ARPC1A is potentially
crucial in immune infiltration. In summary, the experimental data, together with bioinformatic analysis,
collectively demonstrate that the expression status of ARPC1A emerges not only as a valuable prognostic
indicator for NSCLC patients but also as a viable therapeutic target warranting investigation in the NSCLC
treatment landscape.

2 Materials and Methods

2.1 Data Collection
The Cancer Genome Atlas Program (TCGA) stands as a seminal achievement in the realm of cancer

genomics, providing comprehensive molecular insights derived from nearly 20,000 primary tumors juxta-
posed with corresponding normal tissue samples across 33 diverse cancer types. Within this corpus of data,
pan-cancer mRNA transcripts per million (TPM) were procured from the TCGA repository, with a specific
focus on the TCGA-LUAD dataset encompassing 539 lung adenocarcinoma (LUAD) tissues alongside 59
normal tissue counterparts [13]. Notably, 58 instances of matched cancerous and para-cancerous tissues
were examined in this context. Subsequent to data acquisition, visualization was carried out utilizing the R
software platform (version 4.2.1).

2.2 Correlation Analysis of Prognosis
The Gene Expression Profiling Interactive Analysis (GEPIA) represents a web-based repository tailored

for in-depth investigations encompassing tumor-normal differential expression analysis, patient survival
prognosis, and correlation analysis, as succinctly noted within the provided URL (http://gepia.cancer-pku.
cn/) (accessed on 09 March 2025) [14]. To conduct a thorough exploration via GEPIA, a sequential protocol
is advised. Upon accessing the platform, the initial step entails navigating to the “Survival Analysis” tab
followed by entering the search query “ARPC1A” within the gene search interface. Subsequently, “Overall

http://gepia.cancer-pku.cn/
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Survival” should be designated as the preferred metric, and datasets pertaining to LUAD selected within the
dataset options, culminating in the activation of the plot function to unveil the relevant insights.

2.3 Functional Enrichment Analysis
The LinkedOmics database serves as a comprehensive repository aggregating data sourced from a

myriad of established repositories and scholarly reports, as denoted by the provided hyperlink (https://
www.linkedomics.org/login.php) (accessed on 09 March 2025) [15]. Primarily designed to enhance data
visualization capabilities, this platform stands poised to empower researchers in unraveling the intricate
underpinnings of disease etiology. The modus operandi within the LinkedOmics framework necessitates a
systematic approach for optimal utilization. Initial steps entail selecting LUAD data within the designated
cancer type classification, followed by specifying RNAseq data as the desired search dataset. Subsequently,
the search attribute “ARPC1A” is to be entered, focusing on mRNA expression profiles via RNAseq analysis.
In tandem, the Pearson Correlation Test is earmarked as the statistical method of choice for the data type
selection process, culminating with the activation of the “SUBMIT” function. By delineating the gene most
closely associated with ARPC1A, a subsequent phase of gene ontology (GO) functional enrichment analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted,
leveraging the analytical capabilities offered by the R software suite.

2.4 Immune Infiltration Analysis
In the comprehensive evaluation of immune infiltration, a spectrum comprising 24 distinct immune

cell types was harnessed to quantify immune infiltration levels and ascertain the relative enrichment scores
attributed to these immune cell populations. This intricate analysis was facilitated through the application
of single-sample Gene Set Enrichment Analysis (GSEA), with computational implementation orchestrated
via the GSVA package integrated within the R software environment. Furthermore, an investigation into the
potential interplay between ARPC1A expression levels and the various immune cell cohorts was undertaken
through rigorous Spearman correlation analysis methodologies, contributing valuable insights into the
complex interrelationships existing within the tumor microenvironment [16].

2.5 Predictions for Drug Sensitivity Analysis
The OncoPredictor represents a curated compilation comprising 198 pharmacotherapeutic agents

devised under the stewardship of Maeser, with a primary objective geared towards prognosticating the
anticipated responses of cancer patients to this array of chemotherapeutic interventions [17]. Preliminary to
the ensuing analytical endeavors, a prerequisite involves the preparation of two pivotal data files. The initial
file pertains to the gene expression profiles culled from the TCGA repository, specifically focusing on the
expression patterns of the ARPC1A gene. Conversely, the second file encapsulates the cancer drug sensitivity
genome matrix sourced from the Genomics of Drug Sensitivity in Cancer (GDSC) repository, housing
critical information delineating the half-maximal inhibitory concentration (IC50) metrics corresponding to
assorted pharmaceutical agents as gauged against various cancer cell lines [18]. The data were visualized by
R software (version 4.2.1).

2.6 Human Cell Lines and Tissue Specimens
The human non-small cell lung cancer (NSCLC) cell lines PC9, HCC827, H1975, and H1299, along

with the human normal lung epithelial cell line Beas-2B and HFL1, were purchased from the American
Type Culture Collection (ATCC, USA). PC9 and Beas-2B cell lines were maintained in Dulbecco’s modified
Eagle’s medium (Pricella, PM150210, Wuhan, China) supplemented with 10% Fetal bovine serum (VivaCell

https://www.linkedomics.org/login.php
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Biosciences, C04001-500, Shanghai, China) and 1% Antibiotics (Biosharp, BL505A, Hefei, China), while
HCC827 and H1975 cell lines were cultured in Roswell Park Memorial Institute 1640 medium (Pricella,
PM150110, Wuhan, China). The cell lines were incubated at 37○C with 5% CO2. All the cell lines were
authenticated through short tandem repeat (STR) profiling, and the mycoplasma contamination test was
routinely performed.

