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Abstract: Biological entities are involved in complicated and complex connections; hence, discovering biological

information using network biology ideas is critical. In the past few years, network biology has emerged as an

integrative and systems-level approach for understanding and interpreting these complex interactions. Biological

network analysis is one method for reducing enormous data sets to clinically useful knowledge for disease diagnosis,

prognosis, and treatment. The network of biological entities can help us predict drug targets for several diseases. The

drug targets identified through the systems biology approach help in targeting the essential biological pathways that

contribute to the progression and development of the disease. The novel strategical approach of system biology-

assisted pharmacology coupled with computer-aided drug discovery (CADD) can help drugs fight multifactorial

diseases efficiently. In the present review, we have summarized the role and application of network biology for not

only unfolding the mechanism of complex neurodevelopmental disorders but also identifying important drug targets

for diseases like ADHD, Autism, Epilepsy, and Intellectual Disability. Systems biology has emerged as a promising

approach to identifying drug targets and aiming for targeted drug discovery for the precise treatment of

neurodevelopmental disorders.

Introduction

The study of the molecular and genetic basis of diseases has
been revolutionized in the past decade by the application of
next-generation sequencing technologies and computational
approaches. One of the biggest challenges these days is the
identification of clinically relevant data from the plethora of
data available. The functionality of biomolecules is widely
known to be interdependent, forming a complex
biomolecular network including protein-protein interaction
(PPI), metabolic, signaling and transcription-regulatory
networks. For instance, a disease is rarely an outcome of the
dysfunction of a single gene; rather, it is a consequence of
the malfunction of complex networks that regulate genes,
tissues and organ systems (Liu et al., 2020). Network
biology has emerged as an important approach to
understand and integrate these complex networks and gain
knowledge of clinically actionable data for understanding
the molecular mechanism of diseases, which can provide

biological insights for the diagnosis and treatment of these
diseases. PPI network has turned out to be an asset in this
context (Furlong, 2013). Based on the results of
experimental methods, the human interactome was
estimated to contain ~65000 protein interactions (Stumpf et
al., 2008). Biological networks have been used to interpret
disease mechanisms to study comorbidities, drug-target
interactions and discover network-based biomarkers. Thus,
network biology can be used to understand complex
genotype-phenotype relations of human diseases (Furlong,
2013). In the present paper, we review the literature on
network analysis related to neurodevelopmental disorders
(NDDs).

NDDs are a class of disorders that affect brain
development and functions characterized by the inability to
reach cognitive, emotional, and motor developmental
milestones; they pose a serious health problem affecting
>3% of children worldwide (Parenti et al., 2020). NDDs
include attention-deficit/hyperactivity disorder (ADHD),
intellectual disability (ID), autism spectrum disorder (ASD)
and epilepsy. Studies provide compelling evidence that
many disease genes map to a much smaller number of
biological subnetworks (Hormozdiari et al., 2015),
suggesting the involved genes share a common molecular
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pathway, resulting in comorbidity of two or more of these
disorders. For instance, a combination of ID, ASD and
epilepsy is frequently reported in individual patients
(Parenti et al., 2020). Network modelling approaches have
been applied to explain the above-stated comorbidity and
identify candidate genes leading to advancements in the
effective treatment of NDDs.

By combining information from genomic data of the
disease and the PPI network, network-based techniques may
also be utilized to comprehensively evaluate and prioritize
disease indications for therapeutic targets (Han et al., 2021).
Drug target prioritization and identification are being aided
by novel network propagation methods that incorporate
heterogeneous biological networks (Ji et al., 2019). As one of
the key objectives in drug discovery, the network biology
technique for drug-target identification provides a quick and
systematic evaluation of both individual and combination
drug targets (Han et al., 2021). In the present review, we
also discuss the application of network biology for the
identification of drug-targets against neuro-developmental
diseases.

Types of Biological Network

Several types of biological networks include protein
interaction networks, isoform-isoform networks, genetic
interaction networks, metabolic networks, brain networks
and drug-target networks. Fig. 1 depicts the various types of
biological networks.

Protein-protein interaction network
PPI depicts the relationships between two or more proteins
characterized by biochemical interactions in cells. The nodes
represent the proteins, and the edges explain the interaction
between them. The protein interaction network (PIN) are a
valuable tool for the study of large-scale interactomes and
functional annotations of proteins and serve as an
evolutionary analytical tool based on specific subnetworks
and the identification of hub proteins (Hao et al., 2016).
Table 1 enlists various bioinformatics tools for curating
human protein network.

Isoform-isoform network
A protein isoform, also known as a protein variant, is a
member of a set of highly similar proteins encoded by a
single gene or gene family but differ genetically. While
many isoforms serve the same or comparable biological
tasks, some have distinct functions. Isoforms are formed via
alternative transcription, splicing, 3′-end formation,
translation and post-translational modification. A protein,
which is a single node in the PPI network, transforms into a
sub-network of interaction between the several isoforms
encoded by the underlying gene; thus isoform-isoform
network can be understood as a network and may offer
potential application to identify an isoform-specific
mutation that could help in the treatment of diseases (Liu et
al., 2020). The IIIDB database can be freely accessed and
allows searching for isoform-isoform interaction network
modules (Tseng et al., 2015).

