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Abstract:Molecular dynamics (MD) simulation is a computational technique that analyzes the movement of a system of

particles over a given period. MD can provide detailed information about the fluctuations and conformational changes of

biomolecules at the atomic level over time. In recent years, MD has been widely applied to the discovery of peptides and

peptide-like molecules that may serve as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibitors. This

review summarizes recent advances in such explorations, focusing on four protein targets: angiotensin-converting

enzyme 2 (ACE2), spike protein (S protein), main protease (Mpro), and papain-like protease (PLpro). These four

proteins are important druggable targets of SARS-CoV-2 because of their roles in viral entry, maturation, and

infectivity of the virus. A review of the literature revealed that ACE2, S protein, and Mpro have received more

attention in MD research than PLpro. Inhibitors of the four targets identified by MD simulations included peptides

derived from food and other bioresources, peptides designed using the targets as templates, and peptide-like

molecules retrieved from databases. Many of the inhibitors have yet to be validated in experimental assays for

potency. Nevertheless, the role of MD simulation as an efficient tool in the early stages of anti-SARS-CoV-2 drug

discovery agents has been demonstrated.

Introduction

Molecular dynamics (MD) simulation has had a dramatic
impact on biopeptide research, especially in recent years. By
definition, MD is a computer simulation method that
calculates the motion of a system of particles, and their
equilibrium are calculated in a predetermined period
(Kondori et al., 2017). In the field of computational biology
and chemistry, MD simulation focuses on the behavior of
proteins and biomolecules at the atomic scale and very fine
resolution (Hollingsworth and Dror, 2018). Here, MD
simulation predicts the motion of atoms in proteins and
biomolecules based on a general model of physics that
governs interatomic interactions, which computational
chemists refer to as a “force field” (Kleinschmidt et al., 2022).

The theory behind molecular mechanics (MM) MD is
less complicated and slightly different from the quantum
mechanics (QM) principles of MD. In a biomolecular
system such as a protein molecule surrounded by water, if
all the atomic positions in the system are known, the force
exerted on each atom by all the other atoms can be
calculated (Wang et al., 2006). This is done by treating each
atom as a sphere with attached springs connecting
neighboring atoms (Adcock and McCammon, 2006).
Newton’s laws of motion, combined with the chemical
potential of each atom, are used to predict the spatial
position of each atom as a function of time (Tuckerman and
Martyna, 2000). At each time step, the force that updates
the position and velocity of each atom is calculated, and the
process is repeated until the end of a fixed time frame,
typically in the range of nanoseconds to milliseconds (Luehr
et al., 2015). By combining MD with other experimental
structural biology techniques (such as X-ray crystallography,
nuclear magnetic resonance (NMR), and cryoelectron
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microscopy (cryo-EM)), activities of biomolecules, such as
mutation, phosphorylation, protonation, and the addition or
removal of a ligand have been discovered (Hollingsworth
and Dror, 2018).

While many factors drive the advancement of MD in
biopeptide research, one of them is higher accessibility and
robustness of MD in recent years. Over the past 20 years,
the advancement and impact of MD research have been
driven by the use of highly sophisticated supercomputers.
However, the introduction of powerful graphics processing
units in personal computers for the convenience of
researchers has allowed powerful MD to be run
individually/locally at a relatively low cost (Friedrichs et al.,
2009). For example, the minimum central processing unit
set-up required for a hundred-nanoseconds MD simulation
can be as simple as an Intel i5 processor with 16 GB of
RAM and an RTX 2060 graphics card, depending on the
total number of atoms in the system.

For MD studies, the common analyses performed
include the bond distance, bond angle, dihedral angle,
solvent-accessible surface area, and Coulombic and van der
Waals interactions are among (Chowdhury et al., 2020). In
addition, the root-mean-square-deviation (RMSD) and root-
mean-square-fluctuation (RMSF) values for backbone, alpha
carbon, and heavy atoms are also analyzed for either the
protein target, ligand, and/or the protein-ligand complex
(Tachoua et al., 2020). For the binding free energy, the
calculations can be performed using MD simulation
programs such as Groningen MAchine for Chemical
Simulation (GROMACS) with external plugin g_mmpbsa
(Kumari et al., 2014) or servers such as PRODIGY server,
which measures the free energy based on intermolecular
contacts and properties derived from the noninterface
surface (Xue et al., 2016). The commonly used approaches
for free energy calculation from MD results are the
molecular mechanics/Poisson–Boltzmann surface area
(MM/PBSA) and molecular mechanics/generalized Born
surface area (MM/GBSA) methods (Hou et al., 2011).

In this review, we have focused on the application of MD
to elucidate the interactions between peptides and selected
host/viral protein targets that are key to host entry and
viral proteolytic processing of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), the causative agent
of coronavirus disease of 2019 (COVID-19). These two
phases are essential for viral virulence. The host target
discussed here is the angiotensin-converting enzyme 2
(ACE2), whereas the viral targets are the receptor binding
domain (RBD) on the spike protein (S protein), the main
protease (Mpro), and the papain-like protease (PLpro).
Specifically, we discuss here the technical aspects of force
field, water model, box selection, and duration in recent
studies to simulate the target protein-peptide-ligand
systems. Examples of peptides discussed here were derived
from food and other bioresources, as well as rationally
designed peptides. This review aims to provide useful
general and technical insights for researchers when using
the MD technique to investigate biopeptide-target protein
interactions in the future.

Biomolecular Force Fields

In chemistry, the force field can be described as the
articulation or mathematical expression of the potential
energy functions present in molecules or atoms with
internal coordinates (Palmö et al., 1991; Monticelli and
Tieleman, 2013; Dauber-Osguthorpe and Hagler, 2019).
Each molecule has a three-dimensional structure consisting
of chains of atoms that can be treated as a space-filling
sphere inter-connected by strings or sticks, giving rise to the
term “ball and stick” conformation. These atoms and chains
can be brought together by using energy-based methods
such as molecular mechanics and dynamics to assign
potentials or forces to the space-filling atoms of the
molecule. This is possible by adding the analytical
expression of the energy surface as a function of the
molecular coordinates, simply called the force field.

