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Abstract: Background: Glioblastoma multiforme (GBM) is the most general malignancy of the primary central nervous

system that is characterized by high aggressiveness and lethality. Transmembrane protein 159 (TMEM159) is an

endoplasmic reticulum protein that can form oligomers with seipin. The TMEM159-seipin complex decides the site of

lipid droplet (LD) formation, and the formation of LDs is a marker of GBM. However, the role of TMEM159 in the

progression of GBM has not been investigated to date. Methods: In this study, we examined the genes that may be

associated with patient prognosis in GBM by bioinformatics analyses, and identified the key genes that affect the

development of GBM using single-cell RNA sequencing technology. The biological functions of TMEM159 in GBM

cells were additionally assessed by clone formation and transwell assays as well as using a model of chick embryo

chorioallantois membrane (CAM) and western blotting. The association between TMEM159 and epidermal growth

factor receptor (EGFR) was finally analyzed in GBM cells. Results: A prognostic model was established and validated

for predicting the prognosis. Survival curve analysis showed a critical difference in the prognosis of the high- and

low-risk groups predicted by the prognostic model. The results demonstrated that TMEM159 affected the

proliferation and invasion of GBM cells. The chick embryo CAM assays demonstrated that the inhibition of

TMEM159 expression reduced angiogenesis in the CAM model. Conclusions: The prognostic model achieved good

predictive potential for high-risk patients. The findings also revealed that TMEM159 might be an important

prognostic factor for GBM, indicating that the protein may be a promising therapeutic target for suppressing the

development of GBM.

Introduction

Glioblastoma (GBM), the most prevalent primary central
nervous system malignancy, is known for its extreme
aggressiveness and high lethality. The comprehensive
treatment strategies for GBM, including surgery,
radiotherapy, and chemotherapy, are unable to achieve
satisfactory results owing to the high aggressiveness and
chemotherapy resistance, and the overall survival of patients
with GBM is less than 15 months [1]. Scientists are
therefore paying increasing attention to molecular targeted
therapies for identifying novel therapeutic breakthroughs.

The rapid development of targeted sequencing methods and
immunotherapy technologies have enabled the identification
and validation of increasing numbers of markers associated
with tumor development and prognosis in immunotherapy
research, which holds promise for the targeted therapy of
GBM. It is widely accepted that the co-deletion of 1p/19q,
mutations in the isocitrate dehydrogenase (IDH) gene, and
methylation in the promoter region of the gene encoding
O6-methylguanine-DNA methyltransferase (MGMT) have
important effects on the treatment outcome and survival of
patients with GBM [2,3].

The fifth edition of the Classification of Tumors of the
Central Nervous System published by the World Health
Organization (WHO CNS5) further integrates the molecular
changes in CNS tumors during classification, suggesting that
molecular markers are important in guiding the diagnosis
and predicting the prognosis of gliomas cases [4]. It is
therefore necessary to further discover more important
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markers for the diagnosis and prediction of gliomas. In a
recent study, it was found that the level of thyroid receptor-
interacting protein 13 (TRIP13) was upregulated in GBM
tissues, which was associated with poor patient outcomes
[5]. The study further demonstrated that TRIP13 and
epidermal growth factor receptor (EGFR) form a
feedforward loop to potentiate EGFR signaling during the
growth of GBM, and identified a previously unrecognized
mechanism of action of TRIP13 that occurs independent of
ATPase activity. The gene encoding cyclin-dependent kinase
inhibitor 2A/B (CDKN2A/B) is located in chromosome 9
and functions as an important tumor suppressor gene.
According to the WHO CNS5 classification, CDKN2A/B is
an important marker for the integrated diagnosis and
prognostic evaluation of astrocytoma. It has been reported
that homozygosity of the gene encoding CDKN2A/B leads
to poor prognosis [6]. Another study demonstrated that the
L1 cell-adhesion molecule (L1CAM) serves as both a
prognostic factor and therapeutic target for gliomas,
especially supratentorial ependymoma [7]. The results of
extensive bioinformatics analyses have revealed that long
non-coding RNAs (lncRNAs) hold immense potential as
molecular markers for glioma. The diagnosis of gliomas is
presently achieved based on the molecular pathology of the
disease [8]. However, in addition to the aforementioned
molecular entities, circular RNAs (circRNAs), exosomes,
microRNAs, and other molecular processes can alter the
immune microenvironment of gliomas by regulating the
activation of immune cells and the immune response, and
work as novel tools for diagnostic prediction, prognostic
evaluation, and serving as a target of immunotherapy.
Therefore, novel biomarkers provide a unique avenue for
the diagnosis and therapy of various malignant tumors,
including gliomas [9].

In this study, we constructed a prognostic model
consisting of certain genes that might be related to patient
prognosis in GBM as identified by bioinformatics analysis
from the perspective of the immune microenvironment.
Single-cell RNA sequencing (scRNA-seq) provides a
promising strategy for exploring tumor heterogeneity. The
accuracy of the developed prognostic model was confirmed
by scRNA-seq, the findings revealed that the proportions of
different subpopulations of immune cells, tumor cells, and
especially vascular cells in the tumor tissues determined the
prognosis and risk of patients with GBM.

Among the genes used for constructing the prognostic
model, the role of one gene in the progression of GBM was
considered to be noteworthy. TMEM159, known as lipid
droplet assembly factor 1 (LDAF1), is an endoplasmic
reticulum (ER) protein that can form oligomers with seipin
in the bilayer membrane of the ER [10]. The TMEM159-
seipin complex dictates the site of lipid droplet (LD)
formation in the ER through phase separation. A previous
study reported that the levels of lipids can affect the
development of GBM, and further demonstrated that
cholesterol esterification and the formation of LDs serve as
biomarkers of GBM [11]. It has been additionally reported
that high levels of LDs in patients with GBM are associated
with the progression of GBM and poor prognosis. In our
previous study, we screened for genes that encode proteins

that bind to EGFR by mass spectrometry (MS), and the
findings revealed that TMEM159 binds to the EGFR protein
[5]. However, there are no studies on the function of
TMEM159 in the development of GBM or other tumors to
date.

Herein, we firstly demonstrated that TMEM159 can
affect EGFR signaling and other downstream signaling
pathways and that the inhibition of TMEM159 can suppress
the development of GBM, thus making it a potential
therapeutic target for GBM.

Materials and Methods

Dataset retrieval and preprocessing
The gene expression profiles and clinical information for
GBM were retrieved from The Cancer Genome Atlas
(TCGA) database (https://cancergenome.nih.gov/, accessed
on 12/04/2024). The dataset consisted of 174 samples,
including 5 from normal individuals and 169 from patients
with GBM. The transcriptome sequencing data of GBM
tissues were sourced from the Gene Expression Omnibus
(GEO) database (accession number: GSE4412), comprising
85 GBM samples.

Single-cell transcriptome sequencing data were retrieved
from the GEO database (accession number: GSE84465),
including 3589 cells. Quality control analysis was initially
performed for all the cells, excluding those with fewer than
200 or more than 6000 expressed genes which were
insufficient gene expression represent low-quality cells and
excessive gene expression may reflect doublet cells. A total
of 3542 cells were retained following quality control analysis.

Immunoinfiltration analysis of GBM tissues
The immune scores of the GBM samples from the TCGA were
decided using the “estimate” package of R, and the infiltration
levels of 22 types of immune cells in the tissues were calculated
using the “CIBERSORT” package of R. Default parameters
were used for both the “filterCommonGenes” and
“estimateScore” functions in the “estimate” package of R.
Infiltration scores for 22 types of immune cells in each
sample were calculated using ‘CIBERSORT’ with the LM22
background gene set to assess infiltration levels. The value
of the “perm” parameter was adjusted to 100, and default
values were used for the other parameters.