Genetic interaction network
The genetic interaction network is the network demonstrating
gene interrelations. These networks can forecast more known
and unknown disease-gene connections for a certain disease.
The genetic interaction network is able to predict disease-
gene relationships without using generic protein-protein

TABLE 1

List of bioinformatics resources for curating the human protein interaction network

Databases Description Website References

STRING STRING is a database of known and predicted protein-protein interactions
(PPI).

https://string-db.org Szklarczyk et al.
(2011)

HPRD Human PPI data. http://www.hprd.org Prasad (2009)

BioGRID BioGRID is a protein, genetic and chemical interaction repository. https://thebiogrid.org Chatr-Aryamontri
et al. (2015)

MINT MINT focuses on PPI that have been experimentally verified and are taken
from the scientific literature by expert curators.

https://mint.bio.
uniroma2.it

Licata et al. (2012)

Interactome3D Interactome3D is a web service for structurally annotating PPI networks. https://interactome3d.
irbbarcelona.org

Mosca et al. (2013)

FIGURE 1. Different types of biological networks that can be studied
through network biology.
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networks. More research is being done to tune the
effectiveness of genetic interaction networks in identifying
potential candidate genes. Genetic interaction networks can
be analysed through STRING (Szklarczyk et al., 2021) and
GeneMANIA (Warde-Farley et al., 2010).

Drug target network
The drug-target network is a bipartite network where some
nodes represent the drug sets, and others represent the
target (gene). Drug targets are nodes in the human
interactome inextricably linked to treatment indication and
side effects. The network-based location of each drug
module also defines its pharmacological and biological
relationships with other drugs (Liu et al., 2020). Table 2
enlists various bioinformatics tool for construction the drug-
target network.

Brief Guide to Network Analysis

Many fundamental and translational neuroscience
investigations continue to focus on the principal attributes
of a node in a network as mentioned in Fig. 2 and described
below:

Degree: The number of connections (edges) between
nodes determines the degree of a node in a network. The
degree distribution is contrasting in nature, with nodes
either having few or many connections.

Shortest path: The shortest path between two nodes is
the one that requires the least number of nodes to connect
them (Furlong, 2013). The use of shortest pathways to
connect node pairs in biological networks is strongly
motivated. The shortest route approach is frequently
employed to assign orientations to edges in PPI networks to
infer regulatory pathways from genes that match and
identify genes or essential elements associated with cancer
and other diseases (Liu et al., 2020).

Clustering coefficient: The clustering coefficient of a
node is a measure of the degree of interconnectivity of its
neighbors. It is calculated as the number of edges between
neighbors of a node divided by the number of all possible
edges between them. The value ranges from 0–1 (Furlong,
2013).

Betweenness centrality: Betweenness measures the
global importance of nodes in communicating based on the

number of shortest paths that pass through the node
(Furlong, 2013). Studies have shown that proteins with a
high degree of betweenness are more likely to be pleiotropic
and disease-related genes. The betweenness of the brain
functional networks has also been a topic of interest in
testing brain activity (Liu et al., 2020).

Density: The percentage of actual connections among a
network’s possible connections is known as “network
density.” A connection between two “nodes” is referred to as
a “possible connection” whether or not it actually exists. A
network with higher associations will have higher density
and lesser resilience to changes.

Degree distribution: The degree distribution indicates
the probability that a network node chosen at random has a
degree of k.

It is represented as pk,

pk=
Nk

N

where Nk is the number of nodes that have degree k and N is
the total number of nodes.

TABLE 2

Summary of bioinformatics resources for constructing the drug-target network

Databases Description Website References

DrugBank DrugBank is an online database containing information on drugs and drug
targets.

DrugBank Online | Database
for Drug and Drug Target
Info

Law et al.
(2014)

DGIdb Drug–gene interaction database. https://dgidb.org Freshour et
al. (2021)

STITCH Integrates information about interaction from the metabolic pathway, crystal
structure, binding energy and drug-target interaction.

http://stitch.embl.de/ Kuhn et al.
(2010)

SuperPred Experimental and predicted compound-protein interactions. https://prediction.charite.de Nickel et al.
(2014)

FIGURE 2. Principal attributes for network analysis.

NETWORK BIOLOGY: A PROMISING APPROACH FOR DRUG TARGET IDENTIFICATION 1677

https://dgidb.org
http://stitch.embl.de/
https://prediction.charite.de


A list of tools that can be used for network analysis is
described in Table 3.

Role of Network Biology in Neurodevelopmental Disorders

Network biology approaches can be utilized in the study of
various neurodevelopmental disorders as depicted in Fig. 3.