To create ARPC1A overexpressing cells, we cloned the ARPC1A Coding DNA Sequence (CDS) into
the PHAGE-P plasmid at the BamH1 site by one-step cloning kit (Vazyme, C112-02, Nanjing, China).
Transfection was conducted using the PolyJet transfection reagent (SignaGen Laboratories, SL100688,
America) in HCC827 and H1975 cells. The cells were cultured in a medium with 1 μg/mL puromycin
(Biosharp, BL528A, Hefei, China) until a resistant cell pool was established.

Non-small cell lung cancer tissues were surgically obtained from 5 patients at the First Affiliated Hospital
of Anhui Medical University. Acquisition of the donor NSCLC tumor tissues and adjacent normal tissues
and the following experimental procedures were approved by the Ethics Committee of Anhui Medical
University (Date: 1st March 2023; Approval number: 83230318). All the procedures were performed following
the instructions from the Declaration of Helsinki. All the donors have provided written consent for the usage
of the donor tissue in scientific research.

2.7 RNA Isolation and Quantitative Real-Time PCR
Total RNA was extracted from non-small cell lung cancer (NSCLC) cells and tissue samples using Trizol

reagent (Vazyme, R401-01, Nanjing, China). Subsequently, complementary DNA (cDNA) was synthesized
utilizing the Hifair

R©
III 1st Strand cDNA Synthesis SuperMix for quantitative polymerase chain reaction

(qPCR) (with gDNA digester plus) kit (Yeasen, 11141ES10, Shanghai, China).
Quantitative real-time PCR (qRT-PCR) was carried out employing the Hieff

R©
qPCR SYBR Green

Master Mix (High Rox Plus) (Yeasen, 1120ES03, Shanghai, China) as described previously [6]. The qRT-
PCR primer sequences utilized in the study were as follows: for ARPC1A (Homo sapiens), the forward
primer sequence was 5′-ATTGCCCTCAGTCCCAATAATCA-3′, and the reverse primer sequence was 5′-
CAAGTGACAATGCGGTCGC-3′; for the internal control gene GAPDH (Homo sapiens), the forward
primer sequence was 5′-ATTGCCCTCAGTCCCAATAATCA-3′, and the reverse primer sequence was 5′-
CAAGTGACAATGCGGTCGC-3′. The siRNA sequences utilized in the study were as follows: ARPC1A
siRNA 1: GCAAGATTGTCGCAAATTT; ARPC1A siRNA 2: GCTGCCCAATGCTCTTTAA. NC siRNA:
5′-UUCUCCGAACGUGUCACGUTT-3′.

2.8 Cell Proliferation Assay
Cell proliferation was assessed using the Cell Counting Kit-8 (Dojindo, CK04, Shanghai, China).

HCC827 and H1975 cells were transfected with ARPC1A non-targeting control (NC) or small interfering
RNA (siRNA) at a concentration of 20 nM. Cell counts were conducted 24 h post-transfection with an initial
seeding density of 5 × 103 cells per well in a 96-well plate, at 0, 24, 48, and 72-h time points. Subsequently,
10 μL of the CCK-8 reagent was added to each well, and the plates were incubated for 1 h. The absorbance
at 450 nm was then measured using a microplate reader (TECAN, Spark, Switzerland). This analysis was
repeated after 24, 48, and 72 h of incubation. The ARPC1A overexpressing HCC827 and H1975 cells, together
with the control cells, were seeded at a density of 5 × 103 cells per well in a 96-well plate, at 0, 24, 48, and 72-h
time points.
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2.9 Clone Formation Assay
Initially, HCC827 and H1975 cells were transfected with ARPC1A non-targeting control (NC) or small

interfering RNA (siRNA) at a concentration of 20 nM. Cell counting is carried out, with 2000 cells seeded
per well in a 6-well plate. After seeding, the cells are maintained in a cell culture incubator at 37○C for
12–15 days. The cells are then fixed using 4% paraformaldehyde for 30 min and subsequently stained with
2% crystal violet (BBI Life Sciences Corporation, E607309-0100, Shanghai, China) for an additional 30
min. Following the staining process, images are captured using an inverted microscope (Mshot, MF52-N,
Guangzhou, China) at a magnification level of 4X.

2.10 Wound Healing Assay
To assess cellular migration, a wound healing assay was conducted. Following transfection with small

interfering RNA (siRNA) for 24 h, a 200 μL pipette tip was employed to create a scratch along the confluent
monolayer of cells in a 12-well plate. The resultant wounds were documented and evaluated at 0, 24, and 48 h
post-scratch. Analysis of the wound healing assay was carried out using the ImageJ software version 1.53C
(NIH, Bethesda, MD, USA; https://imagej.net/ij) for quantification of the results.