While the QM force field is believed to provide a high
degree of accuracy in calculating the potential energy of a
molecule (Söderhjelm and Ryde, 2009; Sami et al., 2021),
the classical MM force field is commonly used for
the analysis of biomolecular structures. The MM
techniques define the potential energy functions of each
atom with motion recorded in the Cartesian coordinates in
much simpler terms compared to that in QM (Mackerell,
2004). In practice, there is a trade-off between lower
computational requirements and longer simulation times.
This consideration is particularly important for
macromolecular structures such as proteins and nucleic
acids, for which potential energy calculations can take a
relatively long time. For the MD simulation of proteins and
other biomolecules, Optimized Potentials for Liquid
Simulations (OPLS), Chemistry at Harvard
Macromolecular Mechanics (CHARMM), and Assisted
Model Building with Energy Refinement (AMBER) force
fields are commonly used for potential energy calculations
(Wang and O’Mara, 2021).

The functional form of OPLS is shown in Eq. (1) below:
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The use of the OPLS3 force field has improved quantum
chemical data for small molecules (Harder et al., 2016),
producing a lower average root mean square (RMS) for X-
ray and NMR structures when compared with the older
OPLS versions of OPLS_2005 and OPLS2.1 (Mu et al., 2003;
Kumar et al., 2016). Here, the dihedral term represents the
angle between two planes passing through the same bond
(Biswas and Mallik, 2020). In OPLS3, all four angles
available in the planar are considered, compared to the
simpler terms used in the CHARMM and AMBER force
fields (Riniker, 2018; Best, 2019).

The CHARMM force field is another popular force field
used for biomolecular simulations. The development series
started with a united-atom force field CHARMM19, before
progressing to the all-atom type force field CHARMM22,
then to CHARMM27, and the latest CHARMM36 (Lemkul,
2020). The potential energy function for the all-atom
CHARMM force field is shown below in Eq. (2):
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Generally, the calculation of the force field in atoms
involves two main empirical functions, namely the bonded
and non-bonded potentials. The dynamics of bond
stretching and angle bending between atoms are described
by the Ebonds and Eangles of the atoms. Simple harmonic
motions are assumed, where the magnitude of a restoring
force is proportional to the displacement of an atom from
the equilibrium position (Campanella et al., 2021). While
the bonded/non-bonded potentials between all force fields
are fixed, the bonded potential energy terms for dihedral
angles differ between OPLS and CHARMM force fields. In
the case of amino acids/peptide bonds, where each peptide
bond connects the planar amino acid residues, the psi and
phi angles contribute significantly to the difference in degree
angle. The OPLS uses a different equation to calculate the
dihedral potential, while the AMBER and CHARMM force
fields use the same dihedral potential equation. The dihedral
angle describes the angular spring between the planes
formed by the first three and last three atoms of
consecutively bonded quadruple atoms, as shown in Fig. 1.

The functional equation for the AMBER force field is
shown below in Eq. (3):
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Here, the differences between the numerical solution
between atoms calculated using the OPLS, CHARMM, and
AMBER equations are in the dihedral potential, the Urey-
Bradley potential, and the non-bonded potential of the
atoms (Sonibare et al., 2020).

Roles of Angiotensin-Converting Enzyme 2, S Protein,
Mpro, and PLpro in the Life Cycle of SARS-CoV-2

As a detailed discussion of the life cycle of SARS-CoV-2 is
beyond the scope of this review, we refer the reader to a
recent, comprehensive review focusing on this topic by
Brant et al. (2021). As shown in Fig. 2, ACE2 is the primary
host receptor for SARS-CoV-2. Complexation of ACE2 with
S protein can initiate viral entry into the human cell (Struck
et al., 2012; Jia et al., 2021). The S protein contains S1 and
S2 domains. The S1 domain contains the RBD domain that
interacts with ACE2 (Guo et al., 2009; Koley et al., 2022).
The S2 domain of the S protein is responsible for the fusion
of the virus with the host cells (Song et al., 2018; Huang
et al., 2020b). The ACE2-S protein interaction is considered
a therapeutic target for COVID-19 (Cheng et al., 2020).
Two S proteins can bind to an ACE2 dimer to accelerate
viral penetration (Wu et al., 2021), as shown in Fig. 3 (Guo
et al., 2021). Structural analyses using x-ray crystallography
and biophysical attributes of protein-protein interactions
reveal a huge interaction surface between SARS-CoV-2 and
ACE2 (18 interactions) with high binding affinity (Corrêa
Giron et al., 2020; Shirbhate et al., 2021). This can be seen
in Fig. 4, where ACE2 amino acids in the domain S19-Q101
(blue domain) are shown to interact with the RBD of the S
protein.

FIGURE 1. The dihedral angle is the angle (φ) between two adjacent
bonding planes (1–4). The figure adopted from Herranz et al. (2022).
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The pathology of the SARS-CoV-2 virus is similar to that
of its ancestor, SARS-CoV (Hofmann and Pöhlmann, 2004).
The SARS-CoV-2 genome shares up to 82% sequence
identity with SARS-CoV and MERS-CoV and over 90%
sequence identity for essential enzymes and structural
proteins (Naqvi et al., 2020). Upon entry into the host cell,
the SARS-CoV-2 RNA genome is translated into two large
polyproteins, pp1a and pp1ab (Fig. 2). The two polyproteins
are cleaved by two viral proteases into 16 mature non-
structural proteins (nsp1-16) in preparation for subsequent
viral genome replication and transcription. Two cysteine
proteases, namely Mpro (also known as chymotrypsin-like
protease, 3CLpro) and PLpro, are key to processing of two
viral polyproteins. The proteolytic step is critical because
inhibition of the viral proteases can interfere with the
assembly of new viral particles (Mariano et al., 2020). It is,
therefore, not surprising that the two proteases are attractive
drug targets for SARS-CoV-2 (Brant et al., 2021; Citarella et
al., 2021; Mengist et al., 2021).

