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Abstract: Increasing life expectancy and an aging population lead to age-related bone diseases like osteoporosis and low

bone mass more prevalent. These conditions represent a common, costly and chronic burden, not only for elderly but also

to society at large. Consequently, elucidating the pathophysiology and developing effective therapies for these diseases is

of paramount importance. Recent advances in research have identified the gut as a novel and promising target for

addressing bone disorders, giving rise to the concept of the “gut-bone axis”. An in-depth review of the latest insights

into the effects of age-related physiological changes in the gastrointestinal tract on bone health is presented in this

article. It examines how the “gut-bone” axis interacts with bone aging across various domains, including metabolism,

nutrition, intestinal permeability, immunity, and oxidative stress.

Introduction

The human intestinal tract harbors trillions of microorganisms
that constitute a selective permeability barrier, essential for
safeguarding against the ingress of deleterious entities such as
exogenous antigens, pathogens, and toxins. Simultaneously,
this barrier facilitates the absorption of vital nutrients,
electrolytes, and immune sensing. The maintenance of
intestinal barrier integrity is vital for overall health, with its
compromise leading to the opportunistic penetration of
pathogenic bacteria and their metabolites, potentially
inflicting damage on distant organs and overall well-being.
The intestinal microenvironment is linked to a variety of
diseases and is shaped by an array of factors, including age,
genetics, environmental exposure, lifestyle, stress, and diet [1].

Aging is a complex process characterized by the progressive
decline of physiological systems and the deterioration of organ
structures and functions. It is often accompanied by
disruptions to the integrity of the intestinal barrier, changes in
the composition of gut microbiota (GM), and an increased
susceptibility to various aging-related diseases, including
neurodegenerative disorders, cardiovascular conditions,
metabolic disorders, musculoskeletal ailments, immune system
dysregulation, and cancers [2]. Among these diseases, there

have been reports highlighting skeletal issues associated with
aging, such as bone loss, degenerating articular cartilage, and
narrowing of intervertebral discs, which are precursors to
conditions like osteoporosis, arthritis, and fractures [3,4]. Bone
health is intricately regulated by the dynamic balance between
bone formation and resorption, which is mediated by
osteoblasts and osteoclasts, respectively. However, during
aging, the cell lineages of skeletal system underwent rigorous
changes, senescence accumulation in osteoprogenitors like
bone marrow mesenchymal stem cells (BMSCs) lead to
impaired osteogenesis and cause imbalance [5]. Additionally,
in senescence-related cancer, BMSCs also contribute to the
formation of a cancer-promoting microenvironment [6,7].

However, the precise causal relationships or correlations
between these phenomena and age-related changes in the
intestinal microenvironment remain poorly understood.
This knowledge gap represents a great challenge, particularly
in terms of understanding the implications for bone health
and the potential underlying regulatory mechanisms.

Accordingly, this review endeavors to enhance the
current comprehension of the interplay between the age-
related intestinal microenvironment and bone health. It also
aims to pinpoint the research lacunae that warrant further
investigation.

Aging and Bone Health: The Role of the Intestinal Barrier

Regulation of skeletal system is influenced by a myriad of
signals, including inflammatory factors and endocrine

*Address correspondence to: Huan Hu, huhuan1990@163.com;
Yanzi Yao, yaoyanzi0398@163.com
Received: 04 December 2023; Accepted: 11 January 2024;
Published: 15 March 2024

BIOCELL echT PressScience
2024 48(3): 353-362

Doi: 10.32604/biocell.2024.048311 www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:huhuan1990@163.com
mailto:yaoyanzi0398@163.com
https://www.techscience.com/journal/BIOCELL
https://www.techscience.com/
http://dx.doi.org/10.32604/biocell.2024.048311
https://www.techscience.com/doi/10.32604/biocell.2024.048311


hormones. Notably, the intestinal barrier is integral to this
regulatory network. These interactions are critical for
managing systemic chronic low-grade inflammation and
metabolism, which have significant implications for bone
health.