2.11 Transwell Assay
The cell migration assays were performed as described previously [19]. Briefly, cells (8 × 104) were

resuspended in 200 μL of serum-free medium and seeded into the upper compartment of inserts with 8 μm
pore size (Corning Costar, CLS3422, Shanghai, China). Concurrently, 600 μL of medium containing 10%
fetal bovine serum (FBS) was added to the lower compartment. Following a 12-h incubation period for the
migration assessment, cells that successfully migrated through the membrane were fixed using methanol and
subsequently stained with 2% crystal violet (BBI, E607309-0100, Shanghai, China). Subsequently, images of
the migrated cells were captured using an inverted microscope at a magnification of 10X. All experimental
procedures were conducted in triplicate. The quantification of the outcomes from the transwell and migration
assays was performed using the ImageJ software version 1.53C (NIH, Bethesda, MD; https://imagej.net/ij).

2.12 Western Blotting
Western blotting was performed as described previously [20]. Briefly, Cellular proteins were separated

via SDS-PAGE, then transferred onto polyvinylidene fluoride (PVDF) (Millipore, IPVH00010, Shanghai,
China) or nitrocellulose filter membrane (NC) (Millipore, HATF00010, Shanghai, China) Transfer Mem-
brane. Following a 2-h blocking step at room temperature, the membranes were subjected to an overnight
incubation at 4○C with specific antibodies targeting GAPDH (1:50000) and ARPC1A (1:1000). Sequentially,
the membranes underwent incubation with secondary antibodies for 1 h at room temperature. Subsequent
washing steps were followed by exposure to Ultrasensitive ECL Chemiluminescent Substrate (Biosharp,
BL523B, Hefei, China), and imaging was performed using the ChemiCapture Imaging System (Clinx,
6000Exp, Shanghai, China). The quantification of protein levels was performed by normalizing to the internal
control protein GAPDH using ImageJ software version 1.53C (NIH, Bethesda, MD; https://imagej.net/ij).

The primary antibodies employed included anti-ARPC1A (Proteintech, 17538-1-AP, Wuhan, China,
1:1000 for WB); GAPDH (Proteintech, 60004-1-Ig, Wuhan, China, 1:50000 for WB), E-cadherin (CST, 3195,
America, 1:1000 for WB), Vimentin (CST, 5741, America, 1:1000 for WB), and Slug (CST, 9585, America,
1:1000 for WB). HRP-conjugated Goat Anti-Rabbit IgG(H+L) (Proteintech, SA00001-2, Wuhan, China,
1:10000 for WB). HRP-conjugated Goat Anti-Mouse IgG(H+L) (Proteintech, SA00001-1, Wuhan, China,
1:10000 for WB).

https://imagej.net/ij
https://imagej.net/ij
https://imagej.net/ij
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2.13 Statistical Analysis
All the data are presented as the mean ± standard error of the mean (SEM) from at least three

independent experiments. Statistical significance was calculated using the Student’s t-test for pairwise
comparisons. * indicates p < 0.05. ** indicates p < 0.01, *** indicates p < 0.001.

3 Result

3.1 Upregulation of ARPC1A in NSCLC
To investigate the expression patterns of ARPC1A within tumor and normal tissues, we initially mined

the data from The Cancer Genome Atlas (TCGA). The dataset encompassed 33 tumor types, including
LUAD, lung squamous cell carcinomas (LUSC), breast cancer (BRCA), and a diverse spectrum of 19 other
malignancies. Our analysis demonstrated the expression levels of ARPC1A in tumors and adjacent normal
tissues (Fig. 1A). Subsequent scrutiny of non-paired TCGA datasets unveiled a statistically significant upreg-
ulation of ARPC1A expression in NSCLC (Fig. 1B). Noteworthy insight emerged from paired expression data
analysis sourced from TCGA, elucidating a substantial augmentation in ARPC1A expression in tumor tissues
(Fig. 1C). Leveraging the GEPIA database, it was further elucidated that heightened ARPC1A expression in
NSCLC correlated with a markedly poorer prognosis in terms of survival outcomes compared to cases with
lower ARPC1A expression levels (Fig. 1D).

Subsequent validation experiments were undertaken to corroborate the expression levels of ARPC1A
in normal lung epithelial cell lines, namely Beas-2B and HFL1, together with NSCLC cell lines H1299, PC9,
HCC827, and H1975, employing both quantitative-PCR and Western blotting analyses. Our quantitative-
PCR experiments reported elevated ARPC1A expression in NSCLC cell lines, compared to the normal
lung epithelial cell lines (Fig. 1E). Accordingly, the upregulated transcript level of ARPC1A was observed in
NSCLC tissues compared to the adjacent normal tissues (Fig. 1F, Fig. S1). Western blotting further indicated
that the protein level of ARPC1A was upregulated in NSCLC cell lines (Fig. 1G), as well as in NSCLC tissues
(Fig. 1H). These results from datamining and experiments reveal that ARPC1A was upregulated in NSCLC,
suggesting it may act roles during oncogenesis or cancer progression.

