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ABSTRACT: Glutamate is an essential excitatory neurotransmitter in the brain, playing a vital role in regulating
synaptic activity and maintaining the homeostasis of the cerebral environment but also serves as a central hub for
neuronal injury and inflammatory responses. In various pathological conditions, such as ischemic stroke, glutamate
is released and accumulates excessively in the brain, leading to heightened stimulation of neurons and excitotoxicity.
This phenomenon positions glutamate as a primary inducing factor for neuronal damage following cerebral ischemia.
Glutamate exerts its effects primarily through two types of receptors: ionotropic and metabotropic glutamate receptors,
both of which are extensively distributed throughout the hippocampus and cortical regions of the brain. Ionotropic
receptors mediate rapid excitatory neurotransmission upon activation by glutamate; these are mainly categorized
into N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors
(AMPARs), and kainate receptors (KARs). Conversely, metabotropic receptors function as G-protein-coupled receptors
(GPCR) facilitating glutamatergic cellular effects via intracellular second messenger. With the comprehensive investiga-
tion of glutamate receptors and their structural characteristics, our understanding of the nerve damage and protective
mechanisms associated with glutamate receptors in ischemic stroke is progressively advancing. Consequently, exploring
the role of glutamate receptors and their downstream signaling pathways in cerebral ischemia can provide a robust
theoretical foundation for targeted therapies aimed at treating cerebral ischemia, stroke, and related disorders. This
article reviews the function of glutamate receptors and their mediated downstream signal transduction pathways in the
context of ischemic brain injury.
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1 Introduction
Stroke is the second leading cause of death and disability worldwide, with the highest incidence

occurring in developing countries. It is primarily categorized into ischemic stroke and hemorrhagic stroke,
with ischemic stroke accounting for approximately 87% of cases, making it the most prevalent type that poses
a significant threat to human health [1]. With the establishment of green channels for emergency care and
ongoing advancements in mechanical thrombectomy and thrombolytic therapy in clinical practice, mortality
rates have been effectively managed. However, post-treatment rehabilitation remains a critical focus within
clinical settings. Clinical data survey results show that the disability rate of stroke after recovery is as high
as 70%–80%, which seriously affects the quality of life of patients and increases the economic burden of
families [2]. Currently, tissue plasminogen activator (t-PA) is the only drug approved by the FDA for treating
acute ischemic stroke [3]. Therefore, clarifying the mechanisms underlying functional rehabilitation after
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stroke and identifying potential rehabilitation targets hold great significance for drug development and
clinical treatment strategies.

Modern medical research indicates that ischemic stroke is a neurological disorder primarily char-
acterized by vascular obstruction. The formation of a thrombus within the brain disrupts blood flow by
occluding arteries, leading to the death of numerous neurons and glial cells in the infarction core area due
to ischemia. This process is accompanied by synaptic loss and the reduction in synaptic plasticity. One
of the most critical mechanisms underlying neuronal injury during acute cerebral ischemia is glutamate-
mediated excitotoxicity [4]. Following cerebral ischemia, ischemia and hypoxia in the infarcted region result
in significant presynaptic membrane release of glutamate, causing an immediate upregulation of glutamate
concentration in the synaptic cleft. This rapid increase acts on glutamate receptors located on the postsynaptic
membrane as well as adjacent astrocytes, eliciting various cellular effects.

In recent decades, the structure, classification, distribution, and physiological functions of glutamate
and its receptors have been extensively investigated. Specifically, glutamate primarily interacts with two
types of receptors: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs),
both of which are widely distributed in the hippocampus and cortical regions of the brain. The former
is mainly categorized into N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionic acid receptors (AMPARs), and kainate receptors (KARs) [5]. In contrast, mGluRs are
G-protein-coupled receptors that mediate glutamatergic cellular effects through intracellular second messen-
ger pathways [6]. Research has elucidated the mechanisms underlying neuronal death and survival mediated
by glutamate receptors following cerebral ischemia. A significant release of glutamate activates postsynaptic
membrane iGluRs particularly NMDA receptors (NMDAR) which can induce various downstream effects
to modulate neuronal activity via distinct pathways. The diversity of mGluRs in the brain along with their
widespread distribution renders them prime targets for treating a range of neurological and psychiatric
disorders. Unlike iGluRs activation responsible for rapid excitatory synaptic transmission, mGluRs play a
crucial role in fine-tuning this excitatory transmission as well as regulating circuit-specific activities [7].
Activation of mGluRs is associated with excessive intracellular signaling within the brain; disruptions in
one or more of these pathways may significantly impact overall brain function. However, it is noteworthy
that glutamate receptors on adjacent astrocytes especially Group II glutamate receptors may mediate certain
protective effects [8]. Therefore, understanding the mechanisms governing neuronal death or protection
mediated by glutamate receptors holds substantial significance for clinical interventions targeting ischemic
stroke. This paper primarily discusses the signal transduction mechanisms involved in neuroprotection and
injury mediated by glutamate receptor activity following ischemic stroke.