Attention-deficit hyperactivity disorder
ADHD is a neurodevelopmental condition that first appears
in children and is characterized by persistent, inappropriate
impulsivity, hyperactivity and inattention (Hayman and
Fernandez, 2018). The worldwide prevalence of ADHD
ranges from 1.4%–5% (Nickel et al., 2014). In childhood,
ADHD is more common in men than women, with a 3:1
ratio between the sexes. There are three sub-categories of
ADHD, pertaining to the type of behavioural symptoms:
predominantly hyperactive/impulsive, predominantly
inattentive, and combined type (Hayman and Fernandez,
2018). ADHD is often associated with other psychiatric and
behavioural disorders, developmental disorders (e.g.,
dyslexia, autism), depression, and anxiety (Nickel et al.,

2014). From the literature review, 105 genes associated with
ADHD have been identified and genetics play an important
role in this disorder. From twin studies, the heritability
value of ADHD is found to be 0.76. In addition to biological
variables like extremely low birth weight, prenatal nicotine
exposure, stress, and alcohol intake, environmental
pollutants such as lead and polychloride biphenyls,
increased the probability of ADHD in children (Hayman
and Fernandez, 2018). The current treatment of ADHD is
age specific (Lola et al., 2019). Medications include
methylphenidates (e.g., Ritalin, Concerta) and
amphetamines (e.g., Adderall, Vyvanse) and behavioural
therapy (Hayman and Fernandez, 2018).

Network biology for attention-deficit hyperactivity disorder
symptom analysis
Using the network modelling approaches symptoms can be
viewed as networks that reveal the complex relationship
between the symptoms. The relationship between 18
symptoms in the Diagnostic Statistical Manual (DSM-5)
criteria was explored through network biology. The
outcomes of the ADHD symptom network were predicted
using centrality, node strength and clustering coefficient.

Symptom networks indicated that symptoms are clearly
split into two domains: inattentive and hyperactive/
impulsive. Visual examination revealed that hyperactive/
impulsive symptoms are tightly grouped, whereas inattentive
symptoms are scattered. This trend was more distinct at the
level of p 0.05.

Centrality was used to calculate the relatedness of
individual symptoms, with higher values suggesting greater
relative relevance of symptoms in the network. The
symptom ‘loses things’ from the inattentive domain had the
highest betweenness centrality, followed by symptoms
‘interrupts’, ‘motor driven’ and ‘leaves seats’ from the
hyperactive domain. The study highlighted the importance
of hyperactive symptoms in ADHD patients. Further
analysis of the ADHD symptom network could reveal
symptoms of clinical importance (Silk et al., 2019).

Identification of brain subnetworks related to attention-deficit
hyperactivity disorder
The identification of subnetworks related to ADHD was based
on the clustering of regions of interest (ROIs) of the brain. The
clustering was done using a spectral clustering algorithm. Four

TABLE 3

list of tools used for network analysis

Name Description Link

Arena 3D 3D visualization of multilayer networks. http://www.arena3d.org

BioMiner Biochemical network analysis, modelling and visualization. /

Cytoscape Network visualization and analysis. With over 200 plugins. http://www.cytoscape.org/

NeAT Network topological and clustering analysis. https://rsat01.biologie.ens.fr/rsa-tools/index_neat.html

PathwayAssist Navigation and analysis of biological pathways. /

FIGURE 3. Important neurodevelopmental disorders included in the
present study.
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clusters were identified, showing that the average functional
brain network comprises four sub-networks. The sub-
network related to ADHD was identified by calculating
betweenness centrality, shortest path, clustering coefficient
and the proposed graph entropy for each cluster of the
control group and ADHD group. The only statistically
significant correlation between children with ADHD and
controls was the entropy in cluster 2.

The brain regions included in cluster 2 were composed of
the bilateral pre- and post-central cortex, superior temporal
gyrus, and inferior frontal gyri. This cluster presents
statistically higher entropy for children with ADHD than for
control (p-value = 0.002). The data showed significantly
higher uncertainty or randomness in the sub-network
structure of cluster 2 in children with ADHD than in the
control (Lola et al., 2019).

Identification of drug-targets for attention-deficit hyperactivity
disorder
Network-based pharmacology (Li, 2021) approaches were
used for the identification of novel drug-targets for the
prophylactic and therapeutic treatment of ADHD. Table 4
lists some drug-targets that can be targeted for effective
prophylactic and therapeutic treatment of ADHD.

Autism spectrum disorder
ASD is a heterogeneous group of disorders caused by
abnormal brain development and neural reorganisation at a
young age and is characterised by core abnormalities in two
areas—social communication and restricted, repetitive
sensory–motor behaviours (Lord et al., 2018). One in 100
children across the world is diagnosed with ASD, with the
average affected male-to-female ratio being 4.2 (Zeidan
et al., 2022). The heritability index of ASD was calculated to
be 0.50 and the shared familial environmental influence was
0.04 (Sandin et al., 2017). Linkage and association studies
were used to identify various susceptible loci (2q24–2q31,
7q, 17q11–17q21) and candidate genes (NRXN1, NLGN3,
NLGN4, SHANK3, and CNTNAP2) that support the
heterogeneity of ASD (Kumar and Christian, 2009). The
only two FDA-approved drugs for use in children and
adolescents with ASD include risperidone and aripiprazole
(Goel et al., 2018).

