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Abstract: Extracellular vesicles (EVs) are membranous vesicular structures released from almost all eukaryotic cell types

under different physiological or pathological conditions. Growing evidence demonstrates that EVs can serve as mediators

of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.

Coronavirus disease 2019 (COVID-19) disease is caused by infection of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) of host cells in the respiratory system and various extra-pulmonary tissue/organs,

resulting in complications of multiple organ systems. As the cell surface receptor, angiotensin-converting enzyme 2

(ACE2) mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19. Recent studies have

found that ACE2 can be released with EVs, which have been shown to interfere with the entry of the virus into host

cells and thus may be involved in COVID-19 pathophysiology. In addition, ACE2, neprilysin (NEP), and thimet

oligopeptidase (TOP) are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or

angiotensin I to angiotensin 1-7, the latter of which has protective effects in counterbalancing the harmful effects of

angiotensin II in COVID-19 disease. This review summarizes the recent research progress regarding EV-associated

ACE2, NEP, and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.

Introduction

Cell membrane extracellular vesicles (EVs) are subcellular
membrane structures which play physiological and
pathological roles in human health and diseases [1,2]. EVs
are classified into three groups based on their size, including
exosomes (<100 nm), microvesicles (MVs) (<1 μm), and
apoptotic bodies (1–5 μm) [1,3,4]. Exosomes are formed by
the exocytosis of endosomal multivesicular bodies into the
extracellular milieu [1,2]. MVs are membrane vesicles
derived from the cell plasma membrane surface [1,2,5].
Apoptotic bodies are large membrane vesicles released in
the late stages of apoptosis and can carry nuclear fragments
and mitochondria [1,2]. EVs are generated during cell
activation, senescence, or programmed cell death, i.e.,
apoptosis, necroptosis, pyroptosis, and NETosis (a unique
neutrophil death) [1,2,4].

EVs are heterogeneous in size and composition [1,4–8].
Like their parental cells of origin, EVs have double-layer
lipid membranes and may contain cellular components from
the nucleus, cytoplasm, or cell membrane [1,4–8]. When
EVs bud off of their parental cells, they harbor a vast array
of bioactive molecules, including lipids, proteins, and
nucleic acids (DNA, RNA, siRNA, microRNA, and lncRNA)
[1,4–8]. EVs have been found in various biological fluids,
including blood, urine, bronchoalveolar lavage fluid (BALF),
and other body fluids, as well as in the tissues/organs of
both humans and animals [1,2,4].

Over the past few years, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection has caused
a global pandemic of the coronavirus disease-2019 (COVID-
19), resulting in over 771 million cases with over 6.96
million deaths worldwide according to statistical
information from the World Health Organization [9]. The
SARS-CoV-2 virus infects host cells by binding cell
membrane surface angiotensin-converting enzyme 2
(ACE2), a viral entry receptor in the respiratory system and
extra-pulmonary systemic tissue/organs in patients with
COVID-19 disease [10,11]. Interestingly, membrane
ACE2 can also be released with EVs (EV-ACE2) from
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SARS-CoV-2 infected cells (Table 1) [11,12], and elevated
levels of EVs have been detected in patients with COVID-19
disease [13]. Classically, ACE2 is an enzyme with activities
to convert angiotensin II to angiotensin 1-7 in the renal-
angiotensin system (RAS) [5,14]. Importantly, several
studies have reported elevated production of angiotensin II
and decreased production of angiotensin 1-7 in COVID-19
patients [15,16]. In addition, several other enzymes, i.e.,
neprilysin (NEP) [17] and thimet oligopeptidase (TOP)
[5,18], are also involved in angiotensin metabolism and
production of angiotensin 1-7 (Fig. 1). Studies from our and
other groups have found that both NEP [19] and TOP
[18,20,21] can be released with EVs (Table 1). Here, we
summarize recent research progress regarding EVs, their
association with ACE2, NEP or TOP enzymes, and their
relevant effect on angiotensin metabolism, as well as their
potential involvement in SARS-CoV-2 infection and
pathogenesis of COVID-19 disease.

Extracellular vesicles and viral infection
Increasing evidence suggests that EVs play important roles in
viral infections [1,4–6,8]. EVs can serve as vehicles for
intercellular communication and the exchange of bioactive
molecules between donor cells and recipient cells [1,4,8]. In
addition, ligands or other cell surface molecules on EVs can
bind to receptors of target cells, thus triggering intracellular
signaling and resulting in inflammatory or immune
responses [1,4,5,8].