Figure 1: (Continued)
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Figure 1: Upregulation of ARPC1A in NSCLC cell lines and tissues. (A) The expression level of ARPC1A in pan-cancer
based on the data from the TCGA database. * indicates p < 0.05, ** indicates p < 0.01. *** indicates p < 0.001. (B) The
expression level of ARPC1A in NSCLC in non-paired samples based on the data from the TCGA database. *** indicates
p < 0.001. (C) The expression level of ARPC1A in NSCLC in paired samples from TCGA data. *** indicates p < 0.001.
(D) The relationship between ARPC1A and Overall Survival Probability in patients with NSCLC. (E) The expression
level of ARPC1A in NSCLC cell lines and normal lung epithelial cell lines were determined by qPCR. Quantification
of n = 3 experiments, mean ± SEM, * indicates p < 0.05. (F) The expression level of ARPC1A in collected NSCLC
surgery samples (n = 5) was determined by q-PCR. The red color represents “NSCLC tumor tissue”, and the blue color
represents “adjacent normal tissue”. * indicates p < 0.05. (G) The expression level of ARPC1A in NSCLC cell lines and
normal lung epithelial cell lines were determined by Western blotting. Up panel: representative experiment. Down
panel: quantification of n = 3 experiments, mean ± SEM. * indicates p < 0.05. (H) The expression level of ARPC1A in
collected NSCLC surgery samples (n = 5) was determined by Western blotting. Up panel: representative experiment.
Down panel: quantification of n = 3 experiments, mean ± SEM. * indicates p < 0.05

3.2 ARPC1A Is a Potential Early Diagnostic Biomarker for NSCLC
To elucidate the clinical features linked to ARPC1A expression, a cohort analysis was conducted utilizing

the TCGA dataset whereby individuals were stratified into either ARPC1A high-expression or low-expression
groups based on the median expression levels for subsequent clinical assessment. The outcomes of this
investigation revealed a discernible association between ARPC1A expression and TNM staging, with a
marked elevation observed in T2 and T3 stages, compared to the T1 stage (Fig. 2A,B). Notably, disparities in
N-staging were also observed, with N0 exhibiting lower ARPC1A expression levels compared to N2 and N3
stages (Fig. 2C). Furthermore, an analysis of M staging unveiled a significant increase in ARPC1A expression
in the M1 stage relative to the M0 stage (Fig. 2D). Nevertheless, no distinct trends were discerned in ARPC1A
expression concerning sex, age, and overall staging (Fig. 2E–G). These revelations substantiate the premise
that ARPC1A may act a pivotal role in the early progression of lung cancer and could potentially serve as a
promising candidate for early-stage diagnostic biomarker applications in lung cancer management.
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Figure 2: ARPC1A is a potential early diagnostic biomarker for NSCLC. (A) The heatmap showing the association
between the ARPC1A expression and clinical features in NSCLC patients. *** indicates p < 0.001. (B) Box plot showing
the ARPC1A expression in different T stages in patients with NSCLC. * indicates p < 0.05. ** indicates p < 0.01. ***
indicates p < 0.001. “ns” indicates no significance. (C) Box plot showing the ARPC1A expression in different N stages
in patients with NSCLC. * indicates p < 0.05. *** indicates p < 0.001. “ns” indicates no significance. (D) Box plot
showing the ARPC1A expression in different M stages in patients with NSCLC. *** indicates p < 0.001. (E) Box plot
showing the ARPC1A expression in different sexes in patients with NSCLC. “ns” indicates no significance. (F) Box
plot showing the ARPC1A expression in different ages in patients with NSCLC. “ns” indicates no significance. (G) Box
plot showing the ARPC1A expression in different Stages in patients with NSCLC. ** indicates p < 0.01. “ns” indicates no
significance.

3.3 ARPC1A Is Potentially Involved in Multiple Gene Network
Through an exhaustive examination of the interplay between the ARPC1A gene and its interactors

within the TCGA dataset, we meticulously illustrated the landscape of ARPC1A co-expressed genes via a
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visually informative volcano plot (Fig. 3A), subsequently spotlighting the top 50 correlated genes through a
comprehensive heatmap depiction (Fig. 3B). Further augmenting our comprehensive analysis, we embarked
on a detailed exploration of the functional enrichment profiles of ARPC1A and its interacting partners (Table
S1). Delving into subcellular localization components, our scrutiny unveiled a prominent enrichment of the
target genes within key locales encompassing the mitochondrial matrix, mitochondrial inner membrane,
and ribosomal structures (Fig. 3C). At the molecular function level, the interactions primarily showcased
enrichments in pivotal activities such as protein kinase regulator functions, RNA methyltransferase activities,
and cyclin-associated roles (Fig. 3D). Pertaining to biological processes, the interactions predominantly
clustered around essential cellular processes, including DNA replication, mitotic cell cycle progression, and
RNA methylation cascades (Fig. 3E). A comprehensive survey of the KEGG pathways further underscored
the involvement of ARPC1A and its co-expressed genes in pivotal pathways such as cell cycle regulation, DNA
replication mechanisms, drug metabolism pathways, and the renowned P53 signaling network (Fig. 3F).
These data collectively demonstrated a prospective regulatory nexus where ARPC1A potentially influences
NSCLC progression through its modulatory roles within these intricate signaling cascades.

