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Abstract: Tumor-associated macrophages (TAMs) are emerging as targets for tumor therapy because of their primary

role in promoting tumor progression. Several studies have been conducted to target TAMs by reducing their

infiltration, depleting their numbers, and reversing their phenotypes to suppress tumor progression, leading to the

development of drugs in preclinical and clinical trials. However, the heterogeneous characteristics of TAMs, including

their ontogenetic and functional heterogeneity, limit their targeting. Therefore, in-depth exploration of the

heterogeneity of TAMs, combined with immune checkpoint therapy or other therapeutic modalities could improve

the efficiency of tumor treatment. This review focuses on the heterogeneous ontogeny and function of TAMs, as well

as the current development of tumor therapies targeting TAMs and combination strategies.

Introduction

Macrophages are fundamental components of the innate
immune system and are responsible for pathogen clearance,
tissue homeostasis, and inflammation. Tumor-associated
macrophages (TAMs), a major component of the tumor
immune microenvironment (comprising over 50% of solid
tumors), are involved in tumor initiation, progression,
metastasis and angiogenesis [1–3]. Moreover, TAMs
predominantly shape tumor microenvironment, anti-tumor
immunity and immunotherapy efficacy [4–6]. Therefore,
targeting TAMs has emerged as a potential strategy for
revitalizing the anti-tumor immune response in tumor
therapy.

Based on technological advances in single-cell RNA
sequencing and lineage tracing, TAMs have been suggested
to be a heterogeneous population with heterogeneous
origins and functions [7]. This means that the ontogeny of
TAMs includes tissue-resident macrophages (TRMs)
originating from yolk-sac-derived erythro-myeloid
progenitors, alongside differentiation from peripheral
monocyte infiltration. The differentiation from peripheral
monocyte infiltration implies that TAMs can affect

tumorigenesis and progression through various mechanisms,
including fostering tumor cell proliferation, distant
metastasis, angiogenesis, and suppression of the antitumor T
cell immunity. Understanding the heterogeneity of TAMs
will help decipher the phenotypic and functional
heterogeneity, enabling the development of antitumor
strategies by targeting TAMs.

To date, there have been many developments in
antitumor treatment strategies targeting TAMs. These
include endeavors to reduce the infiltration of TAMs [8–10],
depletion of TAMs [11–13], reversal of the phenotype of
TAMs [14–16], and the combine effort of immune
checkpoint inhibitors or other antitumor strategies [17,18].
Nevertheless, breakthroughs in drugs targeting TAMs are
still pending and efforts to clarify the heterogeneity of
TAMs are required. In this review, we summarized the
heterogeneous ontogeny and function of TAMs, tumor
therapies targeting TAMs and strategies for combination
therapy.

The heterogeneous ontogeny of TAMs
The ontogeny of TAMs is mainly derived from infiltrating
peripheral monocytes in response to the tumor
microenvironment (TME). However, the discovery of TRMs
within tumors, originating from embryonic sources, has
been questioned [19] (Fig. 1). TRM originates from yolk sac
progenitor cells and, during organogenesis, enters specific
tissues to differentiate into macrophages, establishing stable
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spatial and functional relationships with specific cells within
the tissues [20].

Myeloid lineage formation involves the development of
HSCs and the process of differentiation of GMPs and MDPs
in the bone marrow [21–23]. Once monocytes derived from
the bone marrow enter circulation, chemotactic signals
produced by cancer cells or stromal cells cause circulating
monocytes to be drawn into the TME. Various chemokines
have been elucidated, such as CCL2 [24], CCL3 [25], CCL5
[26], and CCL17 [27].

Monocytes and macrophages express CCR2, a CCL2
receptor. Upregulated levels of CCL2 and CCR2 promote
macrophages accumulation [24]. CCL3 functions as a
chemokine that induces macrophages migration.
Additionally, CCL3 may bind to CCR1 and CCR5 on
macrophages, which polarize them to take on the traits and
functionality of M2-type macrophages [28,29]. CCL5
attracts M2-type macrophages and encourages them to
accumulate at sites of inflammation or tumor. In addition,
CCL5 can lead to the polarization and activation of M2-type
macrophages, inducing them to exhibit anti-inflammatory
properties through the CCL5/CCR5 axis [30]. The binding
of CCL17 to CCR4 promotes M2 macrophages migration.
Further studies have shown that CCL17 can induce the
transformation of M2 macrophages into a pro-inflammatory
phenotype [27]. The CCL family plays an integral role in
TAMs developmental heterogeneity.

In addition, various cytokines, including Macrophage
Colony-Stimulating Factor (M-CSF), Granulocyte-
Macrophage Colony-Stimulating Factor (GM-CSF), and
Interleukin-6 (IL-6) [31,32], are involved in the
differentiation of monocytes into macrophages [33,34].

M-CSF, which binds to CSF1R mainly expressed on
macrophage, promotes the differentiation and survival of

monocytes into macrophages, whereas GM-CSF not only
promotes differentiation, but also enhances antigen
presentation by macrophages [34,35]. IL-6 is one of the
important factors for the differentiation of monocytes into
macrophages, contributing to the activation of macrophages
into a pro-inflammatory type and release of pro-
inflammatory cytokines, such as tumor necrosis factor α
(TNF-α) and IL-12 [33]. Furthermore, in tumor-bearing
mice, angiotensin 2 (Ang2) overproduction increases the
number of macrophage progenitors and hematopoietic stem
cells, providing a fresh supply of TAMs [36]. Thus, it is
evident that numerous cytokines such as M-CSF, GM-CSF,
and IL-6 synergize with the CCL family and play an
important role in the origin of TAMs.