Identification of novel genes related to autism spectrum
disorder
Autistic-related neurological illnesses were identified, and a
gene network for each member of the autism sibling group
was created to detect genetic overlap between them.

TABLE 4

List of identified drug targets in attention-deficit hyperactivity disorder (ADHD) using the network pharmacology approach

Drug-
target

Description References

DRD2 Dopamine receptor D2, also known as D2R, is a protein that is encoded by theDRD2
gene in humans. G-protein coupled D2R inhibits adenylyl cyclase activity and
mediates cognitive flexibility in humans.

Song et al. (2022), Armstrong and
Strange (2001)

CHRNA3 It encodes a member of the nicotinic acetylcholine receptor family of proteins. The
encoded proteins are ligand-gated ion channels that play a role in neurotransmission
that is particularly crucial for normal cognitive function, including functions of the
prefrontal cortex that are disrupted in ADHD.

Song et al. (2022), Wilens and Decker
(2007)

TNF Tumor necrosis factor (TNF) is a multifunctional proinflammatory cytokine that
belongs to the TNF superfamily. It is used by the immune system for cell signaling.
Assay for TNF showed lower levels of TNF in subjects with ADHD, suggesting its
role in the etiology of ADHD.

Song et al. (2022), Misiak et al. (2022)

IL6 Interleukin-6 (IL-6) is a proinflammatory cytokine and an anti-inflammatory
myokine. Studies report higher unstimulated levels of peripherally measured IL-6 in
subjects with ADHD suggesting that peripheral inflammation may be connected to
the neurofunctional changes seen in ADHD, which include decreased dopamine
levels and compromised noradrenergic neurotransmission.

Song et al. (2022), Misiak et al. (2022),
Elsadek et al. (2020)

KCNJ3 KCNJ3 encodes for G protein-activated inward rectifier potassium channel 1 (GIRK-
1) that has a predominant function in regulating neuronal excitability and synaptic
transmission. Inhibition of GIRK channels may also contribute to the improvement
of anxiety symptoms and thus can also be targeted for the treatment of ADHD, as
anxiety disorder is the most common comorbidity of ADHD.

Song et al. (2022), Kobayashi et al. (2010)

SLC6A4 The SLC6A4 gene encodes for serotonin transporter, also known as sodium-
dependent serotonin transporter. It stops serotonin activity by transporting
serotonin back into the brain cells that release it. Various SLC6A4 variants are linked
to ADHD.

Srivastava et al. (2019), Sonuga-Barke
et al. (2011)

DRD4 DRD4 encodes for the G-protein-coupled D4 subtype of dopamine receptor, which
inhibits adenylyl cyclase. Several behavioural abnormalities, including ADHD, are
associated with mutations in this gene.

Song et al. (2022), Verma et al. (2020),
Tovo-Rodrigues et al. (2013)
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According to the findings, more than half of the known autism
genes have also been related to other neurological illnesses.
These results indicate the existence of molecular overlap and
suggest that these conditions may share molecular
mechanisms with autism, which may provide insight into
understanding the hereditary basis of this complicated
disorder.

A network-based approach was applied for the
identification of disease-causing genes. A PPI network was
generated that included proteins in the list of sibling autism
disorders but not in the autism candidate list. A total of 334
novel genes that interact with autism genes were discovered.
Using the same microarray data as the healthy controls,
87% of them were discovered to be significantly
differentially expressed in autistic people (Parikshak et al.,
2015).

Identification of drug-target for autism spectrum disorder
Network-based pharmacology (Li, 2021) approaches were
used for the identification of novel drug-targets for the
treatment of ASD. Table 5 below enlists some drugs that
can be targeted for effective prophylactic and therapeutic
treatment of ASD.

Epilepsy
Epilepsy is a brain illness characterised by an enduring (i.e.,
persistent) proclivity to have seizures that are not triggered
by any immediate central nervous system damage, as well as
the neurobiological, cognitive, psychosocial, and social
repercussions of seizure recurrences (Beghi, 2020).

Epilepsy is one of the most common neurological
illnesses. It affects 50 million individuals globally at any
given moment, according to the World Health Organisation,

TABLE 5

List of identified drug targets in autism spectrum disorder (ASD) using network pharmacology approach

Drug-
target

Description References

SLC6A4 The SLC6A4 gene encodes for serotonin transporter, also known as sodium-dependent
serotonin transporter associated with serotonin dysregulation, which has been related to
ASD at the epigenetic, genetic, and physiological levels. Studies suggest that variation in
the SLC6A4 gene is linked to ASD.