Mpro is a homodimeric protease comprising two
protomers (A and B) that, upon dimerization and
activation, adopt the appropriate conformation to perform
their catalytic function (Zhang et al., 2010; Citarella et al.,
2021). The crystal structure (PDB ID: 6LU7) (Fig. 5) was
determined at a high resolution of 2.1 Å, where each
protomer consists of three domains. Domain I (residues
8–101) and domain II (residues 102–184) form an
antiparallel β-barrel structure. Domain III (residues 201–
303) contains five α-helices arranged in a largely antiparallel
globular cluster. Domain III is connected to domain II by a
long loop region (residues 185–200) (Jin et al., 2020). The
inhibitor target site is located between domain I and domain
II and consists of residues 164–168 and 89–191 (Jin et al.,
2020). His41 and Cys145 form the catalytic dyad that is
located at the cleft between domain I and domain II of Mpro

(Tripathi et al., 2021).
PLpro cleaves the viral polyproteins, removes ubiquitin-

like ISG15 protein modifications and, and with lower
activity, the Lys48-linked polyubiquitin (Klemm et al.,
2020). This was also observed in the earlier predecessors of

the SARS coronavirus (Lindner et al., 2007; Bailey-Elkin
et al., 2017). The castalytic triad in the active site of PLpro

consists of Cys111, His272 and Asp286, (Fig. 6). Besides
processing the viral polypeptide into functional proteins,
PLpro can also dampen the host antiviral response by

FIGURE 2. Schematic diagram of the
life cycle of SARS-CoV-2, adapted
from Wang et al. (2021).

FIGURE 3. S1 domains of two S proteins binding to the peptidase
domains of an ACE2 dimer. Image was adapted from the RCSB PDB
(rcsb.org) of PDB ID 7DWX (Yan et al., 2021) and recreated with
the PyMOL software (Schrödinger and DeLano, 2020).

FIGURE 4. Cryo-EM structure (resolution 2.80 Å) of the RBD (red
domain) of severe acute respiratory syndrome coronavirus 2 S
protein binding to the ACE2 receptor protein (blue domain).
Image was adapted from the RCSB PDB (rcsb.org) of PDB ID
7DQA (Liu et al., 2021) and recreated with the PyMOL software
(Schrödinger and DeLano, 2020).
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hijacking ubiquitin, a key enzyme in the host defense
mechanism (Amin et al., 2021). PLpro also has a zinc-finger
region that contributes to the activation of the protease by
holding ubiquitin in place (Luo, 2016; Klemm et al., 2020).

MD Simulation of Peptides Targeting Angiotensin-Converting
Enzyme 2, S Protein, Mpro, and PLpro

In the quest to discover peptide candidates capable of
antagonizing protein targets related to COVID-19, many
computational studies have been reported in the literature.
However, many of them stopped at the level of molecular
docking; not all of them proceeded to analyze the candidate
peptides by MD simulation. Compared with peptide-PLpro

interaction, more MD studies were performed to analyze the
interactions between peptides and three targets: ACE2,
RBD/S protein, and Mpro. In Table 1, we have summarized
crystal structures used in recent studies to dissect the
interactions between peptides and the four protein targets of
interest for this review.

Table 2 presents MD parameters employed in recent
studies of peptides interacting with the four target proteins.
GROMACS is the most commonly used free software,
whereas OPLS is the most popular force field in the studies.
OPLS was used because it is the default force field for
protein/peptide simulations in some programs, such as
Desmond (Maestro Schrödinger). For water models,
transferable intermolecular potential with 3 points (TIP3P)
was used in almost half of the studies. The majority of the
studies performed MD simulations for only up to 100 ns, as
a result of the practical trade-off between reasonable
computational time and the current performance of
available machines.

Peptide-angiotensin-converting enzyme 2 interactions
Among the studies presented in Table 2, an interesting
biopeptide exploration is the screening of pea and amaranth
peptide libraries for ACE2 inhibitors (Paredes-Ramos et al.,
2022). The MD simulation was conducted using the
Desmond package (https://www.schrodinger.com/), where
OPLS3 was used as the force field. OPLS3 is the force field
that is one version older than the current OPLS4. In the
study (Paredes-Ramos et al., 2022), the blind docking
approach was adopted; ligand docking was introduced to
the entire protein surface without any prior knowledge of
the target pocket (Hassan et al., 2017). Blind docking is
employed when there are multiple possible binding sites and
modes of peptide ligands, thus necessitating the scanning of
the entire surface of a protein target (Hetényi and van der
Spoel, 2006).

Paredes-Ramos et al. (2022) simulated the biopeptide-
ACE2 complex in a cubic box, solvated with TIP3P-TIP4P
models of water molecules. As mentioned above, almost half
the number of the MD studies documented in this review
employed the TIP3P water model. Both TIP3P and TIP4P
water models used the rigid point water model, where the
H–O–H geometry angle is fixed at 104.52° (Harrach and
Drossel, 2014). The TIP3P water structure has three
interaction points corresponding to the three atoms of the
water molecule. TIP4P adds one dummy atom near the
oxygen along the bisector of the H–O–H angle on the three-
site model which has only the negative charge to improve
the electrostatic distribution around the water molecule
(Fig. 7) (Kiss and Baranyai, 2011). The computational cost
of water simulation increases proportionally with the
number of interaction sites in the water model (Shabane et
al., 2019). Therefore, the use of TIP4P results in a longer
simulation time when compared to TIP3P; this is because
the central processing unit time is approximately
proportional to the number of interatomic distances that
need to be computed. In the study by Paredes-Ramos et al.
(2022), a total simulation time of 20 ns was used.