Figure 3: (Continued)
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Figure 3: Bioinformatic analysis reveals multiple biological progresses ARPC1A potentially involved in (A) Volcano
Plot of gene co-expressed with ARPC1A. (B) Heat map displays the expression level of ARPC1A co-expressed genes. (C)
The GO analysis of cellular components was performed on ARPC1A and its co-expressed gene set. (D) The GO analysis
of molecular function was performed on ARPC1A and its co-expressed gene set. (E) The GO analysis of biological
process was performed on ARPC1A and its co-expressed gene set. (F) KEGG analysis was performed on ARPC1A and
its co-expressed gene set

3.4 ARPC1A Stimulates the Resistance to Chemotherapeutic Drugs
We thereafter set to examine the role of ARPC1A in cell proliferation and drug resistance. ARPC1A

siRNA was introduced into HCC827 and H1975 cells, and the efficacy of knockdown was duly verified
through quantitative-PCR and Western blotting analysis (Fig. 4A,B). Due to ARPC1A siRNA1 displayed high
efficiency of gene silencing, we selected it in subsequent experiments (referred to as “ARPC1A siRNA” in
the following text). In the Cell Counting Kit-8 (CCK8) experiment, the proliferation ability of HCC827
and H1975 cell lines significantly decreased when ARPC1A was knocked down (Fig. 4C). Furthermore, we
overexpressed ARPC1A in HCC827 and H1975 cells, which were verified by Western blotting (Fig. S2A,B).
As anticipated, enhanced cell proliferative capabilities were documented in ARPC1A expressing cells (Fig.
S2C,D). Moreover, subsequent colony formation assays independently confirmed the reduced proliferation
induced by ARPC1A depletion in lung cancer cells (Fig. 4D). These results together indicate a suppressive
role of ARPC1A in the NSCLC cell growth.

To elucidate whether ARPC1A regulates drug sensitivity, we conducted an analysis comparing drug
responses between groups with high and low ARPC1A expression. Our findings demonstrated a negative
association between ARPC1A expression levels and susceptibility to broad-spectrum chemotherapeutic
agents like cisplatin, paclitaxel, and gemcitabine in NSCLC (Fig. 4E). Specifically, further validation with
cisplatin and paclitaxel revealed varying levels of drug sensitivity. Previous investigations have shown the
half-maximal inhibitory concentration (IC50) values of cisplatin to be 13.7 and 9.6 μM and of paclitaxel
to be 0.512 and 2.59 μM for HCC827 and H1975 cells, respectively [21–24]. Employing these established
IC50 concentrations, drug sensitivity assessments in ARPC1A siRNA-transfected cells uncovered heightened
susceptibility to cisplatin and paclitaxel in both HCC827 and H1975 cell lines compared to the control
groups (Fig. 4F). The ARPC1A expression level is intricately linked to responsiveness to a range of targeted
pharmaceutical agents. In NSCLC, mutations within the epidermal growth factor receptor (EGFR) gene
are prevalent, occurring in approximately 40% of cases [21]. Therapeutic strategies often revolve around
EGFR-targeted kinase inhibitors (TKIs) like erlotinib, gefitinib, osimertinib, and afatinib, tailored to combat
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EGFR mutations. Among these, erlotinib and gefitinib belong to the first generation of drugs, afatinib to
the second, and osimertinib to the third. Around 3%–10% of NSCLC patients exhibit fusion mutations
within the anaplastic lymphoma kinase (ALK) gene, a genetic alteration recognized for its role in promoting
tumor proliferation and invasiveness. Crizotinib represents the primary targeted therapeutic option for
ALK-positive NSCLC. Our investigation from mining the database has suggested a discernible inverse
relationship between ARPC1A expression levels and the efficacy of erlotinib, gefitinib, osimertinib, and
afatinib, while a similar negative correlation was observed in conjunction with crizotinib. Moreover, an
adverse association was documented with lapatinib, a targeted agent commonly employed in treating breast
cancer (Fig. 4G). These data indicate that ARPCIA may display a broad regulatory role in the resistance not
only to chemotherapeutic drugs but also to targeted drugs.

The Erlotinib, Gefitinib, Osimertinib, Afatinib, Crizotinib, and Lapatinib sensitivity between ARPC1A
high-expressed group and ARPC1A low-expressed group in NSCLC. * indicates p < 0.05. ** indicates p <
0.01. *** indicates p < 0.001.