Srivastava et al. (2019),
Wongpaiboonwattana et al. (2020)

5HT1D 5HT1D encodes for 5-HTR1D, i.e., 5-hydroxytryptamine (serotonin) receptor 1D. It also
induces vasoconstriction, which is dysregulated (over-represented) in ASD.

Koch and Demontis (2022), Owens
(2021)

MAPK3 Copy number variations impacting a variety of chromosomal areas have been associated
with the development of schizophrenia and autism. One of these regions is 16p11.2, which
has about 25 genes in it, including mitogen-activated protein kinase 3 (MAPK3), a critical
component of the MAPK/ERK kinase cascade.

Linlin et al. (2022), Gai et al., (2022)

IL-6 Interleukin-6 (IL-6) is a pro-inflammatory cytokine and an anti-inflammatory myokine.
Studies suggest that abnormal levels of cytokines can potentially be used as a biomarker
for the treatment of ASD. Serum levels of IL-6 was elevated in subjects with ASD.

Linlin et al. (2022), Chen et al. (2022),
Zhao et al. (2021)

MAPK1 MAPK1 encodes for a member of the MAP kinase family involved in the MAPK pathway
that is involved in synaptogenesis. Alteration in the MAPK pathway may contribute to
ASD.

Linlin et al. (2022), Chen et al. (2022),
Rosina et al. (2019)

TNF Tumor necrosis factor (TNF) is a pro-inflammatory cytokine. Results point to a potential
role of increased proinflammatory cytokine production in the pathophysiology of autism.

Linlin et al. (2022), Kalkan et al.
(2016)

AKT1 AKT1 encodes for AKT1 kinase. Signaling involving AKT1 kinase is essential for the
normal development and functioning of the brain. Certain experiments suggest that AKT
inhibitor rescue social deficits and thus can be used for the treatment of ASD.

Gai et al. (2022), Verma et al. (2020),
Xing et al. (2019)

ACTB ACTB encodes for an actin protein. These proteins control dendritic spine shape and
density, features often altered in ASD. Recent studies unveiled that ASD-related behavior
can be rescued either by manipulating certain actin regulators and thus, these can be
targeted for developing new ASD treatments.

Gai et al. (2022), Hlushchenko et al.
(2018)

DRD2 Certain specific SNPs in DRD2 increase the risk of ASD. These single nucleotide
polymorphisms can be therapeutically targeted for alleviating the symptoms and
complications of ASD.

Koch and Demontis (2022)

GRIA2 The glutamate receptor produced by this gene serves as a ligand-gated ion channel in the
brain and is crucial for excitatory synaptic transmission. ASD proband was found to have
de-novo nonsense mutations in the GRIA2 gene.

Koch and Demontis (2022)

SCN2A Autism is linked to loss-of-function mutations in the SCN2A gene. SCN2A mutations
linked to ASD damage the encoded protein NaV1.2, a sodium channel crucial for action
potential initiation and propagation in growing excitatory cortical neurons.

Koch and Demontis (2022), Kruth
et al. (2020)
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and 2% of the current world population has had epilepsy, has
epilepsy currently, or will have epilepsy at some point in the
future (Prinz, 2008).

Even though epilepsy refers to a group of disorders with a
variety of causes and symptoms, all forms of epilepsy are
characterised by recurrent seizures caused by abnormal
electrical activity in the brain, most commonly in the form
of synchronised discharges of nerve cells (neurons) that are
not synchronously active during normal brain activity
(Prinz, 2008).

Computer model for the understanding of epilepsy
In an ingenious sequence of experiments, Soltesz and
colleagues merged the results of decades of study into a
physiologically realistic, cellularly exact computer model of
the dentate gyrus, a brain region implicated in temporal lobe
epilepsy, the most common kind of epilepsy in adults. They
demonstrated that the creation of a few numbers of highly
linked “hub” neurons following brain injury is sufficient for

the development of hyperexcitability and epilepsy using this
computer model, which would be impossible to replicate in
the brain (Morgan and Soltesz, 2008).

The neural network computer model developed by
Soltesz (2008) is part of a new generation of large-scale,
extremely detailed, and complex network models that
attempt to rebuild entire brains or portions of brains in the
computer. Models like this are starting to reveal new
information regarding the significance of cellular and
synaptic characteristics, as well as network topology, in
influencing network activity in both healthy and diseased or
disordered brains. Morgan and Soltesz’s network model
(2008) is made up of 50,000 individual model neurons from
a number of morphological and electrically diverse
categories discovered in the dentate gyrus, and it preserves
the empirically documented relative abundance ratios of
those cell types.

Each model neuron is a complex, geographically
extended model with anatomical, cellular, and electrical

TABLE 6

List of identified drug targets in epilepsy using network pharmacology approach

Drug-
target

Description References

ADK Adenosine kinase is an important enzyme produced by the inhibitory neuromodulator adenosine.
Adenosine deficiency results in prolonged or recurrent seizures. Initially, adenosine levels increased as
a protective mechanism, but low levels of adenosine resulted in the overexpression of adenosine
kinase and astrocyte proliferation or astrogliosis, which eventually resulted in seizures.