EVs and viruses share similar physicochemical properties,
such as small size and heterogenous size distribution [22].
Furthermore, viruses can utilize EV endocytic routes to enter
noninfected cells and hijack the EV secretory pathway to exit
infected cells. Thus, both share common cellular entry and
biogenesis mechanisms [23,24]. Interestingly, a viral infection
of cells can trigger the production of EVs through different
mechanisms [25]. In turn, EVs from infected cells also play
pathogenic roles in viral infectious diseases [26]. The EVs
from infected cells may carry viral components or even
entire virions and transfer viral components from infected
cells to uninfected cells [23–25,27], thus promoting the
spread of viral infection. In addition, Caobi et al. (2020)
reported that EVs from virus-infected cells carry viral
antigens that can be recognized by immune cells, leading to
the activation of antiviral immune responses [28]. EVs from
uninfected cells may contain antiviral interferons, inducing
an antiviral state for restriction of viral replication [25,29].

Role of extracellular vesicles in COVID-19 disease
Like other viruses, SARS-CoV-2 can induce EV release from
different cell types in infected patients [30,31]. In COVID-
19 disease, the SARS-CoV-2 virus invades human host cells
by infecting mucosal cells that express ACE2, the receptor
for binding and entry of the SARS-CoV-2 virus into host
cells [32–35]. The virus binds the host ACE2 receptor via
two virus surface spike proteins [32]. As the host cell entry
receptor, ACE2 likely plays a key role in determining host

FIGURE 1. Angiotensin metabolizing enzymes, EVs, and COVID-19 disease. Schematic illustration of angiotensin metabolism and
angiotensin metabolizing enzymes, ACE2, NEP, and TOP, which can be released with EVs, as well as their roles in the metabolism of
angiotensin I, and angiotensin II. This figure also highlights the potential involvements of angiotensin II, ACE2, and angiotensin 1-7 in
COVID-19 disease. ACE2: angiotensin-converting enzyme 2; NEP: neprilysin; TOP: thimet oligopeptidase; EV: extracellular vesicles;
COVID-19: coronavirus disease 2019; Mas receptor (MASR).

TABLE 1

Angiotensin metabolizing enzymes and EVs

Enzymes Processing of angiotensin Cellular location Release with EVs COVID-19 involvement References

ACE2 Angiotensin I Plasma membrane Yes Yes [11,12]

Angiotensin II

NEP Angiotensin I Plasma membrane Yes Yes [19]

TOP Angiotensin I Cytosolic, Plasma membrane Yes Not yet investigated [5]

Note: ACE2, angiotensin-converting enzyme 2; NEP, neprilysin; TOP, thimet oligopeptidase; EV, extracellular vesicles.
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cell tropism and infectivity by the virus [32]. ACE2 is
abundantly expressed not only in the respiratory system
[10] but also in multiple extra-pulmonary tissues, directing
the viral damage of host cells towards different organ
systems [10,11,36]. Some studies have reported elevated
ACE2 expression in infected organs of COVID-19 patients
[37,38], while other studies suggest SARS-CoV-2 binding
may result in downregulation of ACE2 expression [39,40].
There is, thus, significant controversy regarding the role of
ACE2 in COVID-19 pathogenesis.

As discussed earlier, SARS-CoV-2 infection occurs
through interaction between the viral spike protein and the
host receptor ACE2 [29,41]. ACE2 has been detected in EVs
from pulmonary cells in COVID-19 BALF [42,43], airway
liquid secretions for pathological evaluation of various lung
diseases [44,45], including COVID-19 lung diseases. It is
noteworthy that EVs containing high levels of ACE2 in
BALF from patients with severe COVID-19 are associated
with reduced intensive care unit (ICU) and hospitalization
times [43]. Furthermore, the level of ACE2 on the ACE2-EV
surface is positively correlated with its ability to block
SARS-CoV-2 [46]. El-Shennawy et al. (2022) reported that
EV-associated ACE2 shows 135-fold higher potency in
blocking the binding of SARS-CoV-2 viral spike protein to
human host cells in vitro as compared to vesicle-free
recombinant ACE2, thus blocking viral infection of host
cells by acting as decoy sites of binding [11]. Importantly,
studies using ACE2-expressing EVs generated from
engineered cell lines, which were transfected with ACE2-
expressing plasmids for stable ACE2 expression, have shown
protective potential in the treatment of COVID-19 disease
[11,43,47,48]. Therefore, engineered ACE2-EVs may serve
as an alternative therapeutic strategy in addition to other
treatment methods, while plasma levels of ACE2-EVs may
serve as a clinical biomarker for the prognosis of COVID-19
disease severity.