Endocrine interactions
The endocrine hormones that regulate bone health in elderly
individuals primarily include estrogen, parathyroid hormone,
insulin-like grown factor-1, and serotonin (5-HT). The
gastrointestinal tract, as the largest endocrine organ, secretes
hormones such as glucose-dependent insulinotropic peptide
(GIP) and glucagon-like peptide-1 and 2 (GLP-1, GLP-2),
which have profound effects on bone metabolism and are
considered essential components of the gut-bone axis [8,9].
For instance, GIP has been found to reduce the levels of
biochemical marker carboxy-terminal collagen crosslinks
(CTX), which is indicative of bone absorption.
Supplementing with exogenous GIP has been shown to
effectively mitigate bone absorption in postmenopausal
women [10,11]. Conversely, GLP-1 receptor agonists
promote osteoblastogenesis and suppress bone resorption
through the advanced glycation endproducts (AGEs)-
receptor of AGE (RAGE)-reactive oxygen species (ROS,
AGEs-RAGE-ROS) pathway and GLP-1 receptor interaction
[12]. Maintaining high GIP levels, particularly in aging
individuals, especially pre-/post-menopausal women, can
thus play a protective role against bone strength deterioration.

Approximately 95% of 5-HT is produced in the
intestines, where it inhibits osteoblast proliferation and bone
growth by binding to receptors on pre-osteoblasts. Targeted
knockout of tryptophan hydroxylase 1 gene (Tph1), the
rate-limiting enzyme for intestinal 5-HT synthesis, in
enterocytes has been found to increase osteoblast numbers
and bone formation, resulting in high bone mass [13].
Conversely, brain-derived 5-HT has been shown to promote
bone formation by inhibiting peripheral autonomic nerves
[14]. Thus, intestinal-derived 5-HT may hold promise as a
potential therapeutic approach for increasing bone mass.

Depression in the elderly is associated with osteoporosis
[15]. Although selective serotonin reuptake inhibitors
(SSRIs) are effective as antidepressants, they have been
implicated in reduced bone mineral density (BMD) and
increased fracture risk. This possibly due to desensitization
of the 5-HT receptor 2C (HTR2C), which mediates brain-
derived 5-HT’s effects on bone [16]. A novel drug, (R)-
ketamine, has shown efficacy in effectively improving BMD
in ovariectomized mice with depression. This improvement
is attributed to its anti-inflammatory actions, which involve
the regulation of dysregulated intestinal microbiota and its
metabolites. Specifically, at the phylum level of intestinal
flora, there was a decrease in the abundance of Tenericutes
and an increase in Kiloniella. Additionally, there were
decreased levels of metabolites such as succinic acid and
dihydrouracil [17].

Intestinal barrier homeostasis
The maintenance of intestinal barrier homeostasis is crucial for
bone health. Disruptions to the gut flora, such as those induced
by prednisolone, can lead to intestinal barrier dysfunction,

increased serum endotoxin levels, inhibition of Wnt10b
signaling, and apoptosis of osteoblasts and osteocytes,
culminating in glucocorticoid-induced osteoporosis (GIO).
Conversely, mucus supplements can bolster barrier function
and counteract trabecular bone loss caused by
glucocorticoids [18].

Although direct evidence is scarce, age-related intestinal
changes are strongly correlated with bone loss. The intestinal
barrier, composed of the mucus layer, epithelial cell layer, and
lamina propria, is critical for preventing the entry of harmful
substances and maintaining homeostasis. However, its
integrity is compromised by aging [19] (Fig. 1).

The integrity of the intestinal epithelial cell (IEC) layer
relies heavily on the health of tight junction proteins and
intestinal epithelial stem cells (IESCs). In the process of
aging, there is a decrease in the expression of tight junction
proteins such as zonula occludens (ZOs), occludins, claudins,
and junctional adhesion molecules (JAMs, Fig. 1), resulting
in increased colon permeability [19]. Furthermore, aging
disrupts the balance between JUN kinase/protein
phosphatase I and results in increased intestine-specific actin
(ACT-5) phosphorylation, compromising intestinal
intercellular interaction and barrier integrity. The number
and proliferative capacity of IESCs also decline with age,
impeding the timely self-renewal and repair of the intestinal
mucosa [20]. This decline may be linked to the
downregulation of Wnt and bone morphogenetic protein
(BMP) signaling pathways [21,22]. Clinical and experimental
evidence suggests that age-related disruption of the intestinal
epithelial barrier is linked to immune activation, elevated
inflammation, and reduced bone density [23].