Boison (2008)

TrKb Seizures increase the expression of brain-derived neurotrophic factor (BDNF) and activation of
tropomyosin receptor kinase B (TrkB) in the mossy fiber pathway of the hippocampus. Binding of
BDNF to TrkB results in the dimerisation of receptors, followed by the activation of tyrosine kinase
activity and phosphorylation of specific tyrosines. Transgenic BDNF or TrkB overexpression increases
the susceptibility or severity of epilepsy.

McNamara and
Scharfman (2012)

mTOR The mammalian target of rapamycin (mTOR) signaling pathway is involved in epileptogenesis;
whenever seizures occur in the body, the mTOR pathway is activated, followed by an increase in
phospho-S6 expression, which acts as a biomarker in epilepsy.

Zeng et al. (2009)

TNFα Tumour necrosis factor alpha (TNFα) is a cytokine regulator. TNFα, which is secreted by microglia,
has the ability to activate astrocytes. TNFα has the ability to regulate neuron activity and induce
epilepsy by increasing glutamate release, decreasing -aminobutyric acid expression, inducing
neuroinflammation, and influencing synaptic function in astrocytes.

Chen et al. (2021)

REST Repressor element 1-silencing transcription (REST) protects against seizures by downregulating
BDNF and its receptor, TrkB. In epilepsy patients, however, REST increases to a greater extent,
allowing downregulation of the glutamate receptor subunit GluR2. As a result of which, α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors lacking GluR2 subunits
cause an increase in Ca2+ permeability, which eventually leads to excitotoxicity, cell death and
seizures.

Butler-Ryan and Wood
(2021)

JAK-
STAT

Many immune and inflammatory diseases are linked to the Janus kinase-signal transducer and
transcriptional activator (JAK-STAT) signaling pathway. Inflammatory cytokines, growth factors, or
other chemical messengers frequently activate the receptors, which then recruit and activate JAK to
initiate the signal transduction cascade. It can phosphorylate STAT once activated. Increasingly,
studies have discovered that the JAK-STAT pathway is involved in the development of epilepsy.
Although the JAK/STAT signaling pathway was previously thought to be involved in immune system
regulation, it was discovered to be upregulated in the hippocampus, which could result in the
development of epilepsy.

Sun et al. (2022)

PGE2 In models of chronic inflammation and neurodegeneration, activation of EP2 receptors can also
promote oxidative damage and neurotoxicity, as well as the induction of a slew of proinflammatory
mediators, most notably in activated microglia.

Emma and Soldner
(2019)
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qualities tuned to reflect all available information from
decades of research on the dentate gyrus and adjacent brain
areas (Morgan and Soltesz, 2008).

Dentate gyrus simulations BY Morgan and Soltesz’s
(2008) stand out as an example of well-executed modelling
work. First, they made a clear observation: head injury
causes two distinct alterations in the dentate gyrus, which
are known to raise the risk of temporal lobe epilepsy. Two
examples include the loss of mossy cells and the formation
of new excitatory connections (mossy fibres) between
granule cells. The healthy dentate gyrus does not have such
excitatory recurrent connections between granule cells. Both
of these effects of head trauma have been seen in the brains
of epilepsy patients, making them potential candidates for a
relationship between brain injury and epilepsy development.
Second, the authors used their dentate gyrus model to test
the effects of mossy cell loss and other topologically distinct
types of mossy fibre sprouting on network excitability.
Third, they arrived at the realistic and physiologically
relevant conclusion that the formation of a few highly
connected granule cell hubs is necessary and sufficient for
the seizure-causing network hyperexcitability found in
epileptic brains.

Identification of drug-targets for epilepsy
Network-based pharmacology (Li, 2021) approaches were
used for the identification of novel drug-targets for
treatment of epilepsy. Table 6 enlists some drug-targets that
can be targeted for effective prophylactic and therapeutic
treatment of epilepsy.

Intellectual disability
Neurodevelopmental abnormalities in individuals with
intellectual disabilities are characterized by limitations in
intellectual functioning and adaptive behaviour. These
difficulties are frequently connected to mental health
concerns (such as depression and anxiety), as well as
neurodevelopmental diseases (such as autism spectrum
disorders and attention deficit hyperactivity disorders).

Relationship between intellectual disability and autism
spectrum disorder
Munson (Munson et al., 2008) found that there were various
IQ-based subgroups of children with autism, each with
different cognitive strengths and weaknesses, as well as the

severity of autistic symptoms, after studying 456 children
with autism. Finally, Deb and Prasad (1994) discovered that
in people with autism and ID, impaired verbal and
nonverbal communication, as well as the incidence of
repetitive and restricted activities, were more common than
people with only autism. When people with autism, whether
they have ID or not, are compared to people without ID,
the disparities are considerably more obvious.