Figure 4: (Continued)
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Figure 4: ARPC1A promotes cell proliferation and the resistance to chemotherapeutic drugs. (A) The expression of
ARPC1A was examined by qRT-PCR in HCC827 and H1975 transfected with the ARPC1A siRNA or negative control
(NC). Mean ± SEM. * indicates p < 0.05. (B) The expression of ARPC1A was examined by Western blotting in HCC827
and H1975 transfected with the ARPC1A siRNA and negative control (NC). Mean ± SEM. * indicates p < 0.05. (C)
HCC827 cells and H1975 cells were treated with negative control (NC) and ARPC1A siRNA, the cell proliferation
was then measured using a CCK8 assay. Quantification of 3 experiments, mean ± SEM. * indicates p < 0.05. (D) The
efficiencies of cell colony formation in HCC827 and H1975 cells transfected with negative control (NC) and ARPC1A
siRNA. Left panel: Representative images. Scale bar = 1 cm. Right panel: Quantification of 4 experiments. Mean ± SEM.
* indicates p < 0.05. (E) The cisplatin, paclitaxel, gemcitabine, Docetaxel, Pictilisib, and Vinblastine sensitivity between
ARPC1A high-expressed group and ARPC1A low-expressed group in NSCLC. *** indicates p < 0.001. (F) HCC827
cells or H1975 cells were treated with negative control (NC) and ARPC1A siRNA for 24 h, cells were subjected to drug
sensitivity experiments using the CCK8 assay. Quantification of 3 experiments, mean ± SEM. * indicates p < 0.05. The
Erlotinib, Gefitinib, Osimertinib, Afatinib, Crizotinib, and Lapatinib sensitivity between ARPC1A high-expressed group
and ARPC1A low-expressed group in NSCLC. * indicates p < 0.05. ** indicates p < 0.01. *** indicates p < 0.001.

3.5 ARPC1A Prompts Cell Migration via Stimulating EMT
To elucidate the potential involvement of ARPC1A in the NSCLC, we utilized a wound healing assay to

determine the capability of cell migration, our experiments report a marked reduction in cell migration rates
following ARPC1A knockdown (Fig. 5A,B). Conversely, an increased migratory capacity was observed in
cells expressing ARPC1A (Fig. S3A,B). We, therefore, employed Transwell assay analyses and found that the
downregulation of ARPC1A leads to a significant reduction in the migratory capability. Importantly, similar
results were obtained in both HCC827 cell and H1975 cells (Fig. 5C,D).

To delve deeper into the mechanistic underpinnings of ARPC1A-mediated regulation of lung cancer
cell migration, we scrutinized the expression profiles of epithelial-mesenchymal transition (EMT) pathway-
associated proteins in HCC827 and H1975 cells using Western blotting. Our experiments unveiled a
prominent upregulation in E-cadherin protein expression concomitant with significant downregulation of
Vimentin protein level upon ARPC1A knockdown (Fig. 5E). Importantly, Slug, one key driver of EMT
progress, is downregulated by the silencing of ARPC1A in both HCC827 and H1975 cells (Fig. 5E). Collec-
tively, these experimental results underscore the pivotal role of ARPC1A in shaping tumor dissemination
dynamics via modulation of EMT pathway-related protein expression profiles.
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Figure 5: ARPC1A prompts NSCLC cell migration via stimulating EMT. (A) The effect of negative control (NC)
and ARPC1A siRNA on cell migration in HCC827 cell lines were measured by wound healing assay. Left panel:
Representative images. Scale bar = 500 μm. Right panel: Quantification of 3 experiments. N = 3 experiments, mean
± SEM. * indicates p < 0.05. (B) The effect of negative control (NC) and ARPC1A siRNA on cell migration in H1975
cell lines were measured by wound healing assay. Left panel: Representative images. Scale bar = 500 μm. Right panel:
Quantification of 3 experiments. N = 3 experiments, mean ± SEM. * indicates p < 0.05. (C) The effect of negative
control (NC) and ARPC1A siRNA on cell migration in HCC827 cell lines were measured by transwell assay. Left panel:
Representative images. Scale bar = 50 μm. Right panel: Quantification of 3 experiments. N = 3 experiments, mean ±
SEM. For HCC827 cell lines, * indicates p < 0.05. (D) The effect of negative control (NC) and ARPC1A siRNA on cell
migration in H1975 cell lines were measured by transwell assay. Left panel: Representative images. Scale bar = 50 μm.
Right panel: Quantification of 3 experiments. N = 3 experiments, mean ± SEM. For H1975 cell lines, * indicates p <
0.05. (E) HCC827 and H1975 cells were transfected with negative control (NC) and ARPC1A siRNA for 72h, and the
ARPC1A, E-cadherin, Vimentin, and Slug protein levels were assessed by Western blotting. (F) Quantification of the
data in (E) quantification of n = 3 experiments, mean ± SEM. For ARPC1A protein, * indicates p < 0.05
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3.6 ARPC1A May Regulate Immune Infiltration Dynamics In Vivo
The intricate interplay between the tumor microenvironment (TME) and lung cancer progression

stands as a critical axis in oncological research. Delving into the nexus between ARPC1A and the TME,
we harnessed the power of the ESTIMATE algorithm to decipher the immune and stromal compositions
within the samples under scrutiny. Notably, our analyses in NSCLC unveiled an inverse relationship between
ARPC1A protein expression and the proportion of immune components (Fig. 6A). Interestingly, within the
confines of the TME, the expression patterns of ARPC1A exhibited associations with immune components.