To determine the optimal number of clusters, the
‘fviz_Nbcluster’ function in the ‘factoextra’ package of R was
used first. Clustering was then performed using the k-means
method based on this optimal number, and the results were
visualized through principal component analysis (PCA). Box
plots, created with the ‘ggplot2’ and ‘ggpubr’ packages of R,
were used to display the infiltration levels of 22 types of
immune cells in each sample cluster, with statistical analysis
conducted using the Wilcox rank sum test. Heatmaps
generated by the ‘pheatmap’ package of R visualized
immune scores and immune cell infiltration levels.

Comparative analysis of the immune characteristics between
clusters
To further analyze the similarities and differences between the
immune characteristics, the correlation among the 22 types of
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immune cells in each cluster was counted using the “corolot”
package of R, and the results were visualized using correlation
heatmaps. The differential expression of genes between the
clusters was analyzed using the “DESeq2” package of R,
using the following threshold criteria: corrected p < 0.05 and
log2|fold change (FC)| > 1. The significantly differentially
expressed genes (DEGs) were visualized using a volcano
map and heatmap prepared using the “ggplot2” and
“pheatmap” packages in R, respectively.

Weighted gene co-expression network analysis (WGCNA)
In this study, WGCNA was utilized to identify the gene
modules related to the immune grouping of the DEGs. The
WGCNA method analyzes gene expression patterns [12].
The “WGCNA” package of R was conducted to select the
significant DEGs between clusters for subsequent analysis.
The “pickSoftThreshold” function was used to determine the
optimal soft threshold, following which the
“blockwiseModules” function was used to construct the one-
step network. The gene modules were subsequently
visualized using the “plotDendroAndColors” function, and
the correlation between the gene modules was visualized
using a heatmap. The gene modules related to the immune
clustering of the samples were finally identified by
correlation analysis. The results were visualized using
heatmaps prepared with the “labeledHeatmap” function.

The biological functions of the associated gene modules
were further analyzed by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) gene
enrichment analyses. The genes in the associated gene
module were subjected to GO functional annotation and
KEGG pathway enrichment using the “clusterProfiler”
package of R for identifying the significantly enriched
biological features.

Construction and verification of prognostic model
The relationship between the immune characteristics of GBM
and patient prognosis in GBM was investigated. A prognostic
model was built based on the previously identified gene
modules by univariate COX regression analysis and lasso
regression analysis. The validity and reliability of the model
were verified using an external dataset.

Univariate COX analysis was conducted with the “coxph”
function in the “survival” package of R, considering statistical
significance at p < 0.05. The genes that met the statistical
threshold were used as inputs for establishing the lasso
regression model using the “glmnet” package of R. The
model was constructed using the “cv. glmnet” function, in
which the “family” parameter was set to cox, and the value
of the “alpha” parameter was set to 1. The invalid genes
having a coefficient of 0 were removed and the model was
finally established. The developed model was used to score
the GBM dataset retrieved from TCGA, following which the
optimal grouping threshold was selected. Stratified survival
analysis was performed on these groups, and the Kaplan-
Meier (KM) survival curve was generated to assess predictive
potential.

For model validation, the predictive receiver operator
curves (ROC) of the half-year, one-year, and three-year

survival rates were prepared with the original dataset using
the “timeROC” package of R. The GSE4412 dataset was
subsequently scored.

Comparative analysis of the biological functions of groups
The Gene Set Enrichment Analysis (GSEA) method in the
“clusterProfiler” package of R was used for GO and KEGG
enrichment analyses and visualization. GSEA is performed to
determine whether a set of genes shows statistically significant
differences between two biological states, commonly
estimating the changes in the signaling pathways and
activities of biological processes in a sample. Differential gene
expression analysis was performed as described in
Comparative analysis of the immune characteristics between
clusters.

Comparative analysis of the gene mutation characteristics of
the groups
Mutation analysis was performed at the genome level to
identify the differences in the mutation characteristics. Gene
mutation data for GBM were obtained using the “tcga_load”
function in the “TCGAmutations” package of R and
analyzed using the “maftools” package of R. The “oncoplot”
function was used to generate the mutation waterfall map.

Clustering of GBM cells based on scRNA-seq data
The “Seurat” package of R is widely used for the systematic
processing of scRNA-seq data. In this study, the genes that
were not expressed in the cells were removed during quality
control. Gene feature selection was initially performed to
speed up downstream analyses and enhance accuracy. The
“FindVariableFeatures” function was used with default
parameters to screen for high-variant genes. The features of
the highly variable genes were then extracted by PCA, and
the optimum number of primary components was decided
by combining the JackStraw and Elbow methods. Batch
effect data correction was performed based on patient labels
using the “harmony” package of R. The cells were then
subjected to unsupervised clustering based on the corrected
principal components using the “FindClusters” function.
The results of clustering were visualized using the Uniform
Manifold Approximation and Projection for Dimension
Reduction (UMAP) method. The significant DEGs across
the cell clusters were visualized using heatmaps. The cell
types in each cell cluster were identified based on the known
tags provided in the original literature with the dataset,
which contained a total of 7 cell types, namely, astrocytes,
immune cells, neoplastic cells, neurons, oligodendrocytes,
oligodendrocyte precursor cells, and vascular cells.

Identification of high-risk cell subsets
For identifying the high-risk cell subsets, each of the cells was
assigned a risk score. The results of risk scoring were
visualized based on the UMAP and t-distributed Stochastic
Neighbor Embedding (TSNE) dimensionality reduction
methods, following which the cell subsets with higher risk
scores were identified. The DEGs of the high-risk
subpopulations were subjected to GSEA to identify their
biological characteristics.
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Validation of prognostic model at the single-cell level
For validating the prognostic model at the single-cell level, the
data pertaining to the GBM datasets in TCGA were
deconvoluted for assessing the proportion of cell subsets in
the tissues. The “CIBERSORT” package of R was utilized to
infer the contents of the cell subpopulations in each of the
tissue samples. The expression profiles of the significant
DEGs between the cell subpopulations were used as
background gene sets for deconvolution. These genes can
reflect the biological characteristics of each cell
subpopulation, and can thus enhance the reliability and
accuracy during assessment of the proportion of a particular
cell subpopulation.

The samples were then automatically grouped using the
“surv_cutpoint” function based on the proportion of high-
risk cell subsets. A stratified survival analysis was
subsequently performed, and the KM survival curve was
prepared to verify the model's predictive effect at the single-
cell level.

Analysis of drug resistance
The osimertinib resistance of the cell subsets was predicted
using the “OncoPredict” package of R, based on the
resistance data obtained from the Genomics of Drug
Sensitivity in Cancer (GDSC) database. The results were
visualized using box and violin plots, and the statistical
significance was evaluated using the Kruskal-Wallis method.

Cell lines
LN229, T98G, and GBM1492 cells were purchased from the
American Type Culture Collection. The LN229 and
GBM1492 cells were cultured with 5% and 10% Dulbecco’s
Modified Eagle Medium (DMEM; Hyclone, SH30022.LS,
Shanghai, China) supplemented with 1% Penicillin-
Streptomycin Solution (PS; Hyclone, SV30010, Shanghai,
China). The T98G cells were cultured with 10% Minimum
Essential Medium (MEM; Hyclone, SH30008.12, Shanghai,
China) supplemented with 1% PS.

Short hairpin RNA (shRNA) knockdown and transfection
In this study, shRNA knockdown was performed by lentiviral
transfection, and the vector was constructed by transfecting
the exogenous cDNA into HEK293T cells using the pMD2.
G and psPAX2 plasmids. After 72 h of infection, the
transfected cells were screened with puromycin, and protein
expression was tested by western blotting. The sequences of
the shRNA targets are enlisted in Table A1.