The disruption of the intestinal mucus layer is
characterized by a decrease in mucus secretion and
thickness, as well as increased degradation and permeability.
Such changes expose the IECs to bacteria, precipitating
infections and inflammatory conditions like ulcerative colitis
(UC) and Crohn’s disease (CD) [24,25] (Fig. 1). Mccin2
(MUC2), the major mucus component, imparts gel-like
properties through its abundant and variable O-linked
oligosaccharides (O-glycans) [26]. In elderly hosts,
upregulation of miR-124-3p correlates with diminished
mucus thickness and frequent bacterial translocation,
attributable to suppressed O-glycan expression. Moreover,
the age-related thinning of the mucus layer may stem from
downregulated mucus biosynthesis genes, a proliferation of
pathogenic microbes, and a reduction in beneficial bacterial
populations [27].

The host and intestinal resident bacteria form a complex,
symbiotic micro-ecosystem that acts as a biological defense
against external pathogens. Aging, however, can disrupt this
delicate equilibrium, leading to a decrease in beneficial gut
bacteria and a proliferation of pathogenic strains [28]. The
gut microbiome undergoes maladaptive changes with
aging (Fig. 1), including a reduction in bacteria that produce
short-chain fatty acids (SCFAs) and an elevated
Firmicutes/Bacteroidetes (F/B) ratio [29,30]. In peri-/post-
menopausal women with low BMD, there is often a higher
abundance of Bacteroides vulgatus and a lower level of
serum valeric acid [31]. Interestingly, studies have shown
that colonizing mice with the GM of healthy children can
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reverse the reduction of Akkermansia muciniphila caused by
ovariectomy and prevent estrogen deficiency-induced
osteoporosis [32]. Similarly, transplantation of the GM from
wild-type mouse or A. muciniphila into prematurely aging
mice has been found to restore secondary bile acid
metabolism, normalize age-accelerated gut dysbiosis, and
improve overall health and longevity [33]. This reshaping of
the GM with age heightens the risk of systemic
inflammation and age-related bone diseases [34–36].

Intestinal mucosal immunity
The gut mucosal immune system is primarily comprised of
gut-associated lymphoid tissue (GALT), which includes a
variety of lymphoid tissues like Peyer’s patches (PPs) in the
small intestine, cecal patches and appendix, as well as
isolated lymphoid follicles (ILFs). As individuals age, there
is a notable decline in the functional maturation of
Microfold (M) cells within the follicle-associated epithelia
that overlay PPs, which are specialized for transepithelial
transport. This decline hampers antigen presentation
capabilities [37]. Concurrently, plasmacytoid dendritic cells
(pDCs), pivotal in detecting pathogens or infection signals,
show age-related impairments in migration, a reduction in
both absolute numbers and proportions, culminating a
marked decrease in mucosal immune efficiency [38]. In the
mucosal tissue of aged host, isolated DCs display a
compromised immune priming function, diminishing their
capacity to initiate antigen-specific T-cell responses [39].
Furthermore, aging is associated with a significant
downregulation of genes involved in innate and adaptive
immunity, including a decreased expression of T cell-
specific transcripts and alterations in T cell signaling
pathways [40].

CD4 T cells, which represent a majority of T cells in the
intestinal lamina propria, demonstrate a diminished
expression of inhibitory receptors, increased rated of
spontaneous apoptosis, decreased frequencies of specific Th
cell subsets, and altered functional responses due to aging
[41]. These changes hinder the T cell responses to the GM,
leading to both local and systemic inflammation in the
elderly. Moreover, heightened inflammation within the bone
marrow microenvironment is implicated in bone loss
[42,43]. Conversely, studies have shown that dietary
intervention with prebiotics in accelerated aging (SAMP6)
mice can enhance the GM, mitigate systemic inflammation,
and reduce bone resorption, underscoring the importance of
the gut microenvironment in the aging process and its
influence on bone health [44].