The peptides LSDRFS, SDRFSY, and VIKP derived from
the pea and amaranth were found to be potential inhibitors of

FIGURE 5. Protomer A of the Mpro homodimer with its domains I,
II, and III. The inhibitor target site is shown. Image was adapted from
the RCSB PDB (rcsb.org) of PDB ID 6LU7 (Jin et al., 2020) and
recreated with the PyMOL software (Schrödinger and DeLano, 2020).

FIGURE 6. PLpro apo-structure with its catalytic triad marked in
magenta and the zinc-finger domain with Zn2+ ion (grey sphere).
Image adapted from the RCSB PDB (rcsb.org) of PDB ID 6WUU
(Rut et al., 2020) and recreated with the PyMOL software
(Schrödinger and DeLano, 2020).
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the ACE2-S spike interaction (Paredes-Ramos et al., 2022).
The entire structure of LSDRFS (head, center, and tail) was
well attached to the ACE2 protein, creating a highly stable
interaction, allowing the peptide to block a large region of
ACE2 that is known to bind to the S protein (Vankadari,
2020). The peptide SDRFSY was attached to the protein in
the center region of the ACE2 protein, with its head and tail
amino acids free to rotate (Paredes-Ramos et al., 2022).
Small motions are sufficient to stabilize a protein-ligand
complex (Chen et al., 2020). The flexibility of docking can
optimize the non-covalent interactions between a protein
and a ligand, thus contributing to favorable changes in
enthalpy. The flexibility can also increase the entropy or
minimize the decrease in entropy of a protein-ligand
complex; this is accomplished by releasing interfacial water,
thus increasing the flexibility in part of the protein or
ligand. The ligand/protein flexibility can improve the overall
molecular flexibility and contribute to a favorable change in
the Gibbs binding free energy (Zavodszky and Kuhn, 2005).
The virtual screening analysis, supported by evidence from
an in-vitro assay identified the smallest VIKP peptide as the
weakest candidate for binding to ACE2 (Paredes-Ramos et
al., 2022).

In another study, the potential of GWLEPLL, a peptide
derived from milk and colostrum, as an ACE2 inhibitor was
investigated using the OPLS force field (Pradeep et al.,
2021). The GWLEPLL-ACE2 complex was solvated using a
3-site rigid water model of Simple-Point Charge (SPC)
within a cube measuring 1 Å on each side. SPC is a rigid
water model comparable to TIP3P and, therefore, requires
less computational time/cost in calculations when compared
to the TIP4P water model (Kadaoluwa Pathirannahalage
et al., 2021). Being a smaller cubical model (1 Å from the
protein-ligand complex to the simulation box-edge), fewer
water molecules were simulated for the complex, and the
simulation time could be reasonably extended to 50 ns
(Pradeep et al., 2021). In the study, GWLEPLL interacted
stably with the ACE2 S2 subsite, forming nine hydrogen
bonds (H-bonds). The interactions stabilized the complex by
reducing the root-mean-square (RMS) backbone of ACE2
and also its radius-of-gyration (Rg) (Pradeep et al., 2021).

The binding of the peptide EEAGGATAAQIEM to
ACE2 was investigated (Yu et al., 2021). The peptide was

derived from the tuna skeletal myosin heavy chain (NCBI
accession BAA12730.1) after in silico gastrointestinal
digestion. The in silico digestion simulation was
accomplished by virtually proteolyzing the protein with
pepsin, trypsin, and chymotrypsin using ExPASy Peptide
Cutter (https://web.expasy.org/peptidecutter/) to predict the
cleavage sites of the proteases. MD simulation analysis of
the EEAGGATAAQIEM-ACE2 complex was performed in
GROMACS 2018 with the CHARMM36 force field; the
system was solvated in the TIP3P water model in a cubic
box. The duration of the MD simulation was significantly
longer (up to 100 ns) when compared with some studies in
Table 2. The CHARMM36 force field, when applied in MD
simulations, was able to reproduce various NMR observables
and correlated well with experimental data; therefore, it is
recommended for protein simulations (Huang and
MacKerell, 2013). Compared to some of the biopeptides in
the studies presented in Table 2, EEAGGATAAQIEM is a
relatively long peptide of 14 residues. Thus, when compared
with other peptides, more interaction points were found
between EEAGGATAAQIEM and ACE2, including a higher
number of intermolecular H-bonds. As long peptides can
optimize points of interaction with target proteins, slightly
longer peptides with limited folding are desirable for
binding to protein targets, in this case against ACE2 (Araghi
and Keating, 2016).

An integrated in vitro-in silico approach was used by
Rangaswamy et al. (2021) to discover ACE2 inhibitory
peptides from buckwheat and quinoa. The in silico analysis
used Schrodinger’s SiteMap tool, which allowed the
identification of five potential binding sites in ACE2. The
authors subsequently docked 35 candidate peptides to ACE2
at the site with the highest Sitescore. The 35 peptides were
generated by in vitro gastrointestinal digestion, followed by
peptide identification using tandem mass spectrometric
analysis. Docking analysis was performed and the
NWRTVKYG-ACE2 complex was eventually chosen for
50 ns MD simulation. The OPLS force field and the SPC
water model were selected in the MD simulation system. In
the study, H-bonds and polar interactions observed in the
docking analysis supported the selection of NWRTVKYG
for MD simulation analysis. The ACE2 residues Gln102,
Asp206, and Glu208, the key residues involved in H-bond

TABLE 1

Crystal structures of angiotensin-converting enzyme 2, RBD/S protein, Mpro, and PLpro used in recent molecular dynamic investigations
of peptide-target interactions

Protein
target

Crystal structure (PDB
ID)

Reference

ACE2 1R42, 6M17, 6M0J,
6VW1

Chowdhury et al. (2020), Han and Král (2020), Pradeep et al. (2021), Rangaswamy et al. (2021), Yu et
al. (2021), Paredes-Ramos et al. (2022), Tallei et al. (2022)