Western blotting
The target proteins of different molecular weights were
separated by polyacrylamide gel electrophoresis and
subsequently transferred to a nitrocellulose membrane. The
antibodies were diluted according to the instructions
(Table A2). The membranes were then blocked with the
primary antibody incubated overnight, and subsequently
incubated with the corresponding secondary antibodies. The
developer solution was prepared following the instructions
provided with the luminescence kit. The developer solution

was applied evenly on the strip, and incubated in the
absence of incident light for 2 min. The strip was finally
developed using a gel imager (Bio-Rad, ChemiDoc XRS+,
Hercules, CA, USA). The antibodies used in the study are
enlisted in Table A2. Written informed consent was
obtained from the patients, and all the samples and data
used were obtained under the approval of the Ethics
Committee of Liaoning Cancer Hospital & Institute
(approval numbers: 20220429, date: 20220412).

Colony formation and cell invasion assays
For analyzing colony formation, different glioma cell lines
(2000 cells per plate) were cultured in the corresponding
medium for nearly 2 weeks. The number of colonies was
determined by light microscopy (OLYMPUS, IX81, Tokyo,
Japan). Then 200 μL of serum-free suspension cells were
added to the upper chamber, with 700 μL of the complete
culture medium in the lower chamber. After culturing for
12–24 h, the cells were fixed with 4% formaldehyde
(Solarbio, P1110, Shanghai, China) and stained with 0.1%
crystal violet (Beyotime Biotechnology, C0121, Shanghai,
China). The Transwell membranes were pre-coated with
24 μg/μL matrigel (R&D Systems, Inc., Minneapolis, MN,
USA). Cell invasion assays require the use of matrigel. The
cells cultured in media without fetal bovine serum were
seeded at a density of 5 × 104 cells/100 μL on a fibronectin-
coated polycarbonate membrane insert in a transwell
apparatus (Costar, Corning, NY, USA). Then 500 μL of the
medium supplemented with 10% fetal bovine serum was
added as a chemoattractant. The cells that adhered to the
lower surface were counted using the protocol used for cell
migration assays. The invasion capacity of the cells was
determined based on the total number of cells in randomly
selected fields under the light microscope.

Chick embryo chorioallantoic membrane (CAM) assays
Fertilized chicken eggs were purchased from MERIAL
(Beijing, China) and incubated at 37°C with a relative
humidity of 65% for 1–2 weeks. Then 1 × 106 serum-free
suspension cells were applied on the surface of the CAM
(n = 4 eggs per group), and angiogenesis was studied at days
7–10. All the animal experiments were performed according
to the approval of the Ethics Committee of Dalian Medical
University (approval number: AEE23015, date: 20230515).

Statistical analyses
All the calculations and statistical analyses were conducted
using R software (https://www.r-project.org, accessed on 12/
04/2024, version 4.1.2) and GraphPad Prism 9 (GraphPad
Software, La Jolla, CA, USA). The Wilcox rank-sum test was
used to compare two groups of continuous variables,
analyzing differences between non-normally distributed
variables. Correlation analysis was performed by Spearman
correlation analysis using the “cor” function in R software
unless otherwise specified. All the p-values were bilateral,
and p < 0.05 was considered to be statistically significant
unless otherwise specified. All the assays were independently
repeated at least thrice.
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Results

Research workflow
As depicted in Fig. 1, the study was performed in four steps.
The immune grouping of GBM was performed in step 1.
Briefly, information pertaining to patients with GBM was
retrieved from the TCGA database and the patients were
grouped based on their immune characteristics. The
immune characteristics of each group were re-analyzed, and
the key genes linked to the progression of GBM were finally
identified by WGCNA. In step 2, a prognostic model was
built using genes related to the immune features. We first
used univariate COX regression analysis and LASSO for
screening the genes that were associated with patient
prognosis and constructed the prognostic model. Internal
and external validation were subsequently performed, and
the differences between the biological characteristics of the
groups were explored. In step 3, the high-risk cell clusters
were identified at the single-cell level. To this end, scRNA-
seq data for GBM (accession number: GSE84465) were
retrieved from the GEO database and clustered. Risk
assessment was then performed for each cell subpopulation
using the prognostic model, and the biological
characteristics of the high-risk cell subpopulations was
explored. The prognostic model was finally re-verified at the
single-cell level. In step 4, the impact of the high-risk cell
subpopulations on drug resistance in GBM was explored,
and the effect of TMEM159 on GBM was verified
experimentally. The workflow of the study is depicted in
Fig. 1.

Exploration of the immune characteristics of GBM
GBM is a highly heterogeneous malignancy, and researchers
have been paying increasing attention to the effects of the
immune microenvironment and immune signatures on
cancer in recent years. To explore the immune
characteristics of GBM, 169 samples of GBM tissue were

subjected to unsupervised clustering, and the results of
clustering were evaluated based on the infiltration levels and
immune scores of immune cells.

The k-means clustering method determined the optimal
number of clusters to be 2 (Fig. 2A). The results of PCA
showed that there was a clear boundary between the two
clusters in the dimensionality reduction space, indicating a
good clustering effect (Fig. 2B). Box plots illustrated the
differences in infiltration levels of 22 immune cell types
between the two clusters, revealing significant differences in
14 of these cell types (Fig. 2C). The immune scores of the
two clusters were depicted in a heatmap, and the results
presented that the immune scores of the cells in cluster 2
were greatly higher than those of cluster 1, indicating that
the immunophenotyping of cluster 2 was more remarkable
(Fig. 2D). These results supported the heterogeneity of the
immune microenvironment in GBM. It was worth noting
that the major immune killer cells, including CD8+ T cells,
natural killer cells, monocytes, and macrophages, had higher
infiltration levels in cluster 2, while the cells with
immunosuppressive effects, including T helper cells, had a
higher infiltration level in cluster 1, which was consistent
with the result of immune score analysis.

Differences between the immune characteristics of sample
clusters
To analyze the differences in the immune characteristics, the
correlation among the different types of immune cells was
examined. The results demonstrated that the correlation
between certain cells exhibited opposite trends (Fig. 3A,B).
For instance, gamma delta T cells positively correlated with
plasma cells and CD4 naive T cells in cluster 1 but exhibited
a negative correlation in cluster 2. To a certain extent, these
results reflected the differences in the immune
microenvironment of the two clusters. The differential gene
expression between the two clusters was subsequently
analyzed. Taking cluster 1 as the control, 2796 significant

FIGURE 1. Schematic depiction of
the research workflow.
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DEGs were identified, comprising 2108 upregulated and 688
downregulated genes (Fig. 3C). Analysis of the heatmap
revealed that the majority of genes were highly expressed in
cluster 2, while a few genes were highly expressed in cluster
1 (Fig. 3D). Programmed death-1 (PD-1) and programmed
cell death-ligand 1 (PD-L1) are two important immune
checkpoint proteins [13]. We analyzed the expression of
PD-1 and PD-L1 in the two clusters, and the results
demonstrated that PD-1 and PD-L1 were typically
overexpressed in cluster 2 (Fig. 3E), which was consistent
with the high immune scores of cluster 2.

These results further confirmed that there were
meaningful differences in the biological characteristics of the
two clusters, which were reflected in the immune

microenvironment and gene expression profiles, and the
differences in the immune microenvironment could be
attributed to differences in the expression of key genes.