Regulatory Pathways of the Gut-Bone Axis on Age-Related
Bone Diseases

The age-related changes in intestinal barrier function are
believed to negatively impact bone health in older
individuals. It is therefore reasonable to speculate that
enhancing intestinal barrier function could improve bone
health in the elderly. Various strategies, such as dietary and
lifestyle modifications, pharmacological interventions,
probiotic supplementation, exercise, and modulation of the
intestinal microenvironment have been identified as
potential approaches to regulate bone health. These
strategies act through pathways involving immune
regulation, nutrient absorption, neuronal signals, hormonal
pathways, metabolism, microRNA, intestinal barrier
function, and oxidative stress (Fig. 2).

FIGURE 1. The impact of aging on intestinal barrier regulation and its negative effect on bone health. (1) the maladaptive remodeling of the
gut microbiota (GM), characterized by declined diversity and stability, decreased beneficial microorganisms, and increased facultative
anaerobic and pathogenic bacteria. Additionally, aging leads to a reduction in mucus thickness, dysregulation of antimicrobial peptide
(AMP) expression, and bacteria translocation; (2) the downregulation of tight junction proteins, resulting in compromised intercellular
interaction and barrier integrity; (3) the activation of intestinal immune cells due to aging-related altered microbiota and epithelial barrier
dysfunction, coupled with a decline in gut mucosal immune system, resulting in local and systemic inflammation. These aging-associated
changes in gut microecology, including remodeled gut flora, increased gut permeability, and imbalanced gut immune homeostasis,
contribute to the development of age-related bone diseases. Abbreviation list: GALT: gut-associated lymphoid tissues, GI: gastrointestinal,
M cell: microfold cell, DC: dendritic cell.
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Metabolism
The GM can produce a diverse array of bioactive compounds
in response to dietary nutrients. These metabolites act as
signaling molecules, facilitating communication with the
endocrine system, immune system, and host metabolism.
This network, known as host-microbe metabolic axis,
involves various microbial species and host cell pathways
and is crucial in regulating metabolic homeostasis.

SCFAs, such as formic acid, acetic acid, propionic acid,
and butyric acid, are produced by microbial fermentation of
indigestible carbohydrates in the gut [45]. They play a vital
role in maintaining intestinal barrier integrity by regulating
gut pH, stimulating mucus production, providing fuel for
IECs, and modulating mucosal immune response [46,47].
SCFAs also act as critical regulators and mediators of gut-
bone homeostasis. Studies have shown that direct
supplementation of SCFAs or a high-fiber diet can inhibit
osteoclast differentiation by directly suppressing the
expression of genes involves in osteoclastogenesis, such as
TRAF6 (tumor necrosis factor (TNF) receptor associated
factor 6) and NFATc1 (nuclear factor-activated T cell 1),
while upregulating regulatory T cells (Tregs) populations,
thereby improving bone mass and reducing postmenopausal
bone loss [48]. Similarly, oral administration of supplements

such as fructooligosaccharides and inulin can inhibit
osteoclastogenesis and bone resorption by increasing SCFA
levels and maintaining GM homeostasis, intestinal
permeability, and intestinal immune function, thereby
preventing bone loss induced by estrogen deficiency [49].
Additionally, the probiotic strain Lactobacillus plantarum
TWK10 has also been found to mitigate age-related bone
loss by modulating gut dysbiosis and increasing total SCFA
levels [50].