EVs from viral infected host cells contain viral
components, including viral RNA and proteins, which may
contribute to viral replication and immune evasion [30,31].
In addition, EVs also carry host proteins, i.e., ACE2, CD9,
transmembrane serine protease 2 (TMPRSS2), which can
mediate the viral entry process and COVID-19 infection by
aiding in viral incorporation into host cells [41,49–52].
ACE2-carrying EVs can compete with host cell surface
ACE2, blocking SARS-CoV-2 virus binding and infection of
host cells [11]. However, ACE2-carrying EVs may also be
transferred to target receptor-null cells, thus making these
previously naïve cells more susceptible to viral infection
[53]. In addition, EV-associated TMPRSS2 can cleave the
spike protein of the SARS-CoV-2 virus, which enables the
virus to bind to the receptor, and subsequently enter host
cells [49,52]. Previous studies have shown that CD9 may
collaborate with TMPRSS2 in cleaving viral fusion
glycoproteins and facilitate quick entry of coronavirus (e.g.,
MERS-CoV) into lung cells [54]. Studies also showed that
membrane surface CD9 may also be involved in entry and
exit mechanisms in respiratory viruses, including SARS-
CoV-2 virus [48,55–57].

EVs have been implicated in the progression of cytokine
storm, the main mechanism for severe illness and mortality in

COVID-19 patients [50]. EVs derived from immune cells
or lung epithelial cells in COVID-19 patients carry
pro-inflammatory cytokines, chemokines, and damage-
associated molecular patterns (DAMPs) [29,58], which all
enhance inflammatory responses. An array of lung cells, such
as epithelial cells, endothelial cells, and alveolar macrophages,
can all release EVs [50,59], contributing to elevated levels of
EVs in COVID-19 patients. Higher concentrations of EVs
have been detected in the pulmonary edema fluid of patients
with acute respiratory distress syndrome compared to
controls [60]. In lipopolysaccharide (LPS)-induced cytokine
storm models, EVs in BALF can initiate inflammatory
responses in the lung via enhanced expression of tumor
necrosis factor-α, interleukin-6, and junction proteins [61].
Administering natural sphingomyelinase inhibitor GW4869 in
LPS-induced lung inflammation mouse models significantly
decreased the level of pro-inflammatory cytokines and
reduced lung elastance and alveolar collapse, thus providing
protection against the effects of cytokine storm [62], probably
due to the inhibitory effects of GW4869 on EV generation
[63]. These studies support the involvement of EVs in
initiating and aggravating cytokine storm.

It has long been known that EVs carry molecules, i.e.,
tissue factor (TF) and phosphatidylserine (PS), with pro-
coagulant activities [1,64], which is also important in
propagation of the pro-coagulant state in certain serious
complications of COVID-19 disease [13,65]. EVs from
COVID-19 patients have been shown to carry increased
levels of biologically active TF [66–68], a key initiator of the
extrinsic coagulation pathway, or membrane PS [69], an
essential cofactor of coagulation, on EV surfaces. In fact,
TF-EV levels were markedly higher when associated with
COVID-19 and demonstrated increased fibrinolytic activities
as compared to coagulation processes associated with septic
shock in non-COVID-19 cases [66,70]. TF-EV activity has
been associated with COVID-19 disease severity and
mortality [67]. In addition, levels of TF-EV activity have
been found to correlate with plasma D-dimer, which is
known to be associated with thrombosis in COVID-19 [67].
Furthermore, SARS-CoV-2 infection causes systemic
inflammation and over-activation of the immune system
along with endothelial dysfunction and platelet activation,
which are the known functions of EVs in immune system-
related diseases [64,71]. All of the above lead to systemic
pro-thrombotic states, which result in micro-thrombosis
and multi-organ damage and failure in patients with
COVID-19 [70,72].