To gain further insight into the intricate relationship between ARPC1A expression and immune-
infiltration dynamics, we leveraged CIBERSORT to dissect the intricate tapestry of immune cell populations.
Our investigations in NSCLC unveiled compelling correlations between ARPC1A expression levels and
various immune cell subsets (Fig. 6B), including T cells CD4 memory activated (R = 0.15, p = 0.0011), T
cells CD8 (R = 0.13, p = 0.0072), T cells regulatory (R = 0.14, p = 0.0027), T cells follicular helper (R = 0.15,
p = 0.0014), Macrophages M1 (R = 0.11, p = 0.016), Macrophages M0 (R = 0.098, p = 0.0037) (Fig. 6C,D),
Mast cells resting (R = −0.2, p = 1.3e − 05), T cells CD4 memory resting (R = −0.31, p = 2.3e − 11),
Neutrophils (R = −0.12, p = 0.0092) and Dendritic cells resting (R = −0.14, p = 0.0023) (Fig. 6E). These results
showed that ARPC1A expression is closely associated with immunity. For instance, its positive correlation
with M1 macrophages may suggest that ARPC1A could be involved in macrophage polarization, ultimately
contributing to pro-cancer effects.

Figure 6: (Continued)
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Figure 6: The potential regulation of ARPC1A in immune infiltrating cells. (A) The immune matrix component
ratio in ARPC1A high-expression group and ARPC1A low-expression group. *** indicates p < 0.001. (B) A different
infiltrating abundance of immune cells in ARPC1A high-expression group and ARPC1A low-expression group in
NSCLC. * indicates p < 0.05. ** indicates p < 0.01. *** indicates p < 0.001. (C) The relationship between ARPC1A
expression and immune-infiltration level in NSCLC. (D) The positive correlation between ARPC1A expression and
immune checkpoint-related genes. (E) The negative correlation between ARPC1A expression and immune checkpoint-
related genes. (F) The schematic representation delineates the conceptual framework and principal discoveries of
the present investigation. These results unveil the perturbation in ARPC1A expression within non-small cell lung
cancer (NSCLC). Across the course of NSCLC advancement, ARPC1A expression exhibits a progressive escalation.
Experimental assays demonstrate that the inhibition of ARPC1A expression attenuates the malignant properties of
cancer cells. Furthermore, the heightened expression of ARPC1A diminishes the responsiveness to chemotherapeutic
agents. This study underscores the functional role and molecular underpinnings of ARPC1A in the progression of
NSCLC. Figure created with BioRender.com.

In summary, this study sheds light on the dysregulation of ARPC1A in the landscape of NSCLC. Through
a comprehensive amalgamation of bioinformatics analyses and experimental cell studies, we illuminate the
pivotal role of ARPC1A in orchestrating NSCLC metastasis via the EMT pathway. Our experimental data
further indicates that.

ARPC1A promotes cell proliferation and drug resistance. The bioinformatic analysis additionally sug-
gests the potential interplay between ARPC1A and immune infiltration dynamics, which need experimental
verification (e.g., measurement of the index of immune cells and immune response in ARPC1A knockout
mice) in further studies. Moreover, insights gained from our scrutiny of clinical specimens and cancer
databases accentuate the potential significance of ARPC1A, underscoring its promise as a prospective
candidate for driving advancements in clinical diagnostic and therapeutic landscapes (Fig. 6F).

4 Discussion
Lung cancer stands at the forefront of cancer-related mortality worldwide, with an annual toll exceeding

1.8 million deaths. Shockingly, lung cancer has a five-year survival rate of 19%, making it one of the lowest
survival cancer types of all malignancies [25]. NSCLC constitutes 80%–85% of all lung cancer cases, primarily
manifesting as adenocarcinoma (AdC) and squamous cell carcinoma (SqCC) [26]. However, the majority of
NSCLC diagnoses occur in advanced stages, presenting formidable treatment obstacles. Hence, unraveling

http://BioRender.com
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the molecular intricacies of NSCLC and pinpointing fresh prognostic indicators and therapeutic avenues
looms as paramount. Timely scrutiny of prognostic factors and the discovery of sensitive diagnostic markers
emerge as pivotal focal points in NSCLC clinical exploration. Exhaustive analyses delving into expression
patterns and survival trajectories derived from database mining underscore the promise of ARPC1A as a
groundbreaking biomarker for the diagnosis, prognosis, and management of NSCLC. Our current study
revealed a noteworthy elevated expression of ARPC1A in NSCLC, showcasing its mettle as an autonomous
prognostic determinant for this cancer type.