2 Distribution and Physiological Function of Glutamate Receptors

2.1 Ionic Glutamate Receptors (iGluRs)
Three postsynaptic ionotropic glutamate receptors have been identified: N-methyl-D-aspartate recep-

tors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs),
and kainate receptors (KAR). These receptors are responsible for the majority of postsynaptic slow excitatory
potential transmission [9]. The function of KAR is not fully understood, although it may modulate
presynaptic and postsynaptic excitatory neurotransmission.

NMDARs are one of the subtypes of excitatory iGluRs, which is widely distributed in the hippocampus
and cortex and is also the glutamate receptor most directly related to the excitotoxicity of ischemic
stroke [10]. It is a heterotetramer composed of two NR1 and NR2 subunits, which have dual ligand-voltage
gating characteristics and high Ca2+ permeability [11]. Under physiological conditions, when glutamate is
released from the presynaptic membrane to activate glutamate receptors, NMDARs activation mediates
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inward cationic currents, thereby depolarizing postsynaptic neurons and generating excitatory postsynaptic
currents. The GluN1 subunit is essential for all functional NMDARs and has binding sites for glycine and D-
serine [12]. In addition, NMDAR also contains an atypical glycine-binding subunit GluN3A, Glycine-binding
sites in the GluN1 and GluN3A subunits promote receptor surface transport. Research has demonstrated
that mutations within the glycine binding site of the human GluN3A subunit markedly diminish the surface
expression of NMDARs [13], indicating that this binding site is crucial for the regulation of NMDARs activity.
The GluN2 subunit provides the glutamate binding site and controls the expression and functional properties
of NMDARs. Much of the single-channel diversity and pharmacological properties of NMDARs result from
the NR2 subunit composition of the receptor [14]. They include competitive antagonists acting at the agonist
binding site, sodium and calcium blockers, allosteric sites distinct from the binding site of endogenous
agonists, and glycine-site antagonists. These channels regulate Ca2+ permeability and play a role in receptor
trafficking, synaptic plasticity, and excitotoxicity [15].

AMPARs are expressed in the postsynaptic membrane and play a crucial role in fast excitatory
neurotransmission within the brain [16]. These receptors have heterotetrameric structures consisting of
GluA1 to GluA4 (also known as GluRA to GluRD) subunits in various combinations, with GluA2 being a
critical site for regulating Ca2+ permeability [17]. The regulation of Ca2+ permeability of GluA2 subunits is
influenced by post-transcriptional modifications, and AMPARs lacking the structure of GluA2 are capable
of allowing calcium (Ca2+) to pass through. However, most AMPARs in the brain contain edited GluA2
subunits and are therefore impermeable to Ca2+. Growing evidence suggests that Ca2+-permeable AMPARs
play significant roles in receptor trafficking, learning, and memory processes, as well as cell death [16].

In addition to AMPARs and NMDARs, KARs are ionic glutamate receptors predominantly expressed
in the amygdala, cortex, and hippocampus [18]. Activated by the agonist kainate, KARs play a pivotal role
in postsynaptic excitatory neurotransmission. Unlike the aforementioned receptors, KARs are tetrameric
structures formed through the assembly of five different subunits of GluK1-GluK5. GluK1, K2, and K3
can undergo editing and splicing to generate variants such as GluK1a, GluK1b, GluK1c, and GluK2a-
2c [19]. Upon activation, they elicit a characteristic electrophysiological response characterized by a small
amplitude and slowly decaying current attributed to their interaction with auxiliary subunits as well as their
biophysical properties.