TAMs originate from the bone marrow. In mice, the
development of EMPs present in the fetal liver primarily
arises from yolk sac hematopoietic endothelial cells. EMPs
are a special type of hematopoietic stem cells that exist in
the hematopoietic system during the fetal stage. These cells
can differentiate into various types of blood cell progenitor
cells, including red blood cells, macrophages, and other
types of white blood cells [37]. Unlike monocyte-derived
macrophages, EMP-derived macrophage precursors initially
colonize the embryonic yolk sac, accompany organogenesis
and eventually matures into TRMs [38].

TRMs and inflammatory monocytes are sources of
TAMs in pancreatic ductal adenocarcinomas (PDAC). A
sizeable fraction of macrophages in the pancreas settle
during embryonic development and expand through in situ
proliferation as PDAC develops. In PDAC, TAMs generated
from monocytes are more effective at presenting antigens;
however, embryo-derived TAMs display a pro-fibrotic
transcriptional profile, suggesting their function in
generating and modifying extracellular matrix components

FIGURE 1.Heterogeneity in the origin of TAMs. There are twomain origins of TAMs, in addition to the well-known bone marrow origin, there
is yolk sac origin of TAMs. As the main source of TAMs, monocytes first develop from hematopoietic stem cells (HSCs), then differentiate into
granulocyte-macrophage progenitors (GMPs), further develop into monocyte-dendritic cell progenitors (MDPs) and leave the bone marrow for
the circulation, developing into monocytes. In the process of tumor development, monocytes are influenced by various chemokines and
cytokines secreted by tumor cells and can form TAMs in the tumor microenvironment, while TRMs are mainly developed from the yolk
sac-derived erythroid-myeloid progenitor cells (EMPs), and are resided in various tissues in the body, including lung, liver, pancreas, brain,
skin, etc. When tumor occurs in an organ, TRMs will form TAMs and play a role in regulating the growth of the tumor.
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[39]. TRMs play an indispensable role in the development of
PDAC.

Additionally, alveolar macrophages increase early in
neoplasia and inhibit cytotoxic T cell responses in an
oncogenic Kras-driven lung cancer mouse model, suggesting
that by changing the TME, a subgroup of TRMs could assist
in neoplastic development [40]. Similarly, early in the
development of non-small cell lung carcinoma (NSCLC),
TRMs gather near tumor cells to encourage the transition of
the epithelium to the mesenchyme and the invasiveness of
the tumor cells, causing a strong regulatory T cell response
that shields tumor cells from the immune system [41].
Furthermore, in both healthy mammary glands and primary
sites of breast cancer, there was a population of FOLR2+

TRMs. In cancer stroma, FOLR2+ macrophages congregate
in the perivascular regions where they interact with CD8+ T
cells [42]. This suggests that TRMs play an important role
in TME change in NSCLC and breast cancer.

TRMs reside in tissues for long periods of time and are
mainly derived from macrophage precursor cells during
embryonic development. Monocyte derived TAMs mainly
differentiate from the circulation and migrate from
peripheral blood monocytes into the TME [43]. Thus, the
heterogeneous categorization of TAMs according to their
origin and function, to be elaborated next, has important
implications for basic research and clinical applications.

The functional heterogeneity of TAMs
Macrophages are thought to phagocytose tumors and activate
antitumor immunity [44]. However, it has been shown that
macrophages encourage tumor development by boosting
cancer cell invasion and metastasis [45], stimulating
angiogenesis [46], and supplying growth factors conducive

to cancer [47]. Moreover, they have been found to spread to
malignant tumors [48]. However, different macrophage
populations with opposing pro- and anti-tumorigenic
activities may coexist in the same cancer type [49].
Although some studies have classified macrophages into M1
antitumor and M2 tumor-promoting types, such
classifications are simplistic and difficult to perform within
the TME. It is more advantageous to consider macrophages
as existing along a spectrum of phenotypes, wherein
molecular and genetic features coexist [50] (Fig. 2).

TAMs’ pro-tumoral behaviors, such as tumor initiation,
angiogenesis, metastasis, drug resistance, and antitumor
immunosuppression, have been well investigated [51]. By
fostering genetic instability, feeding cancer stem cells,
facilitating metastasis, impeding the TME through
metabolites, and suppressing protective adaptive immunity,
TAMs contributed to tumor progression at multiple levels
[4,52].

TAMs are involved in all stages of tumor progression, are
strongly correlated with poor prognosis, and play a crucial
role in the interaction between cancer cells and the TME
[4,53]. There is a strong correlation between TAMs
infiltration and tumor proliferation. TAMs contribute to
tumor invasion and metastasis by releasing extracellular
matrix (ECM) degrading enzymes. Several
metalloproteinases, such as matrix metalloproteinases-2
(MMP-2), MMP-9, serine proteases and cathepsins, have
been demonstrated to break down the ECM, allowing tumor
cells to escape and spread, and facilitating the migration of
tumor cells [54,55]. Thus, tumor metastasis and TAM
infiltration are inextricably linked.

To exert their proangiogenic effects, TAMs coordinate
the expression of several cytokines, such as IL-1, IL-8 and

FIGURE 2. Functional heterogeneity of TAMs. TAMs have long been known to promote tumor development. During tumor metastasis, TAMs
promote tumor cell metastasis and invasion by secreting various types of matrix metalloproteinases, proteases and cathepsins to degrade the
matrix. TAMs inhibit the tumor suppressor function of CD8+ T cells and NK cells by secreting arginase1, CCL22, oxygen radicals, and
expressing CD24, and increase the tumor-promoting effect of Tregs. In addition, TAMs are also able to secrete IL-1/8, Hypoxia-Inducible
Factor 1 (HIF-1), and TNF-α to promote tumor angiogenesis. However, TAMs have also been reported to have tumor suppressor
function. Platelets, by secreting HRG, are able to increase the expression of CXCL9 on the surface of macrophages and decrease the
expression of secreted phosphoprotein-1 (SPP1), thus contributing to the development of macrophages toward TAMs with anti-tumor
properties. In addition, a subpopulation of TAMs identified as TIM4+FOLR2+ has been reported to have antitumor activity.