Extracellular vesicles, ACE2, angiotensin 1-7 axis and COVID-
19 disease
In addition to being the viral entry receptor for SARS-CoV-2
infection [10], ACE2 classically functions as an enzyme in the
renin–angiotensin system (RAS) to catalyze angiotensin
metabolism and regulate the balance between angiotensin II
and angiotensin 1-7 (Table 1), contributing to systemic
complications of COVID-19 disease [51,73]. ACE2 is a
transmembrane enzyme with a short cytoplasmic domain, a
transmembrane domain, a catalytic ectodomain, and an
amino-terminal signal peptide [73–75]. ACE2 can be
detected as both membrane bound and solute forms [75].
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Both membrane-bound and soluble forms of ACE2 can
actively cleave angiotensin II [75]. Recent studies have
found that ACE2 can be either released as full-length
molecules with EVs (EV-ACE2) [11,12] or shed as
ectodomain ACE2 exomeres (ecto-ACE2) through cleavage
by ADAM10/17 [12,76]. Both forms of EV-associated ACE2
can bind to SARS-CoV-2 and inhibit its infection [12].
Levels of ACE2-positive EVs are associated with the severity
of COVID-19 disease, indicating their defensive properties
for maintaining homeostatic conditions in COVID-19
patients [11]. Studies have also reported the increased
production of angiotensin II and decreased production of
angiotensin 1-7 in COVID-19 patients [15,16,77], while the
balance of angiotensin II in angiotensin 1-7 is regulated by
ACE2 [5,14]. However, angiotensin 1-7 also has regulatory
effects on ACE2 expression, and continuous infusion of
angiotensin 1-7 has shown organ-specific downregulation
effects on local ACE2 expression in vivo in rats [78].
Therefore, there may be a tightly regulated equilibrium
between angiotensin I/II and angiotensin 1-7 as well as
ACE/ACE2. In the context of COVID-19, a few studies have
shown that SARS-CoV-2 binding can downregulate ACE2
expression [39,40].

As the major biologically active effector peptide of the
RAS system [79–81], angiotensin II can activate AT1
(angiotensin II receptor type 1) receptor and trigger pro-
inflammatory, prooxidative, pro-fibrotic, pro-thrombotic and
vasoconstrictive effects, contributing to the severity of
COVID-19 disease (Fig. 1) [73,79–81]. In contrast,
angiotensin 1-7 has a range of anti-inflammatory,
antioxidant, vasodilatory, and natriuretic protective effects
through the G protein-coupled receptor (GPCR) MAS
receptor (Fig. 1) [73,79,80]. Furthermore, angiotensin 1-7
also has a critical role in protecting against lung
inflammation and fibrosis [79,80]. Recent studies have
reported a potential link between angiotensin 1-7 and
COVID-19 disease severity [82–86]. Decreased levels of
blood angiotensin 1-7 have been reported in COVID-19
patients who were either severely ill or have died [83,84,86].
In contrast, higher levels of angiotensin 1-7 have been
associated with reduced COVID-19 disease severity
[83,84,86]. Furthermore, dysregulation of ACE2, angiotensin
I/II, and angiotensin 1-7 are associated with mortality and
end-organ damage in COVID-19 patients [87,88]. In fact,
angiotensin 1-7 peptide replacement therapy has been
proposed for the treatment of severe COVID-19 [79,85,89].
Both membrane-bound and soluble forms of ACE2 can
actively cleave angiotensin II to angiotensin 1-7 [75],
which has anti-inflammatory, antioxidant, and vasodilatory
effects. Thus, EV-associated ACE2 may also be involved in
COVID-19 by regulating the conversion of angiotensin II
metabolism [75]. Although no relevant studies have yet been
reported, it would be worthwhile to investigate the catalytic
activities of circulating EV-associated ACE2 and its effects on
the metabolism of angiotensin I/II and angiotensin 1-7, as
well as their relevance to the severity of COVID-19 disease.
Interestingly, several studies have reported that treatment
with ACE inhibitors or angiotensin receptor blockers (ARBs)
was associated with lower levels of inflammation and reduced
risk of COVID-19 disease [90,91]. However, meta-analyses

[92,93] and a randomized clinical trial [94] did not support
the findings of these initial studies.

Extracellular vesicles, Neprilysin and Thimet Oligopeptidase,
and COVID-19 diseases
In addition to ACE2, NEP and TOP are endopeptidases that
can convert angiotensin I to angiotensin 1-7 by cleaving
internal peptide bonds [5,17,18]. Interestingly, both NEP
and TOP can be released with EVs based on recent studies
from our and other publications [5,18,19]. Importantly, EV-
associated NEP and TOP are enzymatically bioactive (Fig. 1)
[5,18,19].