Identification of immune-related gene modules by WGCNA
To explore the gene modules associated with
immunophenotyping, the gene modules of the significant
DEGs were identified by WGCNA, and the phenotypic
associations of the identified gene modules were analyzed.
The optimal soft threshold was determined to be 3 by
WGCNA (Fig. 4A). The one-step network construction
method was subsequently used to search for the gene
modules. 3 effective gene modules were pinpointed, of
which the red, blue, and orange modules comprised 998,

FIGURE 2. Clustering based on immune characteristics. (A) Determination of the optimal number of clusters. The number of clusters and the
average contour values are denoted in the X- and Y-axes, respectively. The optimal number of clusters was identified by calculating the average
contour value with the largest contour value (dashed line) indicating the optimal number. (B) PCA dimensionality reduction graph depicting
the results of k-means clustering. The X- and Y-axes represent the two dimensions, and each point represents a sample. All the samples were
clustered into two groups. The subgroups are indicated by different colors, and the shadows denote the confidence intervals. (C) Box diagram
depicting the infiltration levels of 22 types of immune cells. The X- and Y-axes represent the 22 types of immune cells and their infiltration
levels, respectively. (D) Heatmap depicting the immune scores. The colors represent the infiltration levels or scores; *p < 0.05, **p < 0.01, ***p <
0.001, and ****p < 0.0001.
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267, and 206 genes, respectively (Fig. 4B). Correlation analysis
among the gene modules acknowledged a higher positive
correlation between the red and orange modules, while the
blue module showed a higher negative correlation with both
the red and orange modules (Fig. 4C). Analysis of the
phenotypic association revealed the highest correlation

coefficient of the red module with cluster 2 (Fig. 4D),
and we speculated that there might be key genes in the
red module that are closely related to the immune
characteristics of cluster 2.

To verify our hypothesis, the genes in the red module
were performed on GO and KEGG enrichment analyses.

FIGURE 3. Comparative analysis of the immune characteristics of the two clusters. (A) Correlation among the immune cells in cluster 1. The
color and area of each sector represent the degree of correlation; positive and negative correlations are denoted in red and blue, respectively. A
higher sector area corresponds to a higher absolute value of correlation. (B) Correlation among the immune cells in cluster 2. (C) Volcano map
of the DEGs. The individual genes are represented by dots, and the downregulated and upregulated genes are denoted by green and red,
respectively. Genes with no significant change in expression are denoted in black. (D) Heatmap of the DEGs. (E) Gene expression profiles
of the immune checkpoint proteins. The genes and their expression values are denoted in the X- and Y-axes, respectively; **p < 0.01 and
****p < 0.0001.
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The GO enrichment results demonstrated that 5 most
significantly enriched terms were leukocyte mediated
immunity, positive regulation of cell activation, positive
regulation of leukocyte activation, leukocyte cell-cell
adhesion, and regulation of T cell activation (Fig. 4E), and
these functions are primarily involved in the immune
activation of white blood cells and T cells. The KEGG

results demonstrated that the 5 most significantly enriched
pathways were cytokine-cytokine receptor interaction, viral
protein interaction with cytokine and cytokine receptor,
Staphylococcus aureus infection, rheumatoid arthritis, and
hematopoietic cell lineage (Fig. 4F). These pathways were
primarily related to the functions of cytokines, which are
crucial in the immune system. The results of KEGG

FIGURE 4. Results of WGCNA. (A) Selection of the optimal soft threshold value. The best soft threshold value in the panel on the left is
represented by the value that exceeds the red line for the first time, and the best soft threshold value in the panel on the right appears at the
inflection point. The optimal soft threshold was thus determined to be 3 based on the two figures. (B) WGCNA-based hierarchical clustering.
The hierarchical clustering tree is provided in the upper panel, and the modules corresponding to the respective genes are denoted below. The
modules are indicated by different colors, and the invalid module is denoted in gray. (C) Correlation between the modules. (D) Heatmap of
phenotypic association obtained by WGCNA, depicting the association between the gene modules and group labels. The numerical values
indicate correlation, and the p values are indicated in brackets. (E) Bar chart depicting the results of GO enrichment analysis. The X-axis
denotes the –log10 p-values and the Y-axis represents the enriched GO terms. The 10 most significantly enriched GO terms in the
biological process (BP), cellular component (CC), and molecular function (MF) categories are depicted. (F) Bubble map depicting the
results of KEGG enrichment analysis. The X-axis denotes the proportion of genes enriched in the pathway to the total number of DEGs,
and the Y-axis represents the enriched pathways. The colors represent the corrected p-values; the smaller the p-values, the closer to red.
The 20 most significantly enriched pathways are depicted.
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pathway analysis were consistent with the results of GO
enrichment analyses, and both findings suggested that the
red module contained genes related to immune
characteristics, and was thus responsible for the higher
immune characteristics of cluster 2.

Establishment and validation of prognostic model
A prognostic model was established using the 998 genes in the
red module to decide the relationship between immune-
related genes and GBM patient prognosis. The genes that
were significantly related to patient prognosis were screened

FIGURE 5. Establishment and validation of the prognostic model. (A) Lasso regression curve depicting the convergent screening of gene
features with lasso regression analysis. The X- and Y-axes represent the log lambda values and regression coefficients, respectively, and
the various colored lines denote different features. (B) Optimal lambda selection curve. The best value is usually selected from the first
dotted line. (C) Survival curve of the groups. The dashed line corresponds to the median survival time. ROC curves for prediction of (D)
half-year, (E) 1-year, and (F) 3-year survival rates. (G) Survival curve of the GSE4412 dataset.
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by univariate COX regression analysis based on the survival
data for GBM retrieved from the TCGA, and 200 genes
were identified in total. The genes were subjected to LASSO,
and the optimal lambda value was determined (Fig. 5A,B).
Finally, a total of 9 known protein-coding genes with non-
zero coefficients were obtained, and the following predictive
model was established:

RiskScore¼ 0:0287199� ExpRETN þ 0:0211104� ExpSIGLEC14
þ 0:0330102� ExpTMEM159 þ 0:0592539

� ExpIGFBP6 þ 0:0210205� ExpPTX3 þ 0:0130778

� ExpSLC22A16 þ 0:0188778� ExpANO9
þ 0:0174599� ExpTTC22 þ 0:04601� ExpSLFN12L

The model was utilized to determine the risk scores of the
original samples. Analysis of the KM survival curve revealed
that there were great differences in patient prognosis
(Fig. 5C). The predictive potential of the model was assessed
from the ROC curves of the six-month, 1-year, and 3-year
survival rates of the samples. The results demonstrated that
the area under the curve (AUC) values of prediction for the
half-year (Fig. 5D), 1-year (Fig. 5E), and 3-year (Fig. 5F)
survival rates of the samples were 0.595, 0.676, and 0.634,
all of which were greater than 0.5. The GSE4412 dataset was
subjected to risk score and survival analyses. The results
demonstrated that there was a remarkable difference in
patient prognosis between the two groups (Fig. 5G),

presenting that the model has a good generalization ability
and robustness.

Biological differences between the high- and low-risk groups
The biological differences between the groups were further
analyzed to determine the reasons underlying the differences
between the survival characteristics. In this study,
differential gene expression was analyzed at the
transcriptome level. Taking the low-risk group as a control,
4806 significant DEGs were described in the high-risk
group, including 2177 and 2629 upregulated and
downregulated genes, respectively (Fig. 6A). Analysis of the
DEG heatmap revealed that a larger number of DEGs were
upregulated in the low-risk group (Fig. 6B). The DEGs were
then subjected to GSEA to identify their biological
functions. The KEGG enrichment analysis declared that the
five most significantly enriched pathways were mainly
related to the functions of cytokines in immune processes
(Fig. 6C). The GO-based enrichment analysis revealed that
the five most significantly enriched terms in the BP category
were all related to immune functions (Fig. 6D).