Jackson et al. (2003) discovered that children with autism
responded to verbal solicitations with less positive responses
and more no responses in social interactions. Mandelbaum
(2006) compared 242 children aged 7–9 years who were
classified into one of four groups, including high IQ and
autism; developmental language disorder produced similar
patterns of performance, while low IQ and autism or low IQ
produced similar patterns of performance but differed from
the two previous groups. Sensory motor skills, oromotor
skills, praxis, and ability/willingness to do activities were all
improved in the two previous groups.

Genes linked to intellectual disability and autism spectrum
disorder
Understanding the cellular and molecular mechanisms
underlying the pathophysiology of ID and ASD-associated
genes, as well as assessing the potential pathogenicity of new
candidate genes for ID and ASD, functional categorization
of proteins encoded by a majority of these genes and
elucidation of common pathways, has become critical for
understanding the cellular and molecular mechanisms
underlying pathophysiology of these genes, and also for
assessing the potential pathogenicity of new candidate genes
for ID and ASD. As a result of this functional
categorization, a variety of cellular functions regulating
neuronal structure and function have emerged, which are
influenced by abnormalities in the ID and ASD genes as
described in Table 7 (Anand and Srivastava, 2014).

Identification of drug-targets for intellectual disability
Network-based pharmacology approaches (Li, 2021) were
used for the identification of novel drug-targets for the
treatment of ID. Table 8 below enlists some drug-targets
that can be targeted for the effective prophylactic and
therapeutic treatment of ID.

TABLE 7

List of intellectual disability (ID)- and autism spectrum disorder (ASD)-associated genes

Biological function Genes

Presynaptic vesicle cycling and transport GDI, CASK, AP-4, AP4BP1, AP4E1, AP4S1, AP4M1, IL1RAPL1, OPHN1, RAB39B.

Cytoskeleton dynamics ARHGEF6, ARHGEF9, FGD1, IQSEC2, LIMK1, OPHN1, OCRL1, MEGAP, PAK3.

Cell-adhesion and trans-synaptic signalling CASK, CDH15, CNTN4, KIRREL3, NLGN3, NLGN4X, NRXN1, PTCHD1, PCDH9,
SHANK3.

Translational regulation, protein degradation and
turnover

CUL4B, FBOX40, MEF2, UBR1, UBE2A, UBE3A, UPF3A, SMG6, EIF4A3, RNPS1.
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Use of Deep Learning in Network Biology and Target
Identification

As all biological networks can efficiently maintain and quantify
the interaction between components of cell systems underlying
human diseases, artificial intelligence is a cutting-edge tool to
identify novel disease targets and discover novel therapeutics.
A number of alternative network techniques are offered to
find disease targets, by network-based deep learning network
biology analysis algorithms. More crucially, a variety of
network-based biology analysis algorithms may investigate
the network data from diverse perspectives and, as a result,
can offer precise biological explanations (You et al., 2022).
Biological networks may encapsulate the characteristics of
biological entities and their relationships, making them
effective at integrating complex biological data. A network
can be conceptualised mathematically as a graph using the
formula G = (V, E), where V and E are sets of nodes
(vertices) and edges, respectively. Proteins, genes, illnesses,
and medications are instances of nodes in biological
networks. The edges of the network indicate various
biochemical, physical or functional relationships between
nodes. To identify therapeutic targets and find new
medications, network-based biology analytic algorithms focus
on studying molecular networks such as PPI networks, gene
regulatory networks, metabolic networks, and drug-drug
interaction networks (You et al., 2022).

The goal of graph embedding techniques is to develop a
low-dimensional vector representation of a graph or of its
constituent parts, such as its nodes. Often, this embedding is
subsequently repurposed for tasks like link prediction or
node classification. A graph domain equivalent to the image
convolution in a convolutional neural network is provided
by GCN approaches, which specify and employ a spectral-
or spatial-based convolution over the graph.

It is crucial to correctly identify interactions of a target
with different compounds to describe their binding affinity,

or drug-target interactions (DTIs), after the discovery of a
therapeutically useful target, such as a protein. This testing
procedure produces a list of prospective drug candidates
with strong binding affinities to the target, which is
commonly known as a screening. Conducting manual
screening on thousands of compounds in order to locate a
single medicine is costly and time-consuming, as was
already explained. Using DDI networks frequently, deep
learning techniques attempt to get over this limitation. As a
result, the graph deep learning framework often summarises
the prediction of drug-target interactions as a link
prediction problem. The drug-target prediction problem has
been successfully handled by graph-based deep learning
methods.

The molecular structure of drugs and targets is
considered and examined in a different group of
methodologies that define the DTI. In the GCN approach to
the DTI prediction problem, the input consists of two
graphs: a protein pocket graph and a 2-dimensional (2D)
drug molecular graph.