RBD/S
protein

6LZG, 6M0J, 6VYB,
6VW1

Sitthiyotha and Chunsrivirot (2020), Balmeh et al. (2021), Erol et al. (2021), Gao and Zhu (2021), Pei
et al. (2021), Pradeep et al. (2021), Sasidharan et al. (2021), Sadremomtaz et al. (2022)

Mpro 6LU7, 6M03, 6W63,
6Y2F, 7BQY

Pant et al. (2020), Behzadipour et al. (2021), Sasidharan et al. (2021), Yu et al. (2021), Yathisha et al.
(2022), Linani et al. (2022), Zhao et al. (2022)

PLpro 6W9C, 6WUU Sasidharan et al. (2021), Moradi et al. (2022)
Note: ACE2: angiotensin-converting enzyme 2, RBD: receptor binding domain, S protein: spike protein, Mpro: main protease, PLpro: papain-like protease.
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interactions, and other amino acids forming polar interactions
and responsible for peptide recognition Gln98, Asn194,
Gly205 and Lys562, were shown to maintain their
interactions with the peptide for the entire 50 ns duration
(Rangaswamy et al., 2021).

Azurin is a 14 kDa protein secreted by the bacterium
Pseudomonas aeruginosa. Peptides derived from azurin,
such as p18 and p28, showed no signs of toxicity in the
phase I clinical trials (Habault and Poyet, 2019), making
them promising antagonists of ACE2. Sasidharan et al.
(2021) docked azurin, p18, and p28 to ACE2, and subjected
each complex to MD simulation for 60 ns using the OPLS
force field and the TIP3P water model. Molecular docking
revealed that azurin can bind to the collectrin domain of
ACE2, whereas p18 and p28 can bind to the active
peptidase domain of ACE2. However, MD simulation
followed by MM/PBSA analysis showed that p28 had a
higher affinity for S protein but bound only moderately to
ACE2 (Sasidharan et al., 2021).

Peptide-S protein interactions
DYGAVNEVK is a peptide derived from fruit bromelain. In
light of the high mutation rates of the RBD domain of
SARS-CoV-2, the binding of DYGAVNEVK to wild-type
and mutated RBD domains was compared (Tallei et al.,
2022). Docking analysis showed that the peptide bound
tightly to the wild-type RBD and the RBD of each mutant
tested, especially when the mutation involved negatively
charged, polar, and hydrophilic amino acids. In this case,
the stability of the RBD was increased. Next, an all-atom
MD simulation was performed using the AMBER99SB-
ILDN force field (Tallei et al., 2022). This force field is
known for its improved amino acid side-chain torsion
potentials, making it more suitable for protein and peptide
MD simulations than the previous versions of the AMBER
force field (Lindorff-Larsen et al., 2010). The stability of
each DYGAVNEVK-RBD complex was substantiated with
RMSD and RMSF plots, coupled with MM/GBSA analysis
(Tallei et al., 2022). The MM/GBSA analysis calculates the
binding free energy of a protein-ligand complex and has
been shown to effectively balance computational cost with
accuracy (Huang et al., 2020a). To minimize computational
cost, the study also used the triclinic cell and SPC water
model during the MD simulation (Tallei et al., 2022).
The use of the triclinic cell minimizes the use of water
molecules as a triclinic cell has 29% less volume compared

to a rectangular periodic box (Lindahl et al., 2001).
Meanwhile, SPC is a simpler water model compared to the
TIP3P/TIP4P water models (Paschek, 2004). The use of the
latter two parameters can increase the speed of MD
simulation calculations.

In another study, the RBD domains of the wild-type and
beta variant (lineage B.1.351) were docked to bacteriocins
derived from lactic acid bacteria, followed by MD
simulation (Erol et al., 2021). Bacteriocins are antimicrobial
peptides synthesized by ribosomes in bacteria. The peptides
can kill or inhibit strains closely related or unrelated to the
bacteriocin producers without harming these producers
(Yang et al., 2014). Bacteriocins are widely used in the food
industry as preservatives (Settanni and Corsetti, 2008;
Johnson et al., 2018) and antimicrobial food packaging
(Daba and Elkhateeb, 2020) as well as in the pharmaceutical
industry as antibiotics (Balciunas et al., 2013; Chikindas et
al., 2018). In the study by Erol et al. (2021), pediocin PA-1,
salivaricin P, and salivaricin B were the most promising in
inhibiting the entry of SARS-CoV-2 (including lineage
B.1.351) into the human cells. The subsequent MD
simulation analysis was conducted by using the Desmond
package of Schrödinger’s Maestro program, using the
OPLS3 force field with the TIP3P water model. The
simulation was performed in the orthorhombic cell. MD
simulation was conducted with a high computational cost
totaling up to 6 µs for all simulation systems, with 500 ns
for each bacteriocin-RBD complex; the analysis was also
performed in triplicates (Erol et al., 2021). The authors also
used a different isothermal-isobaric barostat system of the
Martyna-Tuckerman-Tobias-Klein (MTTK) coupling
method in the MD simulation (Erol et al., 2021) rather than
the commonly used Berendsen and Langevin coupling
method (Khalili et al., 2005). Although there is a lack of
studies comparing the three isobaric coupling methods in
protein and biomolecular MD simulations, the comparison
in the metal-organic compound framework showed that the
static properties are well reproduced with the three barostats
(Rogge et al., 2015).

MD simulations were used to evaluate the potential
inhibition of S protein by azurin and its peptides p18 and
p28 (Sasidharan et al., 2021). Azurin, a molecule larger than
p18 and p28, can bind to the S2 domain of the S protein;
p18 and p28 could bind to the N- and C-terminals of the S1
domain, respectively. Stable binding between p28 and the S
protein was evidenced by the RMSD plot. Within the S
protein binding pocket, p28 adapted well, undergoing slight
conformational changes before achieving conformational
stability throughout the remainder of the MD simulation
(Sasidharan et al., 2021).