2.2 Metabotropic Glutamate Receptors (mGluRs)
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled non-ionic glutamate receptors

widely distributed throughout the brain, playing a crucial role in regulating both physiological and patholog-
ical processes by modulating presynaptic glutamate release and postsynaptic ion receptor activity. mGluRs
can be categorized into three main functional subgroups based on differences in amino acid sequences
and signal transduction mechanisms of their constituent proteins [20]. The group I mGluRs comprises
presynaptic mGluR1 and postsynaptic mGluR5, both expressed in astrocytes [21]. The group II mGluRs
includes mGluR2 and 3 [22], whereas the group III encompasses inhibitory presynaptic receptors such as
mGluR4, 6, 7, and 8 [23] (Fig. 1).

The group I mGluRs are primarily categorized into presynaptic mGluR1 and postsynaptic mGluR5.
Presynaptic mGluR1 predominantly facilitates the vesicular release of glutamate, while postsynaptic mGluR5
is mainly involved in regulating the activity of postsynaptic ionic receptors [24]. Furthermore, mGluR5
is highly expressed in developmental astrocytes and exhibits a rapid decline in adult astrocytes; however,
it is re-expressed and plays a role in synaptic plasticity associated with certain central nervous system
disorders [25]. Structurally coupled to NMDAR through postsynaptic density protein 95 (PSD95)/Homer on
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the postsynaptic membrane, mGluR5 mediates the classical GPCR pathway and regulates NMDAR-mediated

Ca2+ signaling [26].

Figure 1: The distribution of glutamate receptors at synapses and the main mechanisms mediating neuronal survival
and death in cerebral ischemia. Abbreviations list: N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-
methyl-4-isoxazole-propionic acid receptors (AMPARs), Gamma-aminobutyric acid (GABA), metabotropic glutamate
receptors (mGluR), phospholipase C (PLC), inositol-1,4,5-triphosphate (IP3), endoplasmic reticulum (ER), extracellular
regulated protein kinases 1/2 (ERK1/2), calmodulin-dependent protein kinase II (CaMK II), postsynaptic density
protein 95 (PSD95), brain-derived neurotrophic factor (BDNF), cAMP-response element binding protein (CREB),
B-cell lymphoma-2 (Bcl-2), phosphoinositide-3 kinase (PI3K), protein kinase B (AKT), glycogen synthase kinase 3
(GSK-3), Forkhead Box O (FOXO), Bcl-xl/Bcl-2-Associated Death promoter (BAD), death-associated protein kinase
1 (DAPK1), Bcl-2-associated X protein (BAX), neuronal Nitric Oxide Synthase (nNOS). The localization of glutamate
receptors at synapses implicated in ischemic stroke and the primary mechanisms underlying ischemic brain injury. It
is primarily the NMDAR and the group I mGluRs that mediate neuronal survival or death by activating distinct Ca2+-
dependent downstream signaling pathways. AMPAR may enhance neuronal survival by mediating BDNF expression
following cerebral ischemia. On one hand, NMDAR initiates apoptotic signaling through DAPK, leading to neuronal
death; on the other hand, they inhibit the apoptotic pathway via the PI3K-AKT pathway and upregulate anti-
apoptotic mechanisms through the CREB pathway to promote neuronal survival. The interaction between NMDAR and
PSD95/nNOS, resulting in neurotoxic NO production, is also a significant contributor to neuronal death. Additionally,
the downstream effects of group I mGluRs mediated by Ca2+-dependent protein kinases represent another critical factor
influencing neuronal activity.
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The group II mGluRs (mGluR2 and mGluR3) are primarily categorized based on their extensive
distribution in the brain, exhibiting similar localization within the cerebral cortex, hippocampus, and
cerebellar amygdala. Specifically, mGluR2/3 are equally distributed in microglia and oligodendrocyte;
with mGluR2 localized on presynaptic neuronal membranes while mGluR3 is predominantly located on
postsynaptic membranes and highly expressed in astrocytes [27]. Their activation inhibits glutamate release
from presynaptic nerve terminals and mediates signaling pathways within post-synapses and glial cells.
Under physiological conditions, binding of mGluR2/3 to adenylyl cyclase through Gαi/o protein inhibits
Cyclic Adenosine Monophosphate (cAMP) and protein kinase A (PKA) signaling ultimately leading to
inhibition of neurotransmitter release [28].

The group III mGluRs, including mGluR4, mGluR6, mGluR7, and mGluR8, are primarily located in the
presynaptic membrane and terminals of Gamma-aminobutyric acidergic (GABAergic) neurons in the stria-
tum [29]. They play a role in inhibiting neurotransmitter release. However, mGluR6 is predominantly found
in the retina with limited research on its involvement in central nervous system diseases. Group III mGluRs
are linked to Gi/o proteins to suppress the elevation of cAMP, representing an inhibitory autoreceptor
mechanism that regulates excessive glutamate and GABA release from presynaptic terminals [30].