Polyamines are fatty amines that act as physiological
regulators of intestinal development and barrier integrity
[51]. However, with age, both the levels of polyamines and
their biosynthetic capacity decline [52]. Adequate
supplementation of polyamines has been found effective in
treating cardiovascular diseases, metabolic bone diseases,
and in delaying cellular aging [53,54]. Heat exposure can
increase the abundance of polyamine-producing bacteria
and enhance bacterial polyamine synthesis capacity, thus
alleviating the age-related decline in total polyamine levels
and improving bone loss caused by ovariectomy [55]. Direct
supplementation of natural polyamine agents can also
prevent bone loss by interfering with osteoclast
differentiation and maturation [56]. Enhancing polyamine
biosynthesis in gut bacteria may inhibit abnormal osteoclast

FIGURE 2. Regulatory pathways of the gut-bone axis on bone diseases. The shifts in diet, lifestyle, intakes of drugs and probiotics, exercise, or
other interventions can pose various effects on the intestinal micro-environments, and regulate age-related bone health via metabolism,
nutrition, immunity, and oxidative stress. Abbreviation list: SCFAs: short-chain fatty acids, H2S: hydrogen sulfide, BAs: bile acids, TGR5:
G-protein-coupled bile acid receptor, GLP-1: glucagon-like peptide-1, Treg: upregulating regulatory T cells, sIgA: secretory
immunoglobulin A, FMO3: flavin containing dimethylaniline monoxygenase 3, TMAO: trimethylamine-N-oxide, ATCC334: Lactobacillus
acidophilus stain.
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activation and holds promise as a preventive and therapeutic
approach for age-related metabolic bone diseases.

Hydrogen sulfide (H2S) is a signaling molecule in the
form of gas that is generated by cysteine in the intestine,
produced by epithelial cells and GM. It serves as an energy
source for gastrointestinal epithelial cells and is crucial in
maintaining mucosal integrity. It has been discovered that
H2S has the ability to inhibit lymphocyte infiltration and
suppress T cell proliferation to prevent inflammation [57].
Additionally, H2S is involved in bone metabolism and can
slow down the aging process by inhibiting free radical
reactions, activating Sirtuin 1 (SIRT1), and interacting with
age-related gene Klotho [58–60]. While Glucocorticoids may
impair endogenous H2S synthesis, supplementation of
exogenous H2S can activate the Wnt signaling pathway to
enhance bone formation and prevent osteoporosis [61]. The
decline of H2S levels and its biosynthetic pathway are
considered contributing factors to bone loss in estrogen-
deficient mice [60].

Bile acids (BAs) are produced in the liver and further
modified by GM, regulating lipid and bone metabolism [62].
Serum BA levels were positively correlated with bone
density and negatively correlated with bone turnover
markers, reflecting bone resorption. It is significantly lower
in postmenopausal osteoporosis patients compared with
healthy controls [63]. The G protein-coupled BA receptor 5
(TGR5) is involved in bone mass reduction and osteoblast
differentiation [64]. BA-induced activation of TGR5 on
small intestinal cells promotes the secretion of GLP-1 by
enteroendocrine cells, which in turn promotes bone
formation and inhibits bone resorption [65,66]. S-propargyl-
cysteine (SPRC), an endogenous H2S donor, provides
substrates for H2S synthesis, exhibits anti-inflammatory
effects, and attenuates bone damage in rheumatoid arthritis.
This effect is related to changes in GM composition,
particularly the enrichment of bile salt hydrolase-producing
bacteria, and BA metabolism [67].

Nutrition
Minerals, such as calcium, are vital for healthy aging. Calcium
absorption in the small intestine is predominantly an ATP-
dependent active process, accounting for approximately 90%
of total calcium uptake. Postmenopausal women often
experience a decline in calcium absorption, which possibly
due to reduced active calcium transport or diffusion
components of the calcium absorption system [68].
Supplements such as Astragalus polysaccharide, which are
designed to repair the intestinal barrier, can restore
intestinal function and alleviate osteoporosis by promoting
osteoclast differentiation and reactivating the calcium
signaling pathway [69].

Vitamin K, a fat-soluble nutrient, is present in two
natural forms: phylloquinone (vitamin K1, PK), primarily
obtained from vegetables, and menaquinones (vitamin K2,
MKn), primarily synthesized by intestinal bacteria. This
vitamin serves as a modulator of the GM composition and
can be converted into various MKn forms by GM
remodeling. Clinical evidence suggests that high vitamin K
level can mitigate inflammation and inhibit abnormal
calcification and mineralization linked to aging-related

diseases. In contrast, vitamin K deficiency is linked to an
increased risk of skeletal disorders in the elderly, such as
osteoarthritis and osteoporosis [70]. In studies conducted on
ovariectomized rats, MKn has been shown to enhance bone
matrix quality and intestinal calcium absorption, thus
preventing age-related bone loss [71]. Additionally, in obese
mice, the bone-protective effects of tea polyphenol
supplements were accompanied by changes in the
composition and function of GM, specifically an increase in
A. muciniphila abundance and enhancement of MKn
biosynthesis pathways [72].