Genomic analysis of genetic mutations in the high- and
low-risk groups revealed an average of 143.08 mutations in the
high-risk group, much more than the 49.36 in the low-risk
group. The five genes with the highest mutation frequency in
the high-risk group were titin (TTN), EGFR, phosphatase, and
tensin homolog deleted on chromosome ten (PTEN), tumor

FIGURE 6. (Continued)
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protein 53 (TP53), and mucin-16 (MUC16) (Fig. 6E), while the
top five in the low-risk group were TP53, isocitrate
dehydrogenase 1 (IDH1), alpha-thalassemia mental retardation
syndrome X (ATRX), spectrin alpha (SPTA1), and PIK3CA
(P110α) (Fig. 6F). As depicted in the waterfall diagram
(Fig. 6G), the five genes with the highest number of mutations
in the high-risk group were PTEN, EGFR, TP53, TTN, and
MUC16, while the five genes with the highest number of
mutations in the low-risk group followed the same sequence as
the mutation frequency (Fig. 6H).

Based on these results, we speculated that the differences
in immune function might be responsible for the variations in
patient prognosis between the groups, while the differences in
immune function could be attributed to the differences in the
mutation status of key genes.

Validation and analysis of the prognostic model at the single-
cell level
The scRNA-seq method is used to quantify gene expression
profiles of specific cell populations at the cellular level for
analyzing the heterogeneity in the gene expression of individual
cells. The present study aimed to certify the prognostic model
and explore the reasons underlying its predictive role.

The GSE84465 GBM scRNA-seq dataset retrieved from
the GEO database was selected for evaluating the prognostic
model, and a total of 3542 cells were included after quality
control. After screening the highly variable genes, a total of

2000 highly variable genes were screened from 23460 genes
for downstream analysis using default parameters. Gene
features extraction was subsequently performed, and the
optimal number of principal components was evaluated
using the JackStraw and Elbow methods. The p-values of the
37 principal components were determined to be less than
0.05 in the JackStraw analysis (Fig. 7A). As the thirteenth
principal component was situated at the inflection point in
the Elbow diagram (Fig. 7B), the first 13 principal
components were chosen for downstream analysis. The
batch effects were corrected using the Harmony method to
improve the robustness of the identification of cell
subpopulations. The results demonstrated that the principal
components were tightly fused among individual patients,
after adjusting for the batch effects (Fig. 7C). A total of 15
cell subpopulations were identified using the Louvain
clustering method. Cell type annotations were assigned for
all the cell subpopulations based on known cell type labels
(Fig. 7D). The mapping of cell type labels into the
dimensionality reduction space revealed that cells of the
same type were closely related, indicating a good clustering
effect (Fig. 7E). Analysis of differential gene expression in
the cells based on cell subpopulation tags revealed that the
significant DEGs were well conserved across the cell types
(Fig. 7F). For instance, the gene encoding EGFR was
significantly upregulated in tumor cells but its expression
was extremely low in immune cells, which also reflected the

FIGURE 6. Analysis of the differential gene expression profiles of the high- and low-risk groups. (A) Volcano plot depicting the DEGs. (B)
DEG heatmap. (C) Results of KEGG-based GSEA. The gene ranks in the list of DEGs are depicted in the X-axis, where >0 indicates upregulated
genes and <0 denotes downregulated genes. The upper Y-axis represents the enrichment score and the lower Y-axis denotes the log2|FC| values.
The ten most significantly enriched DEGs are depicted in the figure. (D) Results of GO-based GSEA. Summary of gene mutations in (E and F).
Waterfall map depicting the gene mutations in (G and H).
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accuracy and reliability of the method used for clustering the
cell subsets and annotating the cell types.

The prognostic model thus constructed was used to
assign risk scores to the cell subpopulations for identifying
the high-risk cell subpopulations. The results of
dimensionality reduction with UMAP revealed that there
were considerable differences in the risk scores of the cell
subpopulations (Fig. 7G). The high-risk features were
primarily observed in immune cells, tumor cells, and
vascular cells. Of all the cell subpopulations, the vascular

cells had a significantly high-risk score (p < 2.2e-16,
Kruskal-Wallis test; Fig. 7H).

In order to determine the differences in the biological
functions of the cell subsets in blood vessels and the other
cell subsets, the DEGs in the blood vessel cell subsets were
subjected to GO-based GSEA. The results approved that the
DEGs were significantly enriched in 439 terms,
corresponding to 139 upregulated and 300 downregulated
genes, respectively. Six of the 10 most significantly enriched
terms corresponded to upregulated DEGs, and included

FIGURE 7. (Continued)
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circulatory system development, vasculature development,
blood vessel development, animal organ morphogenesis, tube
development, and blood vessel morphogenesis terms. Four of
the 10 most enriched terms corresponded to downregulated
DEGs and included the immune response, adaptive immune
response, leukocyte activation, and immune effector process
terms (Fig. 7I). The results demonstrated that the process of
vascular development in the vascular cell subsets was
significantly upregulated, while the processes of immune

response and activation were significantly inhibited. Previous
studies have shown that tumor cells secrete high levels of
pro-angiogenic factors, resulting in abnormal vascular
networks characterized by immaturity, high permeability, and
poor oxygen supply. These characteristics are more conducive
to the invasion and metastasis of tumor cells, can also hinder
the antitumor effect of immune cells, and have been shown
to even affect the distribution of chemotherapy drugs,
resulting in drug resistance [14]. The results are consistent

FIGURE 7. Identification of cellular subsets. (A) Results of analysis with the JackStraw method. The best principal component was selected
based on the p-value. (B) Result of analysis with the Elbowmethod. The best principal components are generally situated at the inflection point.
(C) PCA diagram after batch correction. (D) Results of annotation of cell subpopulations. (E) UMAP-based mapping using known cell labels.
(F) Heatmap of DEGs in each subgroup. The five most significantly enriched terms are shown for each subgroup. (G) Visualization of risk
scores using UMAP. (H) Box diagram of risk scoring. (I) Results of analysis with GSEA. The 10 most significantly enriched terms are
depicted in the figure. (J) Survival curve of the two groups. (K) The proportion of vascular cell subsets in the original risk group. (L)
Heatmap depicting the proportion of cell subpopulations.
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with the observations of previous studies and indicate that
vascular ecology in GBM could be a risk factor for the poor
prognosis of GBM.

From a theoretical standpoint, a higher proportion of
high-risk cell subsets tends to lead to a poorer prognosis.
The CIBERSORT deconvolution algorithm was first utilized
to evaluate the composition of the cell subpopulations in
GBM samples retrieved from TCGA. The samples were
categorized into high- and low-proportion groups based on
the proportion of subpopulations of vascular cells. Survival
analysis and analysis of the KM survival curve revealed a

notable difference in the prognosis of the two groups
(Fig. 7J), and the group with a high proportion of high-risk
cell subsets showed poor prognosis. The effect of the
vascular cell subsets on patient prognosis was re-evaluated
by examining the proportion of vascular cell subsets in the
original risk groups. Analysis of the original risk groups
revealed that the content of vascular cell subsets in the
high-risk group was great higher (Fig. 7K), indicating that
the proportion of vascular cell subsets can affect the
prognosis of GBM. The effect of the proportion of other cell
subsets on the prognosis of patients with GBM was analyzed

FIGURE 8. (Continued)
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using heatmaps, and the results demonstrated that the other
cell subsets, including neoplastic-II and immune cell-I, had
higher risk scores and were present in higher proportions in
the high-risk group (Fig. 7L). The results of model
verification revealed that the model thus constructed for
predicting patient prognosis achieved good accuracy at the
single-cell level.