3 Pathophysiological Mechanisms Underlying Cerebral Ischemia and Reperfusion Injury

Contemporary medical research has demonstrated that neuronal damage resulting from cerebral
ischemia primarily arises from reduced blood flow to the affected brain regions, leading to embolism
and a significant increase in intracranial pressure as well as brain edema [4]. Furthermore, following an
ischemia stroke, there is a decrease in oxygen and glucose supply, resulting in insufficient energy availability
for neurons within the ischemic area. This leads to the closure of ATP-dependent ion channels and an
elevation of intracellular calcium levels, ultimately causing mitochondrial dysfunction. The activation of
glial cells along with immune cell infiltration initiates an acute inflammatory response that can directly or
indirectly contribute to neuronal death [31]. Conversely, the irreversible damage induced by reperfusion
primarily results from an increase in oxygen free radicals and intracellular calcium overload. Ischemia and
hypoxia impair the mitochondrial electron transport chain in neurons, leading to the formation of reactive
oxygen species from oxygen molecules that enter cells during reperfusion. Intracellular calcium overload
predominantly occurs during reperfusion due to enhanced calcium influx [32]. During ischemic conditions,
ATP production is diminished, and sodium and potassium pumps become dysfunctional, resulting in a
significant accumulation of intracellular Na+. The elevated intracellular Na+ levels during reperfusion not
only activate the sodium pump but also facilitate reverse transport via sodium-calcium exchange proteins,
thereby exacerbating calcium overload [33].

4 Dual Effects of iGluRs Mediating Neuronal Survival in Stroke

Under physiological conditions, the activation of iGluRs is crucial for neuronal activity, directly or
indirectly regulating neuron growth, differentiation, migration, and survival. It also plays a role in dendrite
and axon development, as well as synapse and neural circuit formation [34]. Inhibition of iGluRs activation
can result in significant neuronal apoptosis, impacting neurogenesis, learning, and memory. Conversely,
iGluR activation, particularly NMDAR activation, can lead to neuronal death through various pathways
during cerebral ischemia. The main mechanism of damage is triggered by NMDA-mediated Ca2+ influx
which initiates a series of cascading damages [35]. Some signaling pathways are pivotal in NMDAR-mediated
neuronal protection following ischemic stroke.
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4.1 NMDAR-Mediated Neural Protective Pathways
PI3K/AKT pathway In ischemic brain injury diseases, the NMDAR activation strongly activates this

pathway. Under the stimulation of ischemia and hypoxia, lipid products phosphatidylinositol diphosphate
(IP2) and phosphatidylinositol triphosphate (IP3), produced by Phosphatidylinositide 3-kinases (PI3K)
activation, act as second messengers to activate various intracellular target proteins, ultimately regulating
cell proliferation, differentiation, survival, and other processes [36]. Serine/threonine-protein kinase (AKT),
as a direct downstream target of PI3K, is fully activated by IP3 and interacts with a variety of substrates to
catalyze the activation or deactivation of substrates and regulate cell survival or death, which involves many
mechanisms. On the one hand, it can inhibit the activity of glycogen synthase kinase 3 (GSK-3) and affect
its downstream substrates such as nuclear factor-kappa B (NF-κB) and c-Jun transcription factor, thereby
inhibiting the occurrence of neuronal apoptosis. In addition, it catalyzes the phosphorylation of transcription
factor Forkhead Box O (FOXO) and reduces its expression, thereby affecting the expression of its downstream
apoptotic genes such as FasL and Bim [37]. In addition, it also phosphorylates BAD, a member of the Bcl-2
family of apoptotic genes, thereby inhibiting the blocking effect of BAD on Bcl2/Bcl-xL, a pro-survival family
of Bcl-2 [38] (Fig. 1).