Vitamin D, despite its name, functions as a steroid
hormone with two main forms: vitamin D2 (ergocalciferol),
derived from plants, and vitamin D3 (cholecalciferol),
synthesized from cholesterol [73]. It regulates calcium and
phosphate homeostasis by facilitating calcium absorption in
the intestine and influencing osteoblast and osteoclast
activity [74]. As a member of the nuclear receptor
superfamily, vitamin D receptor (VDR) mediates the effects
of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), which is the
active metabolite of vitamin D [75]. Due to the widespread
expression of VDR in various cell types, particularly in the
small intestine, the vitamin D/VDR signaling pathway not
only regulates intestinal barrier and immune function but
also modulates nutrient transport [76]. Studies have shown
that mice lacking VDR specifically in the small intestine
exhibit suppressed expression of Paneth cell-specific α-
defensins, the converting enzyme matrix metalloproteinase 7
(MMP7), tight junction proteins, and MUC2. This leads to
mucosal collapse, increased intestinal permeability,
dysbiosis, and systemic inflammation [77]. Conversely, a
high dietary vitamin D has been associated with lower
intestinal permeability and stronger trabecular bone
structure [78]. This suggests that vitamin D contributes to
bone health in the elderly by improving intestinal barrier
function.

Immune
Osteoimmunology examines the interaction between the
immune and skeletal system, which is regulated by a suite of
shared molecules including receptors, chemokines,
cytokines, and transcription factors [79]. Transforming
growth factor-β (TGF-β) and inflammatory stimulate the
differentiation of immature T cells into Th17 cells–a subset
of T lymphocytes implicated in osteoclastogenesis [80,81].
Th17 cells facilitate the upregulation of Receptor activator of
nuclear factor-κB (RANK) ligand (RANKL), which interacts
with RANK on osteoclast precursors, fostering their
maturation and enhancing bone resorption [82].
Additionally, interleukin 17 (IL-17) released by Th17 cells
directly increases osteoclastogenesis [83].

In murine model, Th17 cells are mainly produced in the
lamina propria of the intestine, with their development being
contingent upon segmented filamentous bacteria (SFB)
[84,85]. SFB presence boosts IL-17α expression in the ileum
and upregulates LCN2 in the liver and serum, both of which
favor osteoclastogenesis while inhibiting osteoblastogenesis
[86].

Aging-related factors and estrogen deficiency can
downregulate epithelial binding proteins and increase
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intestinal permeability, facilitating microbial translocation
from the lumen to the subepithelial space. This incites the
production of pro-inflammatory cytokines by immune cell,
precipitating the emergence of age-related pathologies
[87,88]. A multiethnic longitudinal cohort study
corroborates the association of increased intestinal
permeability during menopause with heightened
inflammation and reduced bone density [23]. For example,
estrogen deficiency exacerbates intestinal permeability,
enabling microbial components to activate T cells and boost
TNF and IL-17 production in the lamina propria.
Subsequently, TNF+T cells and Th17 cells egress from the
intestine through an S1P receptor 1 (S1PR1)-dependent
pathway, with TNF+T cells migrating to the bone marrow
through the C-X-C motif chemokine receptor 3 (CXCR3)
and Th17 cells use the C-C chemokine receptor 6
(CCR6)/chemokine (C-C motif) ligand 20 (CCL20,
CCR6/CCL20) axis, leading to trabecular bone loss [89].