Pradeep et al. (2021) investigated bovine milk-derived
peptides as RBD binders. The most promising peptide,
IQKVAGTW (−11.03 glide score), was predicted to be
positioned in the central shallow pit of the RBD domain of
the spike-ACE2 complex, stabilized by a high number of H-
bonds. The number of H-bonds in the complex was also
stable throughout the MD simulation (Pradeep et al., 2021).

An elegant peptide inhibitor study involved the design of
RBD binders based on the peptide sequence of the ACE2
peptidase domain (Sitthiyotha and Chunsrivirot, 2020).

FIGURE 7.H–O–H geometry of the TIP3P and TIP4P water models.
Image was adapted from Kadaoluwa Pathirannahalage et al. (2021).
The θHOH denotes the H–O–H angle (104.52° in the rigid points
water model), whereas rOM denotes the distance of one dummy
atom (M) to the oxygen atom in the 4-site water model.
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Residues 21–45 of the peptidase domain, a coiled α1 helix of
ACE2, were first truncated. The sequence was then
optimized to one 25-mer non-designed peptide and 13
designed peptides. This was followed by MD simulation
using AMBER FF14SB and the GLYCAM06j-1 force field.
The authors used the GLYCAM06j-1 force field in their MD
simulation due to glycoprotein structures in the RBD (Singh
et al., 2016). Five designed peptides were proposed as
promising SARS-CoV-2 inhibitors based on their RBD-
binding affinities, which were superior to that of SBP1, an
experimentally-validated RBD peptide binder (Sitthiyotha
and Chunsrivirot, 2020).

Two antimicrobial peptide (AMP) databases, namely
StraPep (http://isyslab.info/StraPep/) and PhytAMP (http://
phytamp.hammamilab.org/main.php), were also tapped as
sources of potential RBD inhibitors (Balmeh et al., 2021).
Nearly 500 peptides were shortlisted from the two AMP
databases based on criteria including allergenicity, toxicity,
and hemolyticity before the peptides were docked to the S
protein. The peptides with the best docking scores were
subjected to a 45 ns MD simulation. Judging from the
upwards trend of the RMSD plot obtained (Balmeh et al.,
2021), the simulation duration should be increased. In
addition, some of the peptides evaluated in the study, such
as bacteriocin lactococcin-G (35-mer) and defensin Lc-def
(47-mer), are longer (Balmeh et al., 2021) compared to
peptides evaluated in other studies using MD durations of
longer than 45 ns (Table 2).

To screen for RBD-binding peptides, Chowdhury et al.
(2020) selected 51 peptides from the antiviral database
AVPdb (http://crdd.osdd.net/servers/avpdb/index.php).
Following molecular docking analysis, six RBD-peptide
complexes were subjected to MD simulation. Residues
Glu484, Tyr449, Gln493, Leu455, Tyr453, Tyr489, and
Tyr505 of RBD were found to form non-covalent
interactions with the antiviral peptides. H-bonds accounted
for 53% of the total interactions. MD analysis also revealed
reduced solvent-accessible surface area for all six complexes
(Chowdhury et al., 2020).

Micasin, a peptide from the dermatophytic fungus
Microsporum canis, has been reported as a promising RBD
inhibitor, and the micasin-RBD complex was subjected to
MD simulation (Gao and Zhu, 2021). Similar to the
findings of Chowdhury et al. (2020), Gln493, Ser494, and
Tyr453 of RBD were observed to form the largest number
of H-bonds with micasin during the 40 ns duration.
Notably, the mutation introduced into micasin expanded
its interface region responsible for binding to RBD,
resulting in a six-fold increase in binding affinity (Gao and
Zhu, 2021).

In contrast to the relatively long peptides evaluated by
Balmeh et al. (2021), much shorter S protein binding
peptides (7 to 20 residues) were designed by Pei et al.
(2021). The study focused on the design of synthetic
ultrashort peptides based on the RBD residues known to
interact with ACE2, namely K417, Y453, F486, Q498, and
N501. The peptides were subjected to MD simulations.
Binding energy analysis showed that the peptide SI5α-b had
the strongest inhibitory activity, followed by the peptide

SI5α; this is consistent with results of the in vitro antiviral
assay and the peptide-RBD and ACE2 competitive ELISA
assay (Balmeh et al., 2021).

Peptide-Mpro interactions
Pant et al. (2020) reported a notable investigation to screen for
Mpro-inhibitory peptides. They screened peptide-like
inhibitors and other potential candidates in the CHEMBL
and ZINC databases, drugs approved by the United States
Food and Drug Administration, and molecules in clinical
trials. Screening of 300 peptide-like structures led to the
identification of four promising Mpro inhibitors (Fig. 8),
which were subjected to MD simulation. While most of the
MD studies cited in this review (Table 2) used the MM/
PBSA method for binding energy calculations, Pant et al.
(2020) performed binding energy calculations using the
MM/GBSA method. Here, the peptide-like molecules
provide a basic pharmacophore for the design of SARS-
CoV-2 Mpro inhibitors. The amide linkage backbone gives
them the flexibility to fit comfortably into the Mpro binding
site. The four Mpro inhibitors highlighted by Pant et al.
(2020) form H-bonds with residues Gln192, Glu166, His166,
and His41, which comprise the ligand-binding site in Mpro.
His41 is also part of the catalytic dyad of Mpro (Tripathi et
al., 2021).