TMEM159 is highly expressed in GBM and negatively
correlates with prognosis
EGFR is a multifunctional glycoprotein that is widely
distributed on the cell membrane of human tissues. It is
important in cellular physiology, including cell proliferation
and anti-apoptosis [15]. Previous works have demonstrated
that EGFR is highly or abnormally expressed in numerous
solid tumors, including GBM. The functions of EGFR are
related to the proliferation, invasion, and metastasis of
tumor cells and the inhibition of cellular apoptosis [16].

The results of bioinformatics analyses and analysis with
the prognostic model constructed in this study demonstrated
that EGFR was abnormally expressed in the high-risk group,
and exhibited abnormal mutations and high expression levels
(Figs. 6E,G, 7F). The findings indicated that the prognostic
model effectively predicts the risk level for patients with
GBM. It also suggests that the relevant genes identified by the
prognostic model may be a key point in promoting the
development of GBM.

As the EGFR gene is fundamental in the regulation of GBM,
we employed immunoprecipitation-MS (IP/MS) to identify the

proteins that can bind to EGFR in GBM tissues. The results
showed that EGFR can bind to a series of proteins in GBM
tissues (Fig. 8A), of which the TRIP13 protein identified using
IP/MS in this study is a known EGFR-binding protein, and
this finding indicated the reliability of the results obtained by
MS [5]. It is worth noting that among the proteins identified
herein, the TMEM159 encoded gene was also proved as a key
gene by the prognostic model constructed in this study,
suggesting that TMEM159 is likely involved in the
development of GBM.

TMEM159, also known as LDAF1, is an ER protein that
can form oligomers with seipin in the ER bilayer membrane.
The LDAF1-seipin complex regulates the site of LD synthesis
in the ER through phase separation. A previous study reported
that the levels of lipids can affect the development of GBM,
and observed that cholesterol esterification and the formation
of LDs are biomarkers of GBM. Meanwhile, high levels of LDs
in patients with GBM are associated with the progression of
GBM and the low survival rates of patients with GBM [17,18].
Although there are no studies on the function of TMEM159 in
the development of GBM, TMEM159 is involved in the
formation of LDs, and it was predicted to interact with EGFR.
The findings revealed that the TMEM159 protein may an
instrumental role in the development of GBM.

In this study, RNAseq data for low-grade gliomas (LGGs)
and GBM were obtained from the TCGA and Chinese Glioma
Genome Atlas (CGGA) databases. The results demonstrated
that TMEM159 in GBM tissues was increasingly expressed
(Fig. 8B,D). The results of the survival curve analysis

FIGURE 8. TMEM159 is highly expressed in GBM and its expression was negatively correlated with patient prognosis. (A) Partial list of
proteins that bind to EGFR in GBM tissues as identified by IP-MS. (B) Data retrieved from the TCGA demonstrate that the expression of
TMEM159 in GBM was significantly higher. (C) Survival curve of TMEM159 expression groups in TCGA. (D) Data retrieved from the
CGGA demonstrate that the expression of TMEM159 in GBM was significantly higher. (E) Survival curve of TMEM159 expression groups
in CGGA. (F) Results of western blotting demonstrated that the expression of TMEM159 in HGG tissues was higher than that of LGG. (G)
Images of immunohistochemistry analyses retrieved from the HPA database reveal that the expression of TMEM159 in HGG tissues was
higher; *p < 0.05, **p < 0.01, and ****p < 0.0001.
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showed that the expression of TMEM159 was negatively
connected with patient prognosis. The overall survival of
GBM patients with high TMEM159 expression was
significantly lower than that of those with low TMEM159
expression (Fig. 8C,E). To validate the bioinformatics
analysis results, TMEM159 expression was examined in
normal brain tissues, LGG tissues, and high-grade glioma
(HGG) tissues using western blotting.
Immunohistochemistry images were also retrieved from the

Human Protein Atlas (HPA) database. The findings
demonstrated that TMEM159 expression in HGG tissues
was markedly higher than in LGG and normal brain tissues
(Fig. 8F,G).

TMEM159 promotes the development of GBM
To determine the effect of TMEM159 on GBM, we
constructed a cell line with low TMEM159 expression by
plasmid transfection and examined the impact of TMEM159

FIGURE 9. (Continued)
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on GBM proliferation and invasion using clone formation and
transwell assays. Three GBM cell lines, namely, GBM1492,
T98G, and LN229 were selected as transfection targets, and
the results found that the expression of TMEM159 was
reduced in GBM1492 cells following transfection (Fig. 9A–
C). Therefore, the GBM1492 cells were selected for the
subsequent research. The results demonstrated that the
ability of clone formation and invasion of GBM cells
reduced significantly following a reduction in the expression
of TMEM159, suggesting that TMEM159 can affect the
proliferation and invasion of GBM cells (Fig. 9D,E).

The continuous division and proliferation of tumor cells
require a large amount of oxygen and nutrients. When the size
of the solid tumor is small, oxygen and nutrients can be
obtained through diffusion. However, as the tumor grows,
new blood vessels need to be formed to obtain nutrients and
oxygen. Angiogenesis is, therefore, an important factor in
tumor development, invasion, and metastasis. Prediction of
the risk characteristics of cell subsets with the prognostic
model developed herein revealed that high-risk scores were
primarily assigned to the vascular cells (Fig. 7G,H). The

TMEM159 gene was one of the key genes identified by the
prognostic model, and this gene might affect the
angiogenesis of GBM cells. We therefore used a chick
embryo CAM model for analyzing the effect of TMEM159
on angiogenesis. The results demonstrated that the
inhibition of TMEM159 expression also reduced
angiogenesis in chicken embryo CAM, suggesting that
TMEM159 can promote angiogenesis (Fig. 9F).

Immune-oncology therapy has emerged as one of the
important therapeutic strategies in recent years for advanced
malignant tumors [19]. The application of immunotherapy
does not directly target cancer cells in tumors, but the
activation of the body’s own immune system has good
safety and tolerance for fighting tumors. PD-L1 is one of the
most crucial immune checkpoint proteins that is greatly
expressed by tumor cells in the tumor microenvironment
[20]. Additionally, the lymphocytes that infiltrate tumors
can express high levels of PD-1 following long-term
stimulation with tumor antigens. Both PD-L1 and PD-1 can
induce the apoptosis, disability, and depletion of T cells, and
subsequently suppress the activation, proliferation, and anti-

FIGURE 9. TMEM159 affected the proliferation, invasion, and angiogenesis of the GBM1492 cell line. (A–C) Effects of plasmid transfection
on the downregulation of TMEM159. The results demonstrated that the effect of transfection was most significant in the GBM1492 cell line.
(D) Clone formation assay showed that the ability of clone formation reduced significantly following a reduction in the expression of
TMEM159 in GBM cells. (E) Transwell assay presented that the invasion ability of GBM cells reduced significantly after a decrease in the
expression of TMEM159. (F) The effect of TMEM159 on angiogenesis was analyzed using a chick embryo CAM model (n = 4 eggs per
group). The results demonstrated that the inhibition of TMEM159 expression reduced angiogenesis in the model of chicken embryo CAM.
(G) Determination of the effect of TMEM159 on PD-L1 by western blotting. The expression of PD-L1 in GBM decreased after the
expression of TMEM159 was inhibited; **p < 0.01 and ***p < 0.001.
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tumor function of tumor antigen-specific CD8+ T cells, which
leads to immune escape in tumors [21]. The results of
clustering analysis confirmed that cluster 2 had higher
immune characteristics, including high immune infiltration
and immune scores, and the expression of PD-L1 and PD-1
in cluster 2 was significantly higher than that of cluster 1
(Fig. 3E). As the TMEM159 gene was identified in the
immune-related modules, it may influence the immune
microenvironment of tumor cells. The effect of TMEM159
on PD-L1 was analyzed by western blotting. As expected,
the expression of PD-L1 in GBM tissues decreased after the
expression of TMEM159 was inhibited (Fig. 9G).