Reducing the GM dysbiosis and intestinal permeability
may protect bone by inhibiting intestinal and bone marrow
inflammation [90,91]. For example, polyphenols from betel
nut seeds can increase lysozyme expression, maintain
Paneth cell numbers, regulate the GM, modulate
inflammatory responses, and ameliorate osteoporosis [92].
Probiotics can also restore the GM, promote intestinal
barrier function, and equilibrate the balance between Th17
and Treg cells in the bone marrow, thereby guarding against
bone loss under estrogen-deficient conditions [93].
Traditional herbal formulas like Xiong Fu powder can
modulate the GM, enrich Lactobacillus abundance, and
alleviate bone destruction. One potential mechanism
involves the interaction between secretory Immunoglobulin
A (IgA), regulated by intestinal mucosal Treg and Th17 cells
and Lactobacillus adhesion [94].

Oxidative stress
Oxidative stress arises from an imbalance between
antioxidants and reactive oxygen species (ROS), due to
either excessive ROS production or insufficient antioxidants.
Recognized as a hallmark of aging, oxidative stress is
associated with age-related bone disorders. ROS changes,
alongside shifts in antioxidant systems, contribute to bone
loss and compromised bone quality by simultaneously
modulating osteoclasts and osteoblasts. Excessive ROS
typically activate signaling pathways such as mitogen-
activated protein kinase (MAPK), phosphoinositide 3-kinase
(PI3K), nuclear factor-κB (NF-κB), and Ca2+/Nuclear factor
erythroid 2-related factor 2 (Ca2+/Nrf2), culminating in the
activation of osteoclast-related genes like CTSK (Cathepsin
K), MMP9 (matrix metalloproteinase 9), and NFATc1 [95].
Concurrently, oxidative stress disrupts bone formation by
upregulating MAPK, releasing cytochrome C, and
downregulating pathways such as Wnt/β-catenin, bone
morphogenetic protein 2/Smad (BMP2/Smad), and focal
adhesion kinase (FAK) phosphorylation, thereby inducing
osteoblasts apoptosis [96]. The loss of sex hormones, such
as estrogen or androgen, in aged individuals accelerates
skeletal aging by diminishing oxidative stress defense and
interfering with Wnt signaling [97,98].

Oxidative imbalances in the gut not only impede its own
function but also affect overall health. While it can typically
handle oxidative stress, its defensive capacity is
overwhelmed by aging or heightened ROS levels. Oxidative
stress-induced pathophysiological changes may impair
calcium absorption by altering the expression and/or
function of proteins integral to intracellular and/or
intercellular Ca2+ transport [99,100].

Antioxidants have demonstrated potential in improving
bone health by modulating the gut microenvironment
[101,102]. For instance, Lactobacillus acidophilus (ATCC334)
supplementation can enrich L. acidophilus abundance,
stabilize redox balance, downregulate pro-inflammatory
cytokine expression, and alleviate arthritis symptoms [103].

Conclusion

The current body of research on age-related bone diseases has
largely concentrated on mechanisms related to telomere
attrition, cellular apoptosis, immunosenescence, low-grade
systemic inflammation, and Wnt signaling pathways [104–
107]. Advances in research methodologies and omics
technologies has deepened our comprehension of the gut
microenvironment. The gut’s ability to rapidly respond to
external stimuli is crucial for maintaining homeostasis,
which is integral to overall health. Dysfunctions in intestinal
barrier, which may lead to increased permeability and
dysbiosis, could contribute to age-related osteoporosis by
disrupting bone immune homeostasis. The gut
environment’s influence on age-related bone diseases
encompasses pathways related to metabolism, nutrient
absorption, intestinal permeability, immunology, and
oxidative stress. The potential for manipulating the gut
microenvironment to prevent bone loss is a subject of
ongoing research.

However, due to the high costs and technical limitations
of sequencing and analytical methods, most studies on the
intestinal microbiota and human health have relied on 16S
rRNA amplicon sequencing. This approach provides only
partial microbial species information, lacking gene-level and
transcriptional insights, which hinders establishing a
definitive causal link between the microbiota and health
outcomes. Therefore, it is too early to conclude that
assessments of the gut microenvironment can reliably reflect
bone health. Furthermore, as the majority of current studies
are preclinical and based on animal models, translating
these findings to human clinical practice requires further
rigorous and comprehensive efforts.
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