A recent study reported that NEP inhibitor sacubitril can
inhibit further cleavage of angiotensin 1-7 [17], and therefore,
may favor the preservation of angiotensin 1-7 [17]. Studies
have shown the beneficial effects of sacubitril on the
regulation of angiotensin 1-7 and the improvement of
outcomes of COVID-19 disease [15,17,95–97]. Thus, several
clinical trials using neprilysin inhibitor sacubitril have been
proposed for the treatment of COVID-19 for a multi-
targeted therapeutic approach [15,98]. In fact, sacubitril
administration has shown the beneficial effects in COVID-
19 patients with lung or cardiovascular complications
[15,17,98]. NEP is abundantly expressed in many tissues/
organs, including the lungs [99]. The above studies provide
insights and also indicate the potential importance of NEP
in COVID-19 pathogenesis. The roles of EV-associated NEP
in the pathophysiology of COVID-19 disease, the plasma
levels of NEP-positive EVs and their existence in BALF in
COVID-19 patients, and their association with disease
severity of COVID-19 have not yet been investigated. These
are important questions to be explored in future studies.

TOP is primarily located in the cytosol, but it can also be
associated with the cell membrane or secreted into the
extracellular space (Table 1) [5,18]. About 20–25% of total
TOP enzyme activity is associated with membrane fractions
[100], and TOP has been visualized on the plasma
membrane surface by confocal microscopy [5,18,101].
Interestingly, we have recently demonstrated that
membrane-associated TOP can be released with EVs to the
extracellular space [18,20,21]. Most importantly, EV-
associated TOP exhibits considerable enzymatic activity
[5,18,20,21]. Our findings suggest that EV-associated TOP
might be a previously unrecognized, novel form of
extracellular TOP [5,18,20,21], in addition to its soluble
form in the extracellular milieu. The soluble form of TOP
easily diffuses into the circulation and can be diluted by
large volumes of systemic circulation. In contrast, EV-
associated TOP may stay in the microenvironment in
relatively higher concentrations [18,20,21]. Thus, the EV-
associated format of TOP may enable the enzyme to work
more potently in the local tissue/organs on its substrates,
i.e., angiotensin I, and contribute to the progression of the
relevant pathological conditions. Since TOP is known to
convert angiotensin I in vitro to the biologically active
peptide angiotensin 1-7 [102], one may expect that bioactive
EV-associated TOP may also be able to convert angiotensin
I to angiotensin 1-7. TOP converts angiotensin I to
angiotensin 1-7, providing a path to side-step angiotensin II
of the regular RAAS pathway, which has pro-inflammatory
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effects. TOP is expressed by various tissues/organs, including
the lungs [103]. TOP has been proposed to be involved in
COVID-19 disease [5,104,105] due to its role in converting
angiotensin I to angiotensin 1-7, being able to offset the
harmful effects of angiotensin II in favor of the anti-
inflammatory and lung protective effects of angiotensin 1-7.
Thus, the potential involvement of TOP and EV-associated
TOP in pathological roles in COVID-19 disease would be
worthwhile to investigate. A better understanding of TOP
and EV-associated TOP in COVID-19 disease may provide
insights into their role in clinical diagnosis, prognosis, and
development of new therapeutic strategies.

Conclusion

In this viewpoint, we summarized the role of EVs in the
pathogenesis of COVID-19 disease, including the role that
EVs may play in propagating viral infection, promoting pro-
thrombotic conditions, and enhancing the progression of
cytokine storm in COVID-19 disease. The current paper has
discussed recent progress regarding EV-associated ACE2 and
its effects on interfering with viral entry into host cells and
the therapeutic potential of engineered EV-associated ACE2
on COVID-19 disease based on its function of serving as the
cell surface receptor for SARS-CoV-2. Based on the enzymatic
activities of ACE2, which converts angiotensin II to
angiotensin 1-7, and TOP and NEP which convert
angiotensin I to angiotensin 1-7, we have discussed their EV-
associated forms and the perspective insights regarding their
potential involvements in COVID-19 disease through their
functions in angiotensin metabolism. Through their
enzymatic activity on the RAAS pathway, ACE2, NEP, and
TOP may be able to offset the pro-inflammatory and harmful
effects of angiotensin II in favor of the anti-inflammatory and
lung protective effects of angiotensin 1-7. The roles of EVs
and their associated ACE2, NEP, and TOP are complicated,
and the potential roles of EV-associated ACE2, NEP, and
TOP would thus be novel areas worthwhile of investigation
and would provide insights into therapeutic strategy,
diagnosis, and prognosis of COVID-19 disease.
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