CREB pathway cAMP-response element binding protein (CREB) is a member of the DNA-binding
transcription factor family, and its transcriptional activation depends on its Ser phosphorylation. NMDAR
activation induced by cerebral ischemia with the increase of intracellular Ca2+ concentration can phos-
phorylate CREB, which directly or indirectly activates the transcription of downstream related genes and
regulates the expression of c-fos, c-Jun, Bcl-2, brain-derived neurotrophic factor (BDNF) and other genes
[39–41]. Thus, some neurons can survive after cerebral ischemia by inhibiting apoptosis and promoting cell
differentiation, regeneration, and repair after injury. The phosphorylation of CREB is regulated by a variety
of signal transduction pathways, such as cAMP pathway, Ca2+/calmodulin dependent protein kinase IV
(CaMKIV) pathway, Rat sarcoma/Extracellular regulated protein kinases (Ras/ERK) pathway, PI3K/AKT
pathway, and stress-induced p38 mitogen-activated protein kinase (p38 MAPK) pathway. The intracellular
Ras/ERK pathway and CaMKIV pathway in the nucleus were activated by the Ca2+ influx caused by NMDAR
activation [42,43]. CaMKIV rapidly phosphorylates the Ser of CREB, whereas the ERK1/2 pathway promotes
long-acting phosphorylation of CREB [44]. In addition to CREB autophosphorylation, several co-activators
jointly participate in the initiation and maintenance of transcription of CREB downstream genes. The target
of rapamycin complexes (TORCs) is a group of CREB coactivators that promote CREB-dependent gene
transcription independent of CREB Ser phosphorylation. The activation of TORCs is mainly regulated by
Ca2+ and cAMP pathways. Ca2+ activates calcineurin to dephosphorylate TORC2. cAMP is also required to
inhibit the activity of Salt-inducible kinase 2 (SIK2), the kinase of TORC2 [45,46].

4.2 NMDAR-Mediated Neural Injury Pathways
Under pathological conditions, NMDAR activation can also lead to neuronal death through various

pathways. The mechanism of injury is primarily initiated by the NMDAR-mediated influx of Ca2+, which in
turn triggers a series of cascading damage.

Calpain and calcium-dependent cysteine proteases are activated by Ca2+ influx mediated by NMDAR
activation and can be categorized into calpain I and calpain II based on the concentration of Ca2+ they
rely on [47]. Under physiological conditions, calpain is involved in regulating neuronal function, including
cytoskeleton adjustment, enzyme modification, and Long-term potentiation (LTP) enhancement [48]. In the
context of cerebral ischemia and hypoxia, the dysregulation of Ca2+ leads to sustained activation of calpain,
resulting in protein and enzyme hydrolysis as well as disruption of cellular homeostasis [49], which is a
significant contributor to neuronal death.
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The influx of Ca2+ induced by NMDAR activation leads to the upregulation of neuronal Nitric
Oxide Synthase (nNOS) and triggers a cascade of downstream toxic reactions, including mitochondrial
dysfunction, p38 MAPK activation, and transient receptor potential melastatin (TRPM) channel activ-
ity [50,51]. The activation of nNOS results in excessive production of NO and ROS, which can cause cellular
damage by inhibiting mitochondrial respiratory chain enzymes and promoting mitochondrial membrane
depolarization [52]. Furthermore, their activation subsequently stimulates TRPM7, a recently discovered
bifunctional protein with a dual ion channel and protein kinase structure that is permeable to divalent and
monovalent cations such as Ca2+, Mg2+, and Na+. During the acute phase of cerebral ischemia, Ca2+ influx
through NMDA channels activates nNOS to generate ROS, while ROS in turn activates TRPM7 channels.
The resulting Ca2+ influx via TRPM7 further activates nNOS in a positive feedback loop that generates
ROS and induces intracellular calcium overload ultimately leading to neuronal death [53]. Another critical
signaling pathway implicated in neuronal death is the GluN2B-PSD95-nNOS pathway. During the acute
phase of cerebral ischemia, NR2B subunits facilitate cell death by recruiting death-associated protein kinase
1 (DAPK1) and calcium/calmodulin-dependent protein kinase II (CaMKII) or by forming NR2B-PSD95-
nNOS complexes [54,55]. Following excitotoxicity, PSD95 employs its distinctive molecular architecture to
recruit calcium-dependent nNOS from the cytoplasmic matrix to the plasma membrane, thereby catalyzing
the production of neurotoxic NO and initiating a cascade of downstream events leading to cell death
[56] (Fig. 1).

Considering the correlation between excitotoxic and neuronal death in ischemic stroke, numerous
clinical trials have been conducted to enhance cerebral ischemic outcomes through the inhibition of
NMDAR. Unfortunately, these efforts have often been hindered by limited treatment windows and adverse
side effects [57,58].