STRATEGIES TO TARGET TAMS 365



tumor necrosis factor α (TNF-α). Endothelial cell
proliferation, matrix remodeling, and spatial or temporal
vascularization all aided by the coordinated expression of
these molecules [56,57]. Under hypoxic conditions, together
with the upregulation of hypoxia-inducible transcription
factors, TAMs appear to reshape TME into proangiogenic,
prometastatic, and immunosuppressive situation [58].
Consecutively, TAMs further strengthen tumor viability by
promoting angiogenesis.

In addition, immune killing mediated by tumor-specific
T cell and natural killer (NK) cells can be modulated by
TAMs. TAMs can limit CD8+ T cell proliferation directly
through arginase 1 and oxygen radicals. To further suppress
the antitumor immune response of T cells, TAMs recruit
Tregs via CCL22 [59]. TAMs are also engaged in tumor
immune escape, for instance, CD24 interacts with sialic acid
binding Ig like lectin 10 (Siglec-10) on TAMs to facilitate
the immune escape of tumor cell [60]. Overall, TAMs
exhibit immunosuppressive effects that promote tumor
proliferation.

Although a large number of studies have reported that
TAMs promote cancer growth and invasion, there is a
growing number of articles that focus on the key role played
by different TAMs subpopulations in supporting cancer
suppressive immune responses [42,61–63].

Prior to the initiation of tumor development, healthy
mammary glands were populated with FOLR2+

macrophages. FOLR2+ macrophages gather with CD8+ T
cell aggregates in the cancer stroma close to the vasculature,
indicating better survival in patients with breast cancer [42].
Similarly, a particular group of TIM4+FOLR2+ macrophages
that localize in the T-cell zone of tumor-associated tertiary
lymphoid structures (TLS) is topographically different from
typical TAMs, which is positively related to a better

prognosis in several tumor types [64]. These results suggest
that FOLR2+ macrophages are associated with better
survival prognosis.

In the TME, the level of histidine-rich glycoprotein
(HRG), which is mainly derived from the plasma or
platelets, is low [65]. Reversing TAM polarization by HRG
depends heavily on the downregulation of placental growth
factors. In order to reduce cancer development and
metastasis, HRG is crucial in inducing antitumor immune
responses and vascular normalization by regulating
macrophage polarization [63]. HRG plays a key role in
macrophages and induces antitumor effects.

Furthermore, the expression of two genes, CXCL9 and
SPP1, which determine macrophage polarity, represents a
fundamental characteristic of the TME. The quantity of
antitumor immune cells in cancer and treatment efficiency
may be determined by the CXCL9:SPP1 ratio [61].

There is significant heterogeneity in TAMs across
different cancer types. Recognizing and differentiating
various TAM subtypes is crucial for providing personalized
treatment strategies for patients with cancer.

Tumor therapy by targeting TAMs
Because of their pro-tumoral functions, TAMs have been
considered potential targets for tumor suppression, and
multiple strategies targeting TAMs, such as decreasing
TAMs infiltration, inducing TAMs depletion, and TAMs
reprograming (Fig. 3) (Table 1), are currently undergoing
preclinical research and clinical trials.

TAMs recruitment inhibition
In animal models of esophageal squamous cell carcinoma,
blocking the CCL2-CCR2 axis significantly reduces
carcinogenesis, which is partly caused by the suppression of

FIGURE 3. Single-agent tumor therapy strategies targeting TAMs. The current mainstream therapeutic strategies for targeting TAMs are
mainly in the following three categories: one is to inhibit the recruitment of TAMs, and common targets mainly include inhibition of CSF-
1R and CCR2 expression on monocytes and M-MDSC, inhibition of CXCR4 expression on tumor cells, as well as the release of CSF1,
CCL2 and other factors. Secondly, targeting CSF1R, CCR2, TRAIL, M2pep expressed on pro-tumor-associated TAMs to remove TAMs.
Lastly, reprogramming of pro-tumorigenic TAMs to tumor-suppressive TAMs through activation of CD40, inhibition of PI3Kγ, CD47, etc.
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M2 polarization and TAMs recruitment [66]. The human
anti-CCL2 antibody, carlumab, formerly known as
CNTO888, prevents CCL2 from interacting with CCR2 [67].
In patients with prostate cancer, the administration of
CNTO888 dramatically reduces microvascular density,
decreases CD68+ macrophage infiltration, and considerably
slows tumor growth [68]. However, in a phase 2
(NTC00992186) clinical trial, carlumab did not exhibit
anticancer efficacy when used alone in metastatic castration-
resistant prostate cancer, despite its good tolerability [69].
Inhibition of TAMs recruitment by CCL2 is an attractive
target; however, more clinical trials are needed to validate
this hypothesis.

The recruitment of the TAMs is further aided by the
increase of stromal cell-derived factor 1α (SDF-1α/CXCR4)
that is brought on by hypoxia, inflammation and tumor
progression [70]. In a hepatic cell carcinoma mice model,
AMD3100’s inhibition of CXCR4 alleviated local
immunosuppression and increased the efficiency of anti-

programmed cell death-1 (PD-1) treatment [56,71].
Furthermore, because CXCR4 is a unique vascular marker
of angiogenesis and is expressed by TAMs via the ERK
pathway, CXCR4 inhibition may work in conjunction with
anti-angiogenic medications [72,73]. Targeting CXCR4 in
various cancers involves the use of several antagonists,
including BL-8040, BKT-140, and ulocuplumab (BMS-
936564) [74–76]. In patients with metastatic pancreatic
cancer, BL-8040’s safety and effectiveness are being studied
in one ongoing phase 2 clinical research (NCT04543071).
Another phase 2 clinical trial, NCT02826486, demonstrated
the effectiveness and safety of BL-8040 in patients with
PDAC [77]. A single-arm trial (NCT01010880) found that
administering BKT-140 to patients with multiple myeloma
improved their prognosis, while maintaining safety.
Additionally, ulocuplumab, a human monoclonal anti-
CXCR4 antibody, prevents CXCR4 from attaching to
CXCL12. Ulocuplumab treatment is safe, has manageable
side effects, and is associated with a high response rate in