This approach consists of two steps: (i) an initial
unsupervised phase that includes an auto-encoder for
learning common pocket features and (ii) a supervised
graph convolutional binding classifier. The latter is made up
of two GCN models that operate simultaneously in a drug
GCN and a pocket GCN, which each extract characteristics
from a protein pocket graph and a 2D molecule graph. A
layer is in charge of combining protein interactions to create
a joint drug-target imprint, which is subsequently divided
into “binding” and “non-binding” groups (Muzio et al., 2021).

Conclusion

Target-based drug discovery has proven to be extremely
effective. The method is not restricted to small-molecule
drug discovery. Target-based approaches are commonly
used to discover antibody drugs and other protein biologics.

TABLE 8

List of identified drug targets in intellectual disability (ID) using network pharmacology approach

Drug-
target

Description References

IL1RAPL1 Partial deletions in the IL1RAPL1 gene cause fragile X syndrome, an X-linked intellectual disability. The
IL1RAPL1 gene is expressed in the hippocampus, implying that it is involved in memory and learning
abilities.

Montani et al.
(2017)

ATRX The Alpha-thalassemia x-linked intellectual disability (ATRX) gene contributes to normal developmental
processes. Mutations in these genes cause the α-thalassemia mental retardation syndrome. This syndrome is
characterized by intellectual disability, microcephaly (smaller head size due to abnormal brain
development) and seizures. Hippocampal-dependent spatial learning and memory are impaired by ATRX
mutations. Studies can be conducted on ATRX gene mutations to develop new therapeutics.

Iwase et al.
(2017)

IL-6 Interleukin-6 (IL-6) has been shown to affect synaptic plasticity by decreasing LTP, followed by a decline in
memory tasks. An increased level of IL-6 is often observed in the brains of autistic people. According to
recent research, mice with elevated IL-6 levels demonstrated decreased social interaction and impaired
cognition. The mice had decreased inhibitory synaptic formation, which resulted in abnormal changes in
the shape, length, and distribution pattern of dendritic spines, indicating a role for this cytokine in the
mechanisms underlying autistic-like behaviors.

di Marco et al.,
(2016)
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Target-based approaches have the advantage of being easier to
execute because they are utilized based on the molecular
mechanisms of a drug from an earlier stage, and they are
generally faster, easier, and less expensive to develop and
run (Croston, 2017).

Optimizing compounds in the absence of a known
molecular target, as with a phenotypic strategy, can be
difficult. Human genetics is one of the most powerful tools
for identifying drug targets. When a human gene is linked
to a disease, it is clear that a drug targeting that gene or
gene product has a good chance of success.

Although network biology has advanced to new heights, a
few limitations still remain. Real-world biological systems are
far more complex, with interactions occurring at multiple
scales, including gene, RNA, protein, and metabolic levels.
The majority of studies tend to focus only on specific levels
of interactions among the same type of biomolecules. With
the advancement of high-throughput technologies and the
accumulation of various omics data, performing network
biology analysis by integrating multi-omics data would be
intriguing. Most biological networks are static, whereas Real-
world biological networks change their structures
dynamically over time. Furthermore, some genes may only
be expressed in certain tissues and at certain times; biological
networks have temporal, dynamic and modular properties. In
fact, multilayer biological networks have received a lot of
attention in recent years. Multilayer biological network
datasets, on the other hand, are not made public. It is
possible to develop efficient data-driven frameworks to
construct multilayer biological networks with the
accumulation of various omics data and the development of
network inference techniques Network biology applications
require the collaboration of scientists from different fields.
Network biology provides effective tools for investigating
bioinformatics, and both biologists and medical workers are
required to apply the theoretical results (Wang, 2022).

Many fundamental and translational neuroscience
investigations continue to focus on candidate genes and
candidate theories; thus, skeptics may question the relevance
of monitoring whole systems. Biological complexity, on the
other hand, must not be overlooked; genome-wide
measures, in conjunction with specific gene and pathway
research, are essential to uncover the underlying causes of
neurodevelopmental and neurodegenerative diseases.
Biologists can use well-designed, repeatable molecular
profiling studies to test theories and concurrently generate
new ones. Gene networks provide an organising structure
that facilitates the process of hypothesis creation and testing,
despite their vastness and seeming complexity. The
overarching concept of using correlational and physical
interaction molecular networks in neurobiology to explain
molecular system changes may be expanded to a number of
methodologies, allowing for examining connections at
different levels of inquiry.

The findings of high-quality genome-wide studies will be
critical in developing and testing theories that go beyond our
current understanding to generate a more comprehensive
picture of the issues faced by neurodevelopmental and
neurodegenerative illnesses, and potential solutions
(Neelroop and Parikshak, 2015).

At this point, network neuroscience has the potential to
provide inspiration and resources to the area of child and
adolescent psychology, allowing it to make significant
progress in understanding the neurobiology of mental
disorders that impact children and adolescents.
Collaborations among cognitive neuroscientists, clinical
psychologists, engineers, and computer scientists will
provide the skills needed to harness the power of big data
sets to advance our understanding of typical and atypical
brain network development (Uddin and Karlsgodt, 2018).
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