4.3 AMPAR and Ischemic Stroke
AMPAR also plays critical but contradictory roles in the pathophysiology of ischemic stroke. In ischemic

injury, AMPAR activation induces the expression of the BDNF, and delayed enhancement of AMPA signaling
promotes behavioral recovery after stroke, whereas blocking AMPAR signaling during the same period
hinders recovery [59]. Studies have shown that administration of AMPAR agonist on the 5th day after
cerebral ischemia can promote the recovery of sensorimotor function in mice, while administration of
AMPAR inhibitor during the same period can delay the recovery [60]. This recovery effect is mediated by
enhancing BDNF activity around the infarction. In contrast to agonist-mediated protective effects, AMPAR
agonist administration in the acute phase after stroke increased the infarct size in the cerebral cortex of
mice, which may be related to the anti-inflammatory and anti-apoptotic signals mediated by AMPAR agonist
[61] (Fig. 1).

5 mGluRs and Ischemic Stroke
mGluRs are widely distributed throughout the central nervous system and activate various signaling

pathways in presynaptic and postsynaptic terminals as well as astrocytes. While not directly involved in
rapid excitatory transmission, their activation regulates excitatory neurotransmission and is linked to diverse
intracellular signaling. Disruptions in these transduction pathways may significantly impact brain function,
offering promising targets for the treatment of central nervous system diseases. The following will discuss
their contributions and research progress in ischemic stroke:

Group I mGluRs Presynaptic mGluR1 predominantly facilitates the release of glutamate from vesicles,
while postsynaptic mGluR5 is involved in modulating the activity of postsynaptic iGluRs. Given the
prevalence of excitotoxicity in ischemic injury, the group I mGluRs, which mediates glutamate release and
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Ca2+ signaling through Gα/q11 coupling, has been extensively researched. Due to the complexity of cell death
caused by ischemic brain injury, it is challenging to determine the exact role of these two group I mGluRs
in ischemia/reperfusion injury. Existing studies have demonstrated that activation of group I mGluRs can
mediate both neuroprotective (AKT/ERK activation) and neurotoxic (intracellular Ca2+ release) cellular
signaling pathways. Previous preclinical studies have shown that intraperitoneal injection of a mGluR1
antagonist can reduce cerebral infarct size and neuronal death in two different animal models of middle
cerebral artery occlusion (MCAO) induced focal cerebral ischemia and permanent cerebral ischemia in
rats [62]. Furthermore, YM202074 and EMQMCM, negative allosteric modulators for mGluR1, reduced
infarct size in a dose-dependent manner in a rodent model of MCAO [63]. Based on these observations, it
appears plausible to conclude that signaling after mGluR1 activation promotes cell death during the acute
phase of cerebral ischemia. However, mice lacking mGluR1 did not show any difference in infarct size
compared to control mice after 24 h MCAO. In contrast to mGluR1, both the mGluR5 agonist CHPG and
antagonist MTEP demonstrated a dose-dependent reduction in infarct size during ischemia in rats with
MCAO [64,65]. In vitro experiments revealed that group I mGluRs agonists could induce neuronal damage.
In a mixed culture of cortical neurons, group I mGluRs agonists exacerbated chronic NMDA toxicity and
oxygen-glucose deprivation (OGD) induced damage, which was associated with increased intracellular Ca2+

release and extracellular Ca2+ influx, as well as activation of protein kinase C (PKC) [66]. There may be other
mechanisms through which group I mGluRs exacerbate neuronal damage, such as enhancing the release of
arachidonic acid or the synthesis of nitric oxide [67]. In neonatal animals, the protective effect of mGluRs is
mainly mediated by group I mGluRs [68]. The addition of group I mGluRs agonists to cultured neuronal cells
can prevent apoptosis caused by extracellular low K+, which is related to the activation of PKC. Glutamate-
induced cell swelling is mediated by mGluR1 activation in cultured astrocytes [69]. The role of arachidonic
acid and nitric oxide in nervous system injury has been extensively studied.