TABLE 1

Single drug therapy targeting TAMs

Mechanism of action Agent name Target Clinical
phase

Tumor type Trial number Status

TAMs recruitment inhibition Carlumab CCL2 2 Prostate cancer NCT00992186 COMPLETED

1 Solid tumors NCT00537368 COMPLETED

BMS-936564 CXCR4 1 Acute myeloid leukemia NCT01120457 COMPLETED

BL-8040 CXCR4 2a Acute myeloid leukemia NCT01838395 COMPLETED

BKT-140 CXCR4 1/2 Multiple myeloma NCT01010880 COMPLETED

PLX3397 CSF1R 2 Melanoma NCT02071940 COMPLETED

1/2 Acute myeloid leukemia NCT01349049 COMPLETED

2 Hodgkin lymphoma NCT01217229 COMPLETED

1 Solid tumors NCT01004861 COMPLETED

TAMs depletion Trabectedin Caspase-
8

2 Breast cancer NCT00050427 COMPLETED

2 Prostate cancer NCT00072670 COMPLETED

2 Pleural mesothelioma NCT02194231 COMPLETED

Lurbinectedin Caspase-
8

1 Solid tumors NCT05101265 RECRUITING

1 Solid tumors NCT04638491 RECRUITING

2 Pleural mesothelioma NCT03213301 COMPLETED

Reverse TAMs into anti-
tumoral cells

Hu5F9-G4 CD47 1 Solid tumors NCT02216409 COMPLETED

1 Haematological malignancies NCT02678338 COMPLETED

PI3K-α
inhibitor

PI3K 2 Breast cancer NCT02506556 COMPLETED

PI3K δ/γ
inhibitor

PI3K 1 T-cell lymphoma NCT02567656 COMPLETED

PI3K inhibitor PI3K 1/2 Head and neck cancer NCT01816984 COMPLETED

PI3K inhibitor PI3K 1 Large granular T lymphocytic
leukemia

NCT05676710 RECRUITING

Sotigalimab CD40 1 Solid tumors NCT02482168 COMPLETED

2 Melanoma NCT04337931 COMPLETED
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patients with myeloma [78]. It has also been studied in
hematological cancers (NCT01120457 and NCT01359657).
These results suggested that CXCR4 is a promising target
for cancer treatment.

In addition to the aforementioned signals, there is a
negative correlation between CSF1R+ macrophages within
tumors and patient survival, across a wide range of tumor
types. Blocking CSF1R signaling is an appealing method to
remove TAMs [12,79]. To counteract the effects of colony-
stimulating factor 1 (CSF1), a primary differentiation factor
of TAMs, the monoclonal humanized antibody RG7155 was
engineered [80]. CD163+ macrophages can be eliminated by
RG7155 therapy and this effect is reproduced in
differentiated macrophages in vitro. However, there are
substantial interpatient variations in the extent to which
TAMs are depleted, spanning from 40% to 90% [81].
Macrophage polarization by IL-4 results in an
immunoregulatory CD206+ macrophage phenotype, whereas
macrophage polarization by IL-10 results in an
immunosuppressive CD163+ macrophage phenotype with
tissue-remodeling abilities [82,83]. CD206+ macrophages
developed in vitro require less CSF1 for survival than
CD163+ macrophages. Furthermore, CD206+ macrophages
are resistant to CSF-1R signaling suppression and are less
dependent on STAT6 signaling, whereas STAT1 activation
is critical for their survival. It is possible that the IL-4-
regulated component maintains STAT1 signaling, which is
necessary for CD206+ macrophage survival because RG7155
effectively blocks active CSF-1R signaling via STAT1 [81].
Clinical objective responses were observed in individuals
with diffuse-type giant cell tumor (Dt-GCT) after treatment
with RG7155, which was associated with dramatic decreases
in CSF-1R+CD163+ macrophages [80]. Patients with Dt-
GCT had been further studied to determine the efficacy,
safety, and tolerability of RG7155. Twenty-four (86%) of the
twenty-eight patients reached an objective improvement,
with two (7%) showing a complete improvement [84].
RG7155, a CSF1-targeting drug, is a promising candidate for
the treatment of patients with clinical tumors.

Most patients with Dt-GCT treated with another specific
inhibitor of CSF1R, PLX3397, experienced durable reductions
[85]. It can also cross the blood-brain barrier in mouse
models. Although PLX3397 is safe and easily passes the
barrier, it has been proven ineffective against Glioblastoma
(GBM). Further combined studies are required [86].
However, it is crucial to understand that this medication
has a boxed warning regarding its potential for significant
and even fatal liver damage [87]. Several PLX3397 trials,
either alone or in combination with other treatments, have
been terminated or abandoned due to various reasons,
including subpar business decisions or insufficient clinical
outcomes (NCT01826448, NCT01499043, NCT01349036,
NCT02452424).

TAMs depletion
It is possible to directly counteract the detrimental effects of
TAMs on the immune system’s response against tumors by
eliminating TAMs from the body. M2pep specifically binds
to murine M2-like TAMs [88]. Although the binding
affinity between M2pep and M2 macrophages is limited,

M2pep, combined with the proapoptotic peptide KLA
(M2pepKLA), was used to decrease the TAM population;
however, frequent administration and high doses are
required [89]. Intravenous injection of M2pep specifically
targets TAMs in mice with colon or breast carcinoma. This
strategy shows promise for selective targeting of TAMs [90].