Inhibition of TMEM159 enhanced the anti-tumor effect of
osimertinib
The results of screening with the prognostic model at both
the genomic and single-cell levels revealed abnormalities
in the expression of EGFR, including high expression
levels and high mutation frequencies, in the high-risk

group (Figs. 6E,G, 7F). The results of MS analysis also
revealed that TMEM159 could interact with EGFR. We
therefore speculated that TMEM159 can affect the
expression of EGFR, which can further affect the
downstream signaling pathways. We found that TMEM159
could affect the expression of EGFR using western
blotting. The inhibition of TMEM159 decreased the
expression of EGFR and P-EGFR in the GBM1492 cell line
and caused a series of changes in the downstream
signaling pathways (Fig. 10A).

The drug resistance of tumors is a serious challenge in
the clinical field. Previous studies have demonstrated that
EGFR is abnormally expressed in several solid tumors,
including GBM. EGFR is associated with the proliferation,
angiogenesis, invasion, and metastasis of tumor cells and
inhibition of cellular apoptosis. EGFR inhibitors have been
used in clinical chemotherapy for a variety of tumors.
Osimertinib can cross the blood-brain barrier and has been
used in the treatment of GBM [22].

FIGURE 10. (Continued)
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In order to evaluate the resistance of GBM to
osimertinib, we first evaluated the resistance of 15 GBM cell
subpopulations to osimertinib based on scRNA-seq data.
The resistance of all the cell subsets to osimertinib was
evaluated using the oncoPredict method according to the
drug resistance data gained from the GDSC database and
the expression profiles of the GBM cell line. The results
demonstrated that among the 15 GBM cell subsets, the
vascular cell subset had a higher resistance to osimertinib
(Fig. 10B), suggesting that the lethality of osimertinib to the
vascular cell subset may decrease in the treatment of GBM,
thereby affecting its anti-tumor effect. Our results
demonstrated that inhibition of the expression of TMEM159
can reduce angiogenesis, which led us to hypothesize that
the inhibition of TMEM159 combined with treatment with
osimertinib can enhance the anti-cancer effect, as the
inhibition of TMEM159 can compensate for the reduced
efficacy of osimertinib in vascular cell subsets to a certain
extent. The hypothesis was examined with clone formation
experiments. The results demonstrated that treatment with a
combination of osimertinib and TMEM159 inhibitors could
significantly inhibit the proliferation of GBM compared to
treatment with osimertinib or TMEM159 inhibitors alone
(Fig. 10C).

Based on these results, we believe that TMEM159 may
influence GBM development by altering the expression of
EGFR and its downstream signals. Additionally, the
inhibition of TMEM159 combined with treatment with
osimertinib is expected to have a stronger inhibitory effect

on GBM, suggesting that TMEM159 is likely to act via other
pathways that affect GBM. The mechanism of binding of
TMEM159 with EGFR, and the other mechanisms by which
TMEM159 promotes cancer need to be further explored in
future studies.

Discussion
Gliomas are the most common primary intracranial tumors,
accounting for approximately 44.6% of all intracranial
tumors and 80% of all malignant brain tumors [23–25]. The
annual incidence of gliomas ranges from 5 to 8 per 100,000
people. Among systemic tumors, gliomas have the third-
highest 5-year mortality rate, surpassed only by pancreatic
and lung cancers [23–26]. GBM is the most common
glioma and is characterized by high invasion and high
recurrence, with an overall survival period of only 15
months [23–26]. The mainstream clinical treatment for
GBM is surgery combined with radiotherapy and
chemotherapy, but the therapeutic effect of these strategies
is poor. The development of science and technology has
enabled scientists to achieve several novel therapeutic
breakthroughs, including immunotherapy and tumor-
treating fields (TTFields) [27].

Immunotherapy has been a research hotspot in recent
years and has achieved good therapeutic results in several
tumors, including GBM, which has attracted increasing
attention. The immune microenvironment and immune
characteristics are essential for tumor development and are
indispensable to research studies on tumor immunotherapy.

FIGURE 10. Inhibition of TMEM159 enhanced the anti-tumor effect of osimertinib. (A) Determination of the effect of TMEM159 inhibition
on the expression of EGFR and downstream signal proteins by western blotting. (B) Analysis of osimertinib resistance. The X-axis represents
the cell subsets and the Y-axis represents the degree of drug resistance. (C) The clone formation experiments demonstrated that the
combination of osimertinib and a TMEM159 inhibitor significantly inhibited the proliferation of GBM compared to treatment with
osimertinib or a TMEM159 inhibitor alone; *p < 0.05, **p < 0.01, and ***p < 0.001.
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As there are usually some key genes that are responsible for
maintaining the immune characteristics of tumors, the
identification of these key genes is critical for enhancing the
effectiveness of immunotherapy.

A GBM dataset obtained from the TCGA database was first
clustered based on the infiltration levels of 22 types of immune
cells and their immune scores. The results of clustering led to the
identification of two clusters with clear boundaries, suggesting
that the two clusters had distinct differences in their immune
characteristics. The clustering efficacy was evaluated by
comparing the infiltration levels of the immune cells and the
immune scores. The results demonstrated that there were
notable disparities in the infiltration levels of the immune cells
and the immune scores of the two clusters, suggesting that the
clustering was very effective.

It is worth emphasizing that the immune scores of cluster
2 were higher than those of cluster 1 and that the infiltration
levels of the major immune killer cells in cluster 2 were also
higher. These findings suggested that the cells in cluster 2
had a higher degree of alignment with the immune
characteristics of GBM. Therefore, the identification of the
key genes in cluster 2 was of great significance for analyzing
the immune characteristics of GBM. PD-1 and PD-L1 are
regarded as important genes in the field of cancer
immunotherapy. Inhibitors of PD-1 and PD-L1 have been
used in recent years for a variety of tumors, including GBM
[28]. Our results confirmed that the expression of PD-1 and
PD-L1 in cluster 2 was significantly higher than that in
cluster 1, which was consistent with the higher immune
characteristics of cluster 2. Based on these results, we believe
that the use of inhibitors of PD-1 and PD-L1 will have a
better therapeutic effect for cluster 2.

The reasons underlying the discrepancies in the immune
characteristics of the two clusters, and the causes responsible
for the different therapeutic effects of immunotherapy on
different patients with GBM need to be investigated.
Cellular heterogeneity is an important factor underlying the
differences in the prognosis of GBM patients and reflects
the differences in the immune microenvironment. The
results of correlation analysis among the immune cells in
the two clusters showed that the correlation between certain
cells exhibited opposite trends. For instance, the gamma
delta T cells were positively related to plasma cells and CD4
naive T cells in Cluster 1 but exhibited a negative
correlation in Cluster 2. To a certain extent, the results
reflected the differences in the immune microenvironment.

Intertumoral molecular heterogeneity poses an immense
challenge during the treatment of tumors. Therefore, the
identification of key genes and the development of targeted
therapy are necessary for the personalized treatment of
patients with GBM. Through a series of analyses, we
constructed a prognostic model dependent on several key
genes and evaluated the predictive performance of the
model by survival curve analysis. The findings revealed that
the high-risk patients grouped by the model had a worse
prognosis, and the three genes with the highest coefficients
were insulin-like growth factor (IGF)-binding protein-6
(IGFBP6), SLFN12L, and TMEM159.