Milk-derived peptides have also been screened for Mpro

inhibitors. Following the molecular docking-based screening
of 326 di- and tripeptides generated by in silico digestion of
bovine milk proteins, Behzadipour et al. (2021) identified
QSW, a potential Mpro inhibitor. Similarly, Zhao et al.
(2022) screened peptides generated from bovine lactoferrin
by in silico digestion and identified a tetrapeptide GSRY as a
potential Mpro inhibitor. Both QSW and GSRY interacted
stably with residues Gly143, Glu166, and Gln189 of Mpro,
which are known to interact with ligands of Mpro. The two
peptides also formed an H-bond with a histidine residue
(His41/His163) to inhibit the catalytic dyad of Mpro. While
MD simulations were performed at 100 ns in both studies,
the QSW-Mpro complex was simulated using the
AMBER99SB force field (Behzadipour et al., 2021), whereas
the GSRY-Mpro complex was simulated using the
CHARMM36 force field (Zhao et al., 2022). The use of
AMBER99SB was desirable, as it allows the pH of the QSW-
Mpro complex to be set (Behzadipour et al., 2021). Owing to
the protonation effect of certain amino acid residues at
different pH values, the affinity of a peptide to a protein can
also change (Keeble et al., 2019). In the MD study by
Zhao et al. (2022), it was not possible to set the pH of the
simulation using the CHARMM force field.

The search for Mpro-inhibitory peptides originating from
fish proteins was the focus of two recent studies. The tuna-
derived peptide EEAGGATAAQIEM was reported to form
11 H-bonds with the residues in domains I–III of Mpro (Yu
et al., 2021). After 100 ns MD simulation,
EEAGGATAAQIEM also bound tightly to Mpro residues
known to interact stably with the N3 inhibitor (Yu et al.,
2021), such as His164, His41, Gly143, and Gln189 (Jin et al.,
2020). The study also showed a stable Rg value for the
EEAGGATAAQIEM-Mpro complex; the value remained
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almost constant for 75% of the simulation time (Yu et al.,
2021). The ribbonfish-derived Mpro-inhibitory peptide PTR
was reported by Yathisha et al. (2022). The PTR-Mpro

complex was subjected to a 20 ns MD simulation performed
in GROMACS, using CHARMM27 with the TIP3P water
model. Although the study suggested that PTR as the best
Mpro inhibitor based on its interactions with the catalytic

dyad of Mpro (Yathisha et al., 2022), the simulation time
used in the study was insufficient. For better understanding
of the complex, it would be desirable to increase the
simulation time to at least 50 ns or even 100 ns.

A ricin-based peptide (LLMVNEATRFQTVSGFV, BRIP
peptide) derived from barley was shown to be a promising
Mpro inhibitor (Kashyap et al., 2022). The 17-residue
peptide was docked and subjected to MD-simulation against
five potential binding sites on Mpro. After 1000 ns of MD
simulation, the peptide was observed to bind to the main
inhibitor target of Mpro, namely the catalytic dyad His41
and Cys145. The peptide also formed more than a hundred
non-bonded interactions, including H-bond, with Mpro. The
peptide is also bound to the target region known as the S1
subsite (Asn142, Glu166, His164, and Met165) (Kashyap et
al., 2022).

Sasidharan et al. (2021) investigated the potential of
azurin and its peptides p18 and p28 as Mpro inhibitors. In
the study, only p28 was observed to bind to domains II and
III of Mpro with high affinity. The RMSD plot of the p28-
Mpro complex showed higher deviations than that of the
p28-S protein complex, especially after 50 ns of MD. This
observation suggests the activity of p28 in conformational
changes (Sasidharan et al., 2021).

Peptide-PLpro interactions
Moradi and co-workers screened 11 plant-derived peptides
from the literature that could potentially inhibit PLpro

activity (Moradi et al., 2022). They found that the peptide
VcTI from Veronica hederifolia provided effective
molecular interactions at both the liable zinc site and the
classic active site of PLpro. Eighteen residues of PLpro and
16 residues of VcTI were involved in the interactions,
which were stable throughout the 20 ns of MD simulation
(Moradi et al., 2022). The MD simulation of the VcTI-
PLpro complex was performed using the OPLS force field
with an SPC216 water model in the cubic box (Moradi et
al., 2022), a relatively generic set-up for GROMACS system
simulation (Lee et al., 2016). Using the same force field
coupled to TIP3P water models in MD analysis, Sasidharan
et al. (2021) demonstrated the affinity of p28, an azurin-
derived peptide, to PLpro based on its binding to the finger
domain of the protease that houses the catalytic zinc ion.
The study revealed that p28 may play a multifunctional
role as an inhibitor of protein-protein interaction, given its
affinity to PLpro and also to S protein and Mpro (Sasidharan
et al., 2021).

Similarities in molecular dynamics simulations of peptide-
protein simulations
The MD simulations of peptides and target proteins in the
peptide-ACE2, peptide-S protein, peptide-Mpro, and
peptide-PLpro interactions discussed above share some
similarities, which include:

(i) The amino acid sequence of a peptide plays a crucial
role in determining its interactions with proteins.
Specifically, the unique arrangement of amino acids
within the peptide is critical for establishing such
interactions. MD simulations offer a valuable tool for

FIGURE 8. The chemical structures of the four best peptide-like Mpro

inhibitors (C1–C4) reported by Pant et al. (2020). The two-
dimensional structures of the inhibitors were drawn by using the
freeware ACD/ChemSketch (version 2022.1.0, Advanced Chemistry
Development, Inc. (ACD/Labs), Toronto, ON, Canada, www.
acdlabs.com) based on SMILES strings retrieved from the
CHEMBL database (Davies et al., 2015; Gaulton et al., 2016).
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investigating how the peptide’s sequence influences its
binding affinity and the stability of the resulting
peptide-protein complex.

(ii) MD simulations have demonstrated that non-covalent
interactions, such as hydrogen bonds, van der Waals
interactions, and electrostatic interactions, are critical
factors in the binding process between peptides and
proteins. Understanding the characteristics of these
interactions is vital for the advancement of peptide-
based therapies.

(iii) MD simulations can demonstrate how peptide binding
induces conformational changes in proteins. Such
changes may impact the function and stability of the
protein; comprehending them is crucial for drug
development.