Trabectedin kills cancer cells directly by obstructing
several transcription factors, such as DNA repair pathways
and DNA-binding proteins. Moreover, myelomonocytes are
the only cell type in which trabectedin triggers caspase-8-
dependent apoptosis via expression of Fas and tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL)
receptors [91]. In 2015, the Food and Drug Administration
(FDA) authorized trabectedin for the treatment of
leiomyosarcoma or liposarcoma [92]. The selective depletion
of mononuclear phagocytes has been suggested to be a
crucial element in its anticancer effect. In a phase 2 study,
patients with advanced breast cancer treated with trabectedin
showed better objective response rates and longer
progression-free survival (NCT00050427). According to
current clinical trials, trabectedin is a promising candidate
for the treatment of tumors by targeting macrophages.

Lurbinectedin, a trabectedin analog, demonstrates strong
apoptotic potential in macrophages. As a result, it significantly
reduces the number of macrophages in the TME and
circulation in mouse models [93]. These trials recruited
patients with advanced solid tumors to assess their safety
and efficacy (NCT05101265, NCT05072106, and
NCT04638491). However, because macrophages play an
important role in host defense and the regulation of
homeostasis, neither trabectedin nor lurbinectedin can
completely prevent the adverse effects associated with
unselective macrophage consumption.

Reverse TAMs into antitumoral cells
Although tumor suppression can be achieved by reducing the
number of TAMs in the TME, reversing tumor-promoting
TAMs into antitumor immune cells seems to be a smarter
strategy, as shown in experimental investigations [6,94].
TAMs can be phagocytosed and can inhibit tumor growth
by triggering antitumor immune responses. This provides
evidence that the therapeutic manipulation of macrophage
plasticity is a viable option for reviving the anticancer effects
of TAMs. Thus, reprogramming TAMs into an “immune-
beneficial” phenotype offers an opportunity to change the
immunosuppressive TME, providing a more potent strategy
for optimizing treatment options [95].

Signal regulatory proteins (SIRP) is linked to poor
patient survival and can recognize CD47, which has been
found to be overexpressed in cancer cells, as a “don’t eat
me” signal. Following therapy with CD47 antibodies, cancer
cell phagocytosis by macrophages was restored [96].
Notably, cholangiocarcinoma exhibits excessive CD47
expression. Disruption of the CD47-SIRP connection
prevents cholangiocarcinoma progression by encouraging
the phagocytosis of TAMs [97]. Hu5F9-G4, a CD47-
targeting antibody, has been tested in several phase 1/2
clinical trials, where it demonstrated its efficiency and safety
in both hematological and solid malignancies
(NCT02216409, NCT02678338, NCT02953782).
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Apart from the CD47-SIRPα signal, phosphoinositide 3
kinase γ (PI3Kγ) is involved in different forms of
macrophage. During the process of inflammation and tumor
formation, PI3Kγ, mainly expressed in myeloid cells,
regulates a key switch between immunological activation
and repression. To enhance immune suppression during
tumor progression, PI3Kγ signaling suppressed nuclear
factor kappa B (NF-κB) activation via Akt and mTor while
boosting C/EBP activity [98]. Without directly targeting
cancer cells, a phase 1 clinical trial (NCT02637531)
preliminary proved that inhibiting PI3Kγ by a selective
inhibitor can enhance T cell cytotoxicity [99]. Therefore,
PI3Kγ also plays an important role in macrophage
polarization.

Generally, CD40 is expressed on antigen-presenting cells.
IL-12, which is essential for T-cell priming, is released as a
result of the binding of CD40 and CD40L, which also boosts
major histocompatibility complex (MHC) expression [100].
CD40 agonist treatment of macrophages resulted in
considerable TAM reprogramming, which creates an
inflammatory environment that prompts effective T cell
responses. In a phase 1 clinical trial, the CD40 agonist SEA-
CD40 showed anticancer efficacy, causing a complete
response in a patient with follicular lymphoma [101]. In
addition, phase 1/2 trials (NCT02482168 and
NCT04337931) have evaluated the safety and tolerability of
the CD40 agonistic APX005M in solid tumors.

Lysosomal acidity is a characteristic of macrophages, and
M2-like macrophages have more acidic lysosomes than M1
macrophages [102]. Using chloroquine, a proven anti-
malarial drug, in combination with alkalinity, can increase
the pH value within lysosome in M2-like macrophage and
switch TAMs toward M1 phenotype through lysosomal
calcium induced p38 and NF-κB activation [102]. Moreover,
in preclinical tumor models, chloroquine mediates
macrophage-dependent antitumor T cell immunity. These
results suggest that lysosomal acidity could be a target for
reprogramming the phenotype of TAMs.

Combination strategies based on TAMs
Broadly speaking, targeting TAMs is also a form of
immunotherapy because macrophages are an important
component of innate immune cells. Various therapeutic
modalities have been reported in combination with targeted
TAMs, including a combination of immune checkpoint
inhibitors, chemotherapy, radiotherapy, and targeted
therapy (Fig. 4) (Table 2).

Targeting TAMs combined with immune checkpoint therapy
Currently, high levels of TAM are found in the TME of
immunotherapy-resistant patients. During cancer
progression, massive and rapid shifts occur in macrophage
subpopulations, which are associated with the effectiveness
of immunotherapy. These findings imply that, to improve

FIGURE 4. Combination tumor therapy strategies for targeted TAMs. The treatment of targeted TAMs is mainly synergistic immunotherapy
or other common clinical treatment. Common modalities of combination immunotherapy are: PD-1 in combination with PI3Kγ antagonists,
PD-L1 in combination with CD40/CD47/CXCR4 inhibitors, PD-L1/PD-1 in combination with CSF1R receptor inhibitors, and PD-L1/PD-1 in
combination with CCR2/CCR5 receptor inhibitors. Other common combinations include, radiotherapy combined with CSF1R antagonists,
radiotherapy combined with CCR2/5 antagonists, chemotherapeutic agents combined with CCL2 antagonists and CSF1R antagonists, and
chemotherapy combined with CD40 agonists.
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TABLE 2