ARPC1A is a member of the ARP2/3 complex family [27]. The ARP2/3 complex was originally identified
in Acanthamoeba and consists of seven proteins [28,29]. In mammalian systems, this complex embraces
five fundamental elements: ARP2, ARP3, ARPC2, ARPC3, and ARPC4, alongside isoforms ARPC1A and
ARPC1B, and a singular representative each of ARPC5A and ARPC5B [7]. Functioning as an actin-nucleating
powerhouse within cells, ARP2/3 exerts a profound influence on actin filament generation and is intricately
intertwined with cellular motility. Mounting evidence accentuates the upregulation of Arp2/3 subunits
across diverse cancer tissues and cells, correlating with cancer proliferation, invasion, and metastasis [30].
Antecedent investigations have documented escalated ARPC1A levels in pancreatic cancer, fomenting
metastatic progression and infiltration [10]. Analogously, prostate cancer witnesses the upregulation of its
homolog, ARPC1B, fostering tumor metastasis [31]. The ARP2/3 complex, subject to regulation by polo-like
kinase 4 (PLK4) in cancer realms, steers actin cytoskeleton rearrangements [32]. ARPC2 emerges as a novel
marker in breast, gastric, and liver cancers, playing a pivotal role in regulating cancer cell proliferation and
tumor metastasis [33–35]. Likewise, ARPC4 mirrors this function in pancreatic and gastric cancers [36],
while ARPC5 in liver cancer orchestrates cell proliferation, inhibiting apoptosis through modulation of the
miR-22-3p-ARPC5 axis [37]. Our current study highlighted multiple critical functions of ARPC1A in the
development of NSCLC.

The expression of ARPC1A is intricately linked to the dynamics of immune infiltration and the
responsiveness to therapeutic interventions. Subsequent experimental investigations have elucidated the
critical role of ARPC1A in modulating cell proliferation and the motility of cancer cells through the complex
EMT pathway. The activation of EMT is a fundamental process in the invasion and metastasis of cancer
cells [38]. In experiments utilizing the HCC827 and H1975 cell lines, the knockdown of ARPC1A resulted
in a significant reduction in the migratory capacity of NSCLC cells. Notably, ARPC1A knockdown led
to an increase in E-cadherin expression, concomitant with a decrease in the expression of Vimentin and
Slug proteins. The EMT process is characterized by a dynamic interplay, where a reduction in E-cadherin
expression is typically associated with an increase in N-cadherin expression, which is critical for tumor cell
invasion. Furthermore, the upregulation of the Slug protein is known to facilitate cancer metastasis [39].
Collectively, these findings underscore the pivotal role of ARPC1A in the EMT process, suggesting its
potential as a biomarker.

The incorporation of ARPC1A as a novel biomarker and therapeutic target for NSCLC presents several
significant challenges. Primarily, targeted therapies consist of two main categories: monoclonal antibodies
and small molecule drugs. While these approaches may help alleviate patient side effects, the emergence
of drug resistance is often unavoidable. As a new therapeutic target, ARPC1A is likely to face similar
issues related to drug resistance; nonetheless, investigating combination therapies could yield effective
treatment strategies.

ARPC1A is known to regulate ferroptosis through the STAT3 signaling pathway, thereby promoting
tumor progression [12]. Consequently, it may be beneficial to consider the co-administration of ARPC1A-
targeting agents with ferroptosis inducers or STAT3 inhibitors to inhibit tumor growth effectively.
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In contrast to established NSCLC biomarkers, programmed death ligand 1 (PD-L1) serves as a trans-
membrane protein that inhibits T cell activation and proliferation, rendering it a prominent biomarker for
NSCLC [40]. Tumors may be categorized as “hot” or “cold,” with high PD-L1 expression observed in hot
tumors and low expression in cold tumors [41]. However, unlike PD-L1, the expression of ARPC1A in tumors
is not modulated by immune responses, thereby enhancing its accuracy and effectiveness as a biomarker.
Thyroid transcription factor-1 (TTF-1) is a widely utilized immune marker in NSCLC; however, it fails to
reflect the metastatic status of tumors [42]. ARPC1A, a member of the Arp2/3 family, has been shown
in existing literature to regulate the cytoskeleton, influencing filopodia formation and thereby modulating
metastasis and invasion [11]. Consequently, ARPC1A may serve as a more reliable indicator of tumor
metastasis compared to TTF-1. Nevertheless, it is important to note that ARPC1A currently lacks specificity
and clinical validation.

Additionally, ARPC1A is implicated in ferroptosis, a process critical for the assessment of tumor
metastasis and proliferation [12]. Based on data analysis from the current study, the expression level of
ARPC1A correlates positively with various immune infiltrating cells, particularly CD4+ memory-activated
T cells, regulatory T cells, and M1 macrophages, suggesting that ARPC1A may play a role in macrophage
polarization and exert a pro-cancer function.

The limitations of this study include the necessity for further exploration of the clinical applicability
of findings derived from the analysis of clinical data from cancer databases. Moreover, a larger sample
size of NSCLC patients is required to substantiate the relationship between ARPC1A expression and
clinical parameters. The mechanisms by which ARPC1A influences immune responses, drug resistance,
and metastasis warrant further investigation. Finally, current research is primarily in vitro, necessitating
additional in vivo studies, such as the use of ARPC1A knockout mice, to validate the potential of ARPC1A as
a biomarker for NSCLC.

5 Conclusion
This study demonstrates that the expression of ARPC1A is significantly increased in non-small cell lung

cancer, affecting cell survival and migration abilities and influencing the sensitivity to a broad-spectrum
chemotherapy drug.
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