Group II mGluRs The group II mGluRs primarily regulate synaptic plasticity by activating Gαi/o
and coupling with cAMP to attenuate the release of presynaptic neurotransmitters [70]. Their activation
inhibits glutamate release from presynaptic membrane nerve terminals and mediates signaling pathways in
the postsynaptic membrane and glial cells. It has been shown that activation of group II mGluRs reduces the
excessive glutamate release associated with neurodegenerative and psychiatric disorders and thus alleviates
dysfunction [71], which encourages us to search for effective agonists as potential therapeutic approaches.
A compound search identified LY379268 as a potent and systemically available mGlu2/3 receptor agonist.
LY379268 is effective in several animal models of stroke, epilepsy, substance abuse, schizophrenia, and pain.
Inhibition of motor activity was the main side effect of LY379268. Tolerance exacerbates this side effect
with repeated dosing, but the therapeutic effect of LY379268 remains [72]. To date, there are no clinical
data for LY379268. Administration of group II and III mGluRs agonists to the presynaptic membrane in the
adult mouse brain can reduce the toxic effects of NMDAR and KA by inhibiting the release of excitatory
neurotransmitters [73]. Cell culture experiments also showed that group II mGluRs agonists had a protective
effect on acute and chronic NMDA toxicity and OGD injury [74]. This protective effect was related to the
inhibition of Glutamate release and the reduction of intracellular cAMP levels.

Group III mGluRs Group III mGluRs are predominantly localized at the terminals of presynaptic
glutamatergic and GABAergic neurons, where they play a critical role in the release of inhibitory neuro-
transmitters [75]. Research on this receptor subtype in the context of cerebral ischemic injury has been
relatively limited, primarily concentrating on the protective roles of mGluR4 and mGluR7 in neuronal
survival. Previous studies have demonstrated that knockout of mGluR4 significantly increases cerebral
infarction volume in mice subjected to MCAO. Conversely, subcutaneous administration of the selective
mGluR4 agonist PHCCC primarily affecting both mGluR4 and mGluR7 substantially reduces cerebral
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infarction volume after cerebellar ischemia in murine models [76,77]. Furthermore, treatment with ACPT-I,
an agonist of group III mGluRs, has been shown to provide significant protection against glutamate-induced
excitotoxicity in vitro when applied to primary cortical neurons [77].

It is generally believed that subtypes 1 and 5 of group I mGluRs play a neurotoxic role in the pathological
stimulation of cerebral ischemia, while subtypes 2 and 3 of group II play a neuroprotective role. Based
on the understanding of the specific functions of mGluRs in regulating cellular excitability and synaptic
transmission, the search for therapeutic effective mGluRs ligands has focused on antagonists of group I
mGluRs and agonists of group II and III mGluRs.

6 Conclusion and Perspectives
During cerebral ischemia, glutamate functions beyond being a mere neurotransmitter; the receptors for

glutamate expressed on synapses and glial cells significantly contribute to neuronal death. The excitotoxicity
induced by glutamate is a critical factor in neuronal death. This paper primarily explores the mechanisms
of neuronal injury and protection mediated by glutamate receptors located on both presynaptic and post-
synaptic membranes following cerebral ischemia. The protective effects of NMDAR activation on neurons
during ischemic stroke remain a subject of controversy. The molecular mechanisms underlying the diverse
signaling pathways mediated by NMDAR may be associated with its composition and localization. Some
studies indicate that synaptic NMDAR predominantly activates the PI3K/Akt and CREB signaling pathways,
which can inhibit the expression of BCL-2 and other apoptotic genes, thereby exerting protective effects
against oxidative stress while promoting neuronal survival. Conversely, extrasynaptic NMDAR inhibits
ERK1/2 activation and CREB phosphorylation, activating FOXO and calpain to promote neuronal apoptosis
primarily through excitatory amino acid-induced excitotoxicity. Similarly, certain studies have suggested
that NR2A-containing NMDAR plays a protective role in ischemic tolerance mechanisms, whereas NR2B-
containing NMDAR along with its associated signaling molecules are implicated in excitotoxicity during
ischemia. In vitro cultures of mature outer cortical cells reveal that activation of NR2B-containing NMDAR
leads to excitotoxic damage; however, activation of NR2A-containing NMDAR promotes neuronal survival
while protecting neurons from NMDAR-mediated as well as non-NMDAR-mediated injuries [51].