Types of combination therapy

Types of
combination
therapy

Agent name Target Clinical
phase

Tumor type Trial number Status Combination

Combination
with
immunotherapy

BL-8040 CXCR4 2 Pancreatic cancer NCT02826486 COMPLETED Pembrolizumab (Anti-
PD-1)

2 Pancreatic
adenocarcinoma

NCT04543071 RECRUITING Gemcitabine and nab-
paclitaxel and cemiplimab
(Anti-PD-1)

RG 7155 CSF1R 1 Solid tumors NCT02323191 COMPLETED Atezolizumab (Anti-PD-
L1)

PEXIDARTINIB CSF1R 1 Pancreatic or
colorectal cancers

NCT02777710 COMPLETED Durvalumab (Anti-PD-
L1)

BMS-986227 CSF1R 1 Advanced cancers NCT03158272 COMPLETED Nivolumab (Anti-PD-1)

1 Advanced cancers NCT02526017 COMPLETED Nivolumab (Anti-PD-1)

Trabectedin Caspase-
8

1/2 Sarcoma NCT05876715 RECRUITING Nivolumab and
ipilimumab (Anti-PD-1/
CTLA-4)

Hu5F9-G4 CD47 2 Hodgkin
lymphoma

NCT04788043 RECRUITING Pembrolizumab (Anti-
PD-L1)

Sotigalimab CD40 1 Melanoma or
renal cell
carcinoma

NCT04495257 RECRUITING Nivolumab and
ipilimumab (Anti-PD-1/
CTLA-4)

1/2 NSCLC or
melanoma

NCT03123783 COMPLETED Nivolumab (Anti-PD-1)

CCR2/CCR5
dual antagonist

CCR2/
CCR5

1/2 PDAC NCT03767582 RECRUITING Nivolumab (Anti-PD-1)

1/2 Solid tumors NCT03184870 COMPLETED Chemotherapy or
nivolumab (Anti-PD-1)

CD40 agonist CD40 1 Melanoma NCT01103635 COMPLETED Tremelimumab (Anti-
CTLA-4)

Combination
with others

Carlumab CCL2 1 Solid tumors NCT01204996 COMPLETED Chemotherapy

BMS-936564 CXCR4 1 Multiple myeloma NCT01359657 COMPLETED Lenalidomide/
Dexamethasone or
Bortezomib/
Dexamethasone

1 Solid tumors NCT01494688 COMPLETED Paclitaxel

PLX3397 CSF1R 1/2 Sarcoma or
peripheral nerve
sheath tumors

NCT02584647 RECRUITING Sirolimus

1 Prostate cancer NCT02472275 COMPLETED Radiation and anti-
hormone therapy

1b/2 Breast cancer NCT01596751 COMPLETED Eribulin

1/2 Glioblastoma NCT01790503 COMPLETED Radiation therapy and
temozolomide

1 Solid tumors NCT01525602 COMPLETED Paclitaxel

Trabectedin Caspase-
8

2 Pancreatic cancer NCT01339754 COMPLETED Chemotherapy

2 Sarcomas NCT05131386 RECRUITING Radiation therapy

1/2 Leiomyosarcoma NCT05099666 RECRUITING Doxorubicin

1 Solid tumors NCT01980667 COMPLETED Cisplatin

(Continued)
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immunotherapies, an improved comprehension of diverse
TAMs and their functions in immunotherapy is essential
[103,104].

PD-1, PD-1 ligand 1 (PD-L1), and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) antagonists are
ineffective as single treatments in halting the progression of
PDAC. However, the combination of immune checkpoint
blockers (ICBs) with CSF1R inhibition strongly evokes
tumor regression, even in advanced malignant tumors. In
pancreatic tumors, inhibition of CSF1/CSF1R signaling
reduces the number of CD206+ TAMs and reprograms
macrophages to aid in antitumor immunity [105].

Osteopontin (OPN), which is produced by cancer cells,
activates the CSF1-CSF1R pathway in macrophages,
promoting PD-L1 expression in HCC and facilitating the
chemotactic migration of macrophages. OPNhigh tumor-
bearing mice live significantly longer when treated with a
combination of anti-PD-L1 and the CSF1R inhibitor
PLX3397 [106]. Additionally, treatment with the CSF1R
inhibitor PLX3397 increases CD8+ T cell infiltration in lung
squamous cell carcinoma mouse models, which improves
the efficiency of PD-1 monoclonal antibodies and slows
tumor growth [107]. Although there was little therapeutic
effect, pembrolizumab combined with ARRY-382 was well
tolerated in a phase 1b/2 study (NCT02880371). Another
CSF1R inhibitor, BLZ945, in combination with PD-1
monoclonal antibodies has been shown to increase the
efficiency of immunotherapy. In several advanced solid
tumors, a CSF1R inhibitor combined with a PD-1/PD-L1
antagonist showed improved efficacy and fewer side effects
in several completed clinical trials (NCT02777710,
NCT02323191, NCT03158272, and NCT02526017).
However, some combination therapies were terminated
because of poor results (NCT02452424, NCT02880371,
NCT02829723, and NCT03599362). The use of CSF1
inhibitors can improve the TME; however, the use of PD-1/
PD-L1 inhibitors in combination with PD-1 inhibitors in
clinical practice has shown no effect, indicating that there
are more mechanisms that need to be explored.

Considering the limited efficiency of immunotherapies
and the crucial immunosuppressive role of TAMs in the TME,
a CCR2/CCR5 antagonist, in combination with anti-PD-1/
PD-L1, may be a promising treatment. BMS-813160, a dual
CCR2/CCR5 antagonist, is currently being tested in a number
of clinical trials, in combination with immunotherapies, to

treat advanced cancers, such as PDAC, HCC, and NSCLC
(NCT03496662, NCT04123379, NCT03767582). From this
perspective, CCR2/CCR5 antagonist are expected to improve
the efficacy of immunotherapy.