IGFBP6 belongs to the family of high-affinity IGF-
binding proteins, the IGF system is involved in several

cancers [29–32]. The activity of IGF is regulated by IGFBPs,
of which the IGFBP6 protein is distinctive owing to its
marked binding preference for IGF-II over IGF-I. Although
the principal function of IGFBP6 involves the inhibition of
the functions of IGF-II, studies have shown that IGFBP6
also has IGF-independent effects [33], such as the
promotion of cancer cell migration and the inhibition of
angiogenesis.

Although studies have expounded the relationship
between IGFBP6 and the progression of gliomas, studies on
the effects of IGFBP6 on gliomas have reported contrasting
findings. For instance, the study by Zong et al. in 2022
reported that the expression of IGFBP6 was superiorly
upregulated in patients with GBM, and it was suggested that
the higher expression of IGFBP6 was markedly related to
the worsening of prognosis in patients with glioma [34].
However, Bei et al. demonstrated that the overexpression of
IGFBP6 induced apoptosis and inhibited the migration of
glioma cells [35]. It is not possible to provide a reasonable
explanation for the contrasting results. As aforementioned,
IGFBP6 has two modes of action, namely, IGF-dependent
and IGF-independent. Additionally, IGFBP6 can inhibit
both IGF-I and IGF-II. However, further studies are
necessary to explore whether the contrasting findings are
attributed to the different modes of action of IGFBP6.

The Schlafen (SLFN) family of proteins in humans
comprises 6 members. Previous studies have indicated that
the SLFN family is fundamental in tumor development and
drug resistance [36,37]. Xu et al. reported that SLFN12L was
increasingly expressed in gastric cancer. It was highly
associated with the infiltration levels of immune cells and
the expression of immune checkpoint proteins [38]. The
study also observed that the expression of the SLFN family
members decreased following the activation of T cells,
suggesting that the SLFN family may be involved in the
immune evasion of tumors by regulating the activation of T
cells. Additionally, SLFN12L also correlates with intestinal
metaplasia and could be used as a biomarker for predicting
the subset of individuals who are likely to progress to gastric
cancer [38,39].

Although the correlation between SLFN12L and glioma
has not been studied to date, studies have demonstrated that
the SLFN5 and SLFN11 induce the malignant phenotype in
GBM [40–42]. Based on the results of our analysis and the
role of SLFN12L in gastric cancer, we speculate that
SLFN12L is likely to promote the development of gliomas.
We intend to further investigate the relationship between
SLFN12L and gliomas in the future to identify novel
therapeutic targets for gliomas.

TMEM159, also known as LDAF1, consists of four
contiguous putative transmembrane sequences and is
expressed in several human organs, including the brain,
adrenal glands, and thyroid [43]. Sequence-based prediction
of TMEM159 revealed that the protein contains two helical
hairpins, and this helical domain is necessary for binding
and other functions. TMEM159 is an ER protein that can
form oligomers with seipin in the bilayer membrane of the
ER [10]. Seipin is located in the ER and shows importance
in the assembly of cytoplasmic LDs. The TMEM159-seipin
complex can attract triacylglycerols and promote the phase
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separation of neutral triglyceride lipids. The complex also
determines the site of LD formation in the ER through
phase separation. The complex allows lipids to accumulate
and partition into nascent droplets for determining the sites
of LD formation.

Jawinski et al. demonstrated that TMEM159 is
significantly associated with major depressive disorder
[44]. By analyzing data from the MetaXcan database, they
found that the expression of TMEM159 is markedly
increased in Alzheimer’s disease and autism spectrum
disorder. However, the specific mechanism underlying the
regulation of psychiatric disorders by TMEM159 remains
unclear.

A previous study reported that the levels of lipids can
affect the development of GBM, and demonstrated that
cholesterol esterification and the formation of LDs are
biomarkers of GBM [17]. Meanwhile, high levels of LDs
in GBM patients are associated with the progression
and low survival rate of GBM. Although the effect of
TMEM159 on the development of GBM and other tumors
has not been studied to date, TMEM159 is involved in the
formation of LDs and may be important in the development
of GBM.

In the present study, we revealed that EGFR was one of
the five genes with the highest mutation frequency and
harbored the highest number of mutations in the high-risk
group. As the grouping was based on the expression of the
three aforementioned major genes, we believe that EGFR
may be correlated with these three genes. Using IP-LS/MS
analysis, our previous study additionally reported that
TMEM159 is likely to interact with EGFR [11]. It has been
reported that the amplification and mutation of EGFR are
associated with the development of GBM [45].

The results of both bioinformatics analyses and in vitro
experiments revealed that the expression of TMEM159 was
much higher in GBM cells than in normal glial cells. We
also proved that the knockdown of TMEM159 attenuated
the proliferation and invasion of the GBM1492 cell line. The
results of chick embryo CAM assays confirmed that the
knockdown of TMEM159 could inhibit the angiogenesis of
GBM1492 cells. This provides a novel direction for future
research aimed at inhibiting the proliferation, invasion, and
angiogenesis of glioma cells. We also demonstrated that the
knockdown of TMEM159 could inhibit the activity of
EGFR, the downstream signals, and PD-L1, suggesting that
there is a possible association among TMEM159, EGFR, and
PD-L1. However, it should be emphasized that the study has
certain limitations. The mechanisms underlying the role of
TMEM159 in the diagnosis and treatment of gliomas
require further exploration, and the association between
TMEM159 and immune functions needs to be investigated
in particular. Further in vivo and in vitro experiments need
to be conducted in the future to confirm whether
TMEM159 interacts with EGFR in gliomas and whether
TMEM159 affects the degradation of EGFR.

Conclusions

A prognostic model based on the immune characteristics of
GBM was constructed in this study, which achieved good

prognostic efficacy in predicting high-risk patients. The
prognostic model was constructed using multiple genes
associated with tumor progression. Our findings also suggest
that TMEM159 may be an important prognostic factor for
GBM. The knockdown of TMEM159 suppressed the
proliferation, invasion, and angiogenesis of GBM1492 cells.
The inhibition of TMEM159 inhibited the activation of
EGFR and downstream pathways and decreased the
expression of PDL-1. Altogether, these findings indicate that
TMEM159 may be a promising target for suppressing the
development of GBM.
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Appendix A

TABLE A1

Target sequences of shRNAs for individual genes

shRNA Sense sequence

shTMEM159#1 AGTTGGAAAATAGAGTCCA

shTMEM159#2 AAGGTGTAGTTTCCACTGT

TABLE A2

The antibodies used in this project

Reagent Source Catalog City Province/State Country

GADPH (Rabbit) Proteintech Cat#10494-1-AP Wuhan Hubei China

TMEM159 (Rabbit) Invitrogen thermo fisher scientific Cat#PA5-53708 Carlsbad CA USA

TMEM159 (Rabbit) Sigma-Aldrich Cat#HPA018033 St. Louis MO USA

EGFR (Rabbit) MILLIPORE Cat#06-847 Shanghai Shanghai USA

P-EGFR(Y1068) (Mouse) Invitrogen thermo fisher scientific Cat#MA5-15199 Carlsbad CA USA

P-Akt(S473) (Rabbit) Cell signaling technology Cat#4060S Danvers MA USA

Akt (Rabbit) Cell signaling technology Cat#9272S Danvers MA USA

P-ERK1/2 Abclonal Cat#LV-AP0472 Wuhan Hubei China

ERK1/2 (Mouse) Santa cruz biotechnology Cat#Sc-514302 Santa Cruz CA USA

PD-L1 Proteintech Cat#66248-1-Ig Wuhan Hubei China

Goat anti-Rabbit IgG(H+L) Invitrogen thermo fisher scientific Cat#31460 Carlsbad CA USA

Rabbit anti-Mouse IgG(H+L) Invitrogen thermo fisher scientific Cat#31480 Carlsbad CA USA
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