(iv) Water molecules play a critical role in mediating the
interactions between the peptide and the protein. MD
simulations can provide insight into the role of water
molecules in stabilizing the peptide-protein complex
and the formation of hydration shells.

(v) The flexibility of the peptide and protein can impact the
stability and binding affinity of the complex. MD
simulations can provide information about the
flexibility of both the peptide and the protein and
how this affects the binding between them.

Future Perspectives and Conclusions

A number of potential candidate peptides may be the focus of
more detailed investigations in the future. The potential
candidates for peptide-ACE2 interactions range from
synthetically designed to those derived from natural sources.
Studies on peptide inhibition of ACE2 revealed that while
the flexible ligands were able to release interfacial water and
bound ACE2, the rigid ligand still effectively inhibited the S-
binding region of ACE2. However, the length of the
inhibitory peptides studied suggests that peptides with an
optimal length between 8–14 amino acids bind tightly to
ACE2. While the ACE2 inhibition study only targeted a
specific S protein binding domain in ACE2, multiple target
inhibition binding sites are available for S protein and RBD
of the SARS-CoV2 virus. In addition, mutant variants of S
protein and RBD were also a focus of the peptide inhibition
study. Therefore, due to both factors, many peptide
inhibitor candidates elucidated for binding to S protein, and
RBD are much larger compared to ACE2 inhibitors. The
size of these peptides can reach up to 47 mer, thus requiring
long simulation durations (>50 ns) with independently
repeated simulations to reach a conclusive result. Some
potential synthetically modified peptide candidates for
peptide-S protein interactions include those targeting the
RBD of the S protein, such as the peptide EK1 and its
derivatives. Peptides targeting other regions of the S protein,
such as the heptad repeat regions, are also being investigated.

For peptide-Mpro and peptide-PLpro interactions,
researchers are developing peptides that can target these
proteases and potentially inhibit their activity. For peptide-
Mpro interactions, researchers are investigating peptides that
can target the active site of Mpro, such as the synthetic

peptide GC376 (Fu et al., 2020; Ma et al., 2020). Potential
candidates for peptide-PLpro interactions include those that
target the catalytic site of PLpro, such as the synthetic
naphthalene-based peptide GRL0617. Here, the ubiquitin-
specific domain of PLpro shifts to form a p‐p interaction
with the peptide, while simultaneously forming a deeper
pocket to accommodate the ligand (Fu et al., 2021). Some
interactions observed with these synthetic peptides share
many similarities with the naturally derived peptides listed
in Table 2.

Only a few studies discussed above tested the potency of
the anti-SARS-CoV-2 peptides they reported using in vitro
assays (e.g., Gao and Zhu, 2021; Pei et al., 2021;
Sadremomtaz et al., 2022). In the remaining studies, the
results of the MD simulation were considered to be
the main evidence supporting the potential activity of the
peptides. Despite its efficiency in elucidating the molecular
details of peptide-target interactions, MD simulation
remains a theoretical approach and has its limitations.
Therefore, the important next step for most of the proposed
candidates of ACE2-, S protein-, Mpro-, and PLpro-inhibitory
peptides would be to enter the in vitro or experimental
validation phase. This wet-lab testing step is particularly
important for those peptides that have not been subjected to
MD simulation for sufficient duration (Balmeh et al., 2021;
Yathisha et al., 2022).

Between the two SARS-CoV-2 proteases involved in viral
polyprotein processing, PLpro has received less attention in
MD research aimed at discovering peptide-based PLpro

inhibitors. Most MD studies on PLpro inhibitors in the
literature have focused on small molecules, although
peptides inhibitors are advantageous in terms of the
tendency of macromolecules to occupy the active site of
PLpro more extensively, in addition to having favorable
potency and selectivity (Petushkova and Zamyatnin, 2020;
Rut et al., 2020; Amin et al., 2021). To expedite the
search for PLpro-inhibitory peptides, a potentially time-
saving strategy would be to search the literature for
PLpro-inhibitory peptides which were identified on the basis
of molecular docking alone (Wong et al., 2021a, 2021b).
Such peptides can then be evaluated by MD analysis and
even coupled to in vitro PLpro-binding or -inhibition assays
to discover peptide-based PLpro inhibitors.

Some of the studies discussed in this review may
contribute to the repurposing of drugs or current antiviral
compounds (Chowdhury et al., 2020; Pant et al., 2020).
Other reports may facilitate the discovery of novel anti-
SARS-CoV-2 agents from food and other bioresources (Yu
et al., 2021; Yathisha et al., 2022; Moradi et al., 2022),
thereby adding value to such biomaterials. Potential SARS-
CoV-2 inhibitory peptides have also been identified from
many other novel bioresources, such as edible insects
(Wong et al., 2020; Ong et al., 2021). Unfortunately, such
peptides have often not been validated by MD analysis. To
expand the current pool of bioresources that can be tapped
for candidates of anti-SARS-CoV-2 peptides, a follow-up
evaluation of the aforementioned group of peptides by MD
simulation is desirable.

In summary, the COVID-19 pandemic has led to a surge
in research interest in the use of biomolecular simulation
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methodologies to accelerate the discovery of peptide-based
SARS-CoV-2 inhibitors. MD simulation combined with
molecular docking has been a key strategy in many of these
investigations. Peptide and peptide-like candidates have
been identified from various bioresources, bioactive peptide
databases, druglike compound databases, and preclinical and
approved drugs for their inhibition on ACE2, RBD/S
protein, Mpro, and PLpro. Experimental validation is still
required to confirm the potency of many of these peptides.
Nonetheless, the role of MD simulation as a valuable and
efficient tool in the early phases of the discovery of peptide-
based anti-SARS-CoV-2 agents has been demonstrated. It is
anticipated that, in the near future, MD simulation, coupled
with other in silico and experimental methodologies, will
continue to advance mechanistic understanding of the
discovery, design, and biology of anti-SARS-CoV-2 peptides.
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