Recent data suggests that the TME is modified by
CXCR4. Immunotherapy sensitivity and T cell infiltration
are improved by inhibiting CXCR4 and its ligand CXCL12
[108]. The CXCR4 antagonist BL-8040 (motixafortide), in
combination with pembrolizumab, was shown to be safe
and effective and to have immunobiological effects in a
phase 2a clinical study of patients with metastatic PDAC
(NCT02826486). However, some trials involving a
combination of CXCR4 and immunotherapy involving
metastatic pancreatic cancer or acute myeloid leukemia have
been terminated or suspended due to poor results
(NCT02907099, NCT03154827). Therefore, the efficacy of
CXCR4 antagonists in combination with
immunotherapeutic drugs needs to be verified in clinical trials.

In tumor cell evasion of antibody-dependent clearance
by phagocytes, the upregulation of CD47 appears to play a
significant and perhaps ubiquitous role. Blocking CD47
alone does not improve antitumor efficiency in a mouse
model of melanoma. However, the combination of CD47
antibody and ICBs strongly enhanced antitumor effects
[109]. Similarly, in MC38-bearing mice, tumor targeting and
treatment efficacy were dramatically improved using
bispecific anti-PD-L1-SIRP, by inhibiting CD47 and PD-L1,
compared with that of monotherapy [110]. Magrolimab
(Hu5F9-G4), a CD47 blocker, and anti-PDL1 together
resulted in a stable disease in 56% of the patients in an
ovarian cancer phase 1b trial (NCT03558139). A study on
atezolizumab in combination with Hu5F9-G4 in patients
with acute myeloid leukemia was terminated because of
sponsor-related issues (NCT03922477). In another phase 2
clinical trial, the study of Hodgkin’s lymphoma treated with
magrolimab and pembrolizumab is still ongoing
(NCT04788043). These results suggest that CD47 blockers
can effectively improve the efficacy of immunotherapy.

PI3Kγ, which is overexpressed in myeloid cells, can be
selectively targeted pharmacologically to restore sensitivity
to ICBs. The aim of reshaping the TME and promoting
cytotoxic T cell-mediated tumor regression may be achieved
without directly targeting cancer cells. This goal is pursued
through the targeting of PI3Kγ using a selective inhibitor,
currently under examination in a phase 1 clinical study

Table 2 (continued)

Types of
combination
therapy

Agent name Target Clinical
phase

Tumor type Trial number Status Combination

Hu5F9-G4 CD47 1/2 Solid tumors NCT02953782 COMPLETED Cetuximab

1 Indolent B-cell
malignancies

NCT04599634 RECRUITING Venetoclax with
obinutuzumab

Sotigalimab CD40 2 Advanced
sarcoma

NCT03719430 RECRUITING Doxorubicin

RG 7155 CSF1R 1 Solid tumors NCT02760797 COMPLETED RO7009789 (CD40
Agonists)
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(NCT02637531). To overcome resistance to ICBs in patients
with high levels of suppressive myeloid cell infiltration in
tumors, new combination methods have been being
developed using a selective small molecule PI3Kγ inhibitor,
such as IPI-549 [111].

Preclinical results suggest that the combination of CD40
agonists with anti-PD1 might weaken anti-PD-1 resistance. In
a phase 2 clinical trial, a fraction of patients with melanoma
who received nivolumab plus APX005M (sotigalimab), a
CD40 agonist, experienced persistent and prolonged
responses owing to the favorable safety profile of the
combination [112]. In a phase 1 trial, individuals with
metastatic melanoma were treated with tremelimumab in
addition to the monoclonal antibody CP-870,893, a CD40
agonist (NCT01103635). In patients with melanoma, the
combination of APX005M and nivolumab demonstrated
therapeutic efficacy, with generally favorable tolerability and
safety (NCT03123783). Phase I/2 trials are being conducted
to test this combination in patients with melanoma, NSCLC,
or renal cancer (NCT02706353 and NCT03502330).
Therefore, CD40 is a promising target for improving
immunotherapy efficacy.

Some of the aforementioned trials have suggested that
immune checkpoint inhibitors in combination with TAM-
related inhibitors are effective in improving the survival
prognosis of patients, both in terms of reducing the side effects
of the drugs and increasing the efficiency of the therapy.
However, efforts to improve efficiency and overcome drug
resistance in combination therapies are needed in the future.

Targeting TAMs combined with others
Apart from the combination of targeting TAMs with
immunotherapy, TAM-targeted therapy is also used in
traditional therapies, such as radiation therapies and
chemotherapies.

Reducing macrophage infiltration into the TME is a key
strategy to overcome radioresistance and maximize the
therapeutic benefits of radio therapy (RT). Radiation results
in elevated serum CSF1 levels in patients with prostate
cancer. CSF1/CSF1R signaling is significant in the
recruitment of TAMs, which can reduce the efficiency of
radiotherapy. CSF1 inhibitors in combination with radiation
in clinical trials may result in better outcomes. In another
clinical trial, CCL2 levels were found to be reduced in
patients treated with GW2580 or PLX3397 [113]. This
confirms the results of a recent study that showed that
blocking CSF1 resulted in a dramatic decrease in CCL2
[114]. The number of M2 macrophages recruited to bladder
tumors and metastases after RT can be reduced by
suppressing the CCL2-CCR2 interaction with INCB3344
[115]. It has been established that decreasing macrophage
infiltration can improve the efficacy of RT when PXL3397, a
CSF1 inhibitor, is administered [116]. When paired with RT
and PD-1 therapy in a PDAC mouse model, the dual
inhibitor BMS-687681, which targets both CCR2 and CCR5,
significantly improved the survival rate [117]. Therefore,
drugs targeting TAMs may play an important role in
improving the efficacy of RT and reducing its side effects.