In addition to glutamate receptors present on neuronal synapses, emerging evidence suggests that
mGluRs expressed on glial cells also mediate synaptic function post-cerebral ischemia. Notably, some
mGluRs are re-expressed on glial cells following cerebral ischemia. As previously mentioned, mGluR5 is
highly expressed in the postsynaptic membrane as well as astrocyte and even somewhat in microglia during
developmental stages; however, this expression diminishes sharply three weeks into maturation within
glial cells [78]. Subsequent investigations have demonstrated the re-expression of mGluR5 in astrocytes
surrounding the infarct area after cerebral ischemia; concurrently mediating secretion of synaptogenic
proteins thrombospondin-1/2 (TSP1/2) and Hevin thus facilitating nerve circuit regeneration around the
infarction site [79]. Moreover, astrocytes play a crucial role in maintaining the equilibrium between
glutamate reuptake and release at the tri-synaptic structure via Excitatory amino acid transporter 2 (EAAT2)
located on their membranes, which is implicated in various pathological mechanisms associated with acute
brain injury, including those involving GluRs [80]. Furthermore, it has been proposed that mGluRs on glial
cells may play an essential role in functional recovery following ischemic stroke beyond their intrinsic roles
at neuron synapse structures. Nonetheless, our understanding regarding the role of mGluRs on glial cells
across different stages of cerebral ischemic stroke remains limited and requires further clarification.

Despite encouraging findings from both in vitro and in vivo investigations of glutamate receptors in
ischemic stroke, clinical trials involving iGluRs antagonists, particularly NMDAR antagonists, have faced
significant challenges. These challenges are primarily associated with the emergence of adverse effects,
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including psychosis, cognitive dysfunctions such as memory impairment and disorientation, as well as
dyskinesia [81–83]. In addition, mGluRs have attracted much attention in preclinical studies, but the
relationship between different subtypes of mGluRs and iGluRs is poorly understood, and the mechanism of
different responses is still unclear, and needs further exploration.
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the group III mGlu receptor agonist ACPT-I in animal models of ischemic stroke: in vitro and in vivo studies.
Neuropharmacology. 2016;102:276–94. doi:10.1016/j.neuropharm.2015.11.025.

78. Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, et al. Glutamate-dependent neuroglial calcium signaling
differs between young and adult brain. Science. 2013;339(6116):197–200. doi:10.1126/science.1226740.

79. Kim SK, Hayashi H, Ishikawa T, Shibata K, Shigetomi E, Shinozaki Y, et al. Cortical astrocytes rewire somatosen-
sory cortical circuits for peripheral neuropathic pain. J Clin Invest. 2016;126(5):1983–97. doi:10.1172/JCI82859.

80. Yang XM, Yu H, Li JX, Li N, Li C, Xu DH, et al. Excitotoxic storms of ischemic stroke: a non-neuronal perspective.
Mol Neurobiol. 2024;61(11):9562–81. doi:10.1007/s12035-024-04184-7.

81. Yan J, Bengtson CP, Buchthal B, Hagenston AM, Bading H. Coupling of NMDA receptors and TRPM4 guides
discovery of unconventional neuroprotectants. Science. 2020;370(6513):eaay3302. doi:10.1126/science.aay3302.

82. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental
treatments in acute stroke. Ann Neurol. 2006;59(3):467–77. doi:10.1002/ana.20741.

83. Lai K, Pritišanac I, Liu ZQ, Liu HW, Gong LN, Li MX, et al. Glutamate acts on acid-sensing ion channels to worsen
ischaemic brain injury. Nature. 2024;631(8022):826–34. doi:10.1038/s41586-024-07684-7.

https://doi.org/10.1038/336068a0
https://doi.org/10.2174/156720213804805981
https://doi.org/10.1124/jpet.112.201566
https://doi.org/10.1124/jpet.113.211532
https://doi.org/10.1155/omcl.v2021.1
https://doi.org/10.1155/omcl.v2021.1
https://doi.org/10.1111/cns.2007.13.issue-4
https://doi.org/10.1016/S0079-6123(08)60439-2
https://doi.org/10.1093/cercor/bhac195
https://doi.org/10.1038/jcbfm.2010.201
https://doi.org/10.1016/j.neuropharm.2015.11.025
https://doi.org/10.1126/science.1226740
https://doi.org/10.1172/JCI82859
https://doi.org/10.1007/s12035-024-04184-7
https://doi.org/10.1126/science.aay3302
https://doi.org/10.1002/ana.20741
https://doi.org/10.1038/s41586-024-07684-7

	The Role of Glutamate Receptors in Ischemic Stroke
	1 Introduction
	2 Distribution and Physiological Function of Glutamate Receptors
	3 Pathophysiological Mechanisms Underlying Cerebral Ischemia and Reperfusion Injury
	4 Dual Effects of iGluRs Mediating Neuronal Survival in Stroke
	5 mGluRs and Ischemic Stroke
	6 Conclusion and Perspectives
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