Radiotherapy dose also has a significant impact on the
efficacy of TAM-targeted drugs. High-dose radiotherapy can

induce angiogenesis by stimulating M2-polarized TAMs and
creating an environment conducive to tumor growth.
Medium-dose radiotherapy can effectively stimulate
phagocytosis by macrophages, whereas site-specific low-dose
radiotherapy is more likely to improve the efficacy of
combination therapy [118].

During chemotherapy, drug cytotoxicity causes tumor
cells to create monocyte recruitment factors that increase
macrophage infiltration into tumor lesions. The TME can be
reprogrammed to enhance antitumor immunity and
respond to cytotoxic therapy by blocking macrophage
recruitment in combination with chemotherapy [100].
Recruitment of CCR2+ monocytes may be affected by the
myelosuppressive effects of conventional chemotherapy.
Following chemotherapy in a mouse model of breast cancer,
intravital imaging revealed an increase in the number of
TAMs. This increase is mediated by an increase in stromal
CCL2 production [119]. Chemotherapy alone is insufficient
to prevent the recruitment of inflammatory monocytes to
the bone marrow. Systemic administration of the CCL2
antagonist, carlumab, in mice significantly attenuated
prostate tumor growth and decreased CD68+ macrophage
infiltration and the density of the tumor microvasculature in
preclinical studies [68]. The human IgG1 anti-CCL2
monoclonal antibody carlumab has been demonstrated
anticancer efficacy in both animal models and human
beings together with the application of classical
chemotherapy [120]. When used in combination with
docetaxel, carlumab also induced prostate cancer regression
and a significant decrease in tumor burden [67]. In
conclusion, targeting CCL2 can reduce the recruitment,
thereby effectively improving the efficacy of chemotherapy.

FOLFIRINOX is the traditional treatment for pancreatic
cancer. PF-04136309, a CCR2 inhibitor, blocks CCR2-positive
monocytes from leaving the bone marrow and migrating to
peripheral circulation, resulting in a better control of the
primary tumor [121]. Inhibiting CCR2 reduced the number
of TAMs and Treg cells in pancreatic tumors and increased
the number of CD8+ T cells. BMS-813160 is a CCR2/CCR5
dual antagonist. In a phase 1/2 research, patients with
colorectal and pancreatic cancer responded well to the
combination therapy of BMS-813160 with chemotherapy
(NCT03184870). However, when patients with PDAC were
treated with a CCR2 inhibitor, the number of CXCR2+

neutrophils increased as a compensatory response. The
prognosis of patients with PDAC worsens with an increase
in CXCR2+ neutrophils. Therefore, the individualized use of
CCR2 inhibitors in different scenarios to effectively avoid
side effects is extremely important in combination with
chemotherapy.

Tumor regression is seen in certain patients after
combining a CD40 agonist with gemcitabine treatment,
which is promising because CD40 activation by CP-870,893
can reverse the immunosuppressive TME and generate
anticancer T cell responses [122]. Combination therapy with
an anti-CD40 monoclonal antibody and CSF-1R inhibitor
significantly reduced tumor growth in a mouse model of
melanoma. Various TAMs subpopulations that secrete
MMP9 or CCL17/22, indicative of an M2-like state, are
present in primary tumors. The frequency of these subsets
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was lowered by combination therapy, and a new inflammatory
TAM population was induced, which secreted TNF-α and IL-
6 [123]. The combined stimulation of CSF-1R and CD40 on
macrophages is sufficient to generate a proinflammatory
TME that re-energizes an efficient T-cell response in
transplanted tumors that are either sensitive or insensitive
to immune checkpoint blockade [124]. A phase 2 clinical
trial is ongoing to assess the effectiveness and safety of
combining doxorubicin with APX005M (another CD40
agonist) for the treatment of sarcoma (NCT03719430). As
CD40 can convert TAMs to do antitumor activity, CD40-
targeting drugs combined with chemotherapy can effectively
improve the efficacy of chemotherapy.

Both CSF1 and IL-34 are produced by tumors in
response to conventional chemotherapy, leading to an
increase in the number of immunosuppressive TAMs in a
CSF1R-dependent manner [125]. A phase 1b/2 study of the
application of the CSF1R inhibitor PLX3397 with
Temozolomide and RT in patients with glioblastoma has
been completed (NCT01790503). Another randomized
phase 2 trial has finished examining the negative effects of
emactuzumab, an anti-CSF-1R monoclonal antibody, in
combination with paclitaxel and bevacizumab.
Emactuzumab can also reduce the number of TAMs in
individuals with solid tumors, whether alone or in
combination with paclitaxel (NCT01494688). In summary,
TAM-targeting drugs, with either conventional therapy or
immunotherapy, can play a role as a therapeutic adjuvant
by modulating the TME.

Summary

As the most abundant immune cell population in the TME,
TAMs are attracting increasing attention from researchers,
especially in the fields of tumor immunity and
immunotherapy. With the advancement of research
techniques, our understanding of TAMs has deepened.
Unlike traditional M1/M2 typing, TAMs allow for greater
population delineation by single-cell RNA sequencing in the
TME, leading us to recognize that there is extreme
heterogeneity in TAMs. Embryonic stem cell derived TRMs
are important components of the heterogeneous ontogeny of
TAMs. In addition, the tumor microenvironmental clues
induced transcriptional and epigenetic differences in
different TAM subpopulations, which determined the
functional heterogeneity of pro-tumoral and antitumoral
TAMs. Based on these findings, drugs against different
TAM targets have been developed and tested in clinical
trials, including single agents and combinations of immune
checkpoint inhibitors. In the future, the heterogeneity of
TAMs in different tumor types will be further revealed, and
precision immunotherapy targeting TAMs will be developed.
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