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Abstract: Circulating tumor cells (CTCs) are essential biomarkers for liquid biopsies, which are important in the early

screening, prognosis, and real-time monitoring of cancer. However, CTCs are less abundant in the peripheral blood of

patients, therefore, their isolation is necessary. Recently, the use of microfluidics for CTC sorting has become a

research hotspot owing to its low cost, ease of integration, low sample consumption, and unique advantages in the

manipulation of micron-sized particles. Herein, we review the latest research on microfluidics-based CTC sorting.

Specifically, we consider active sorting using external fields (electric, magnetic, acoustic, and optical tweezers) and

passive sorting using the flow effects of cells in specific channel structures (microfiltration sorting, deterministic lateral

displacement sorting, and inertial sorting). The advantages and limitations of each method and their recent

applications are summarized here. To conclude, a forward-looking perspective is presented on future research on the

microfluidic sorting of CTCs.

Introduction

Tumor metastasis causes approximately 90% of cancer-related
deaths (Dillekas et al., 2019); therefore, detecting the
metastatic process in real-time is crucial. In contrast to
invasive biopsy techniques, which have been found
previously to cause pain to patients (Hirahata et al., 2022),
liquid biopsy techniques that are minimally invasive and
enable real-time detection have recently gained increased
attention (Belotti and Lim, 2021; Cortes-Hernandez et al.,
2020; de Rubis et al., 2019). For cancer diagnosis and
treatment, early screening, and prognostic analysis, liquid
biopsy is performed by extracting effective components,
such as circulating tumor cells (CTCs) (Alix-Panabières and
Pantel, 2016), circulating tumor DNA (ctDNA)
(Gorgannezhad et al., 2018), and exosomes (Contreras-
Naranjo et al., 2017), which are present in human body
fluids. Among these, CTC and ctDNA are approved by the
Food and Drug Administration (FDA) to be utilized as

important biomarkers in clinical diagnosis, which has
become an important milestone in clinical trials of liquid
biopsies (Alix-Panabieres and Pantel, 2021).

CTCs are cells shed by a tumor lesion (primary or
metastatic lesion); they break through the tissue matrix and
eventually enter the bloodstream (Nowell, 1976). Compared
with ctDNA, which is a free gene fragment, CTCs can
express the entire genetic information of a tumor from
genome to functional protein, thereby making it a hot
research topic in the field of liquid biopsy (Alix-Panabieres
and Pantel, 2013). Compared with traditional clinical
imaging tests, CTC testing has broad application prospects
in clinical practice (de Wit et al., 2018), such as assisting in
clinical diagnosis and cancer staging, reflecting early disease
status of the patients for determining patient prognosis
(Shaw et al., 2017), detecting treatment effects in real-time,
and providing individualized medical treatment (D’Avola et
al., 2018). Meanwhile, the RNA sequencing of CTCs can
reveal the biological significance of CTCs in the metastatic
process (Baccelli et al., 2013).

Despite the importance of CTCs in cancer diagnosis and
detection, the number of CTCs in peripheral blood is
extremely low, with only 1–10 CTCs/mL in early-stage
cancer patients and a few hundred CTCs/mL in advanced-
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stage patients, compared with the billions of blood cells/mL
(Kahn et al., 2004), hence, the efficient enrichment of CTCs
in peripheral blood is essential. Early physical crude
separation techniques were based on the separation of CTCs
by special membrane devices and density gradient
centrifugation. Among theseThe typical application is the
isolation by the size of epithelial tumor cells (ISET system)
developed by Rarecells Diagnostics (Paris, France) (Farace et
al., 2011). To improve the purity of CTC enrichment, many
pharmaceutical companies have focused on using
immunomagnetic beads. For example, Johnson & Johnson
(New Jersey, USA) launched the FDA-approved CellSearch
system (Rushton et al., 2021). However, this product was
discontinued in early 2016 because of its low detection
sensitivity and inability to isolate live CTCs. Apart from the
CellSearch system, the AdnaTest by Qiagen (Todenhofer et
al., 2012), the MACS developed by Miltenyi (Voena et al.,
2002), and the MagSweeper system conducted by Illumina
(Cann et al., 2012), were also conducted in the past few
years. These commercial sorting methods based on
immunomagnetic beads are highly specific and highly
integrated but still limited in clinical applications due to the
high cost of the instruments and supporting consumables
and missed inspection. Therefore, miniaturized, low-cost,
and efficient sorting systems remain a common focus of
scientific and industrial interest.

Microfluidics has rapidly evolved in recent decades from
molecular analysis to cell biology because of their ability to
control the mechanical, biological, and fluidic environment
at the molecular and cellular levels (Autebert et al., 2012).
Cell sorting on microchips offers many advantages over
conventional methods, as it reduces the size of the required
equipment, eliminates potentially biohazardous procedures,
and simplifies the complex protocols typically associated
with cell sorting (Bhat et al., 2022). In addition, microchip
devices are ideally suited for parallelization, allowing
complete lab-on-a-chip equipment to be used for cell
isolation, analysis, and experimental processing (Shields et
al., 2015). Microfluidic technology offers many advantages
over conventional non-microfluidic devices, including
portability, improved sensitivity, lower operating costs, and
higher throughput, making this technology promising in
CTC sorting applications. This review focuses on the recent
advances and the advantages and disadvantages of two types
of microfluidic chip-based CTC sorting: active and passive
sorting. The latest methods proposed in the same category
(active sorting or passive sorting) are similar in many
aspects, so this classification strategy could provide more
information and guidance on chip manufacturing (whether
to integrate with additional devices), sorting mechanism
(whether to involve additional forces), sorting indicators
(recovery, purity, throughput, etc.), which could facilitate
subsequent scheme comparison and methods selection
based on the actual situation.

According to the different cell manipulation methods by
microfluidic chips, CTC sorting based on microfluidic
platforms can be divided into active and passive sorting
techniques (Fig. 1).

Active sorting involves the manipulation of different cells
by external field sources (e.g., electric, magnetic, optical, and

acoustic fields) to sort CTCs from blood cells. Passive
sorting involves using various migration trajectories of
different cells based on the hydrodynamic properties of the
flow channel with no interference from any external field.

Active sorting
Among the active sorting methods, electrical sorting is
currently the most widely used particle control method,
primarily in the form of electro-permeation, electrophoresis,
and dielectrophoresis (Hajba and Guttman, 2014; Semaan et
al., 2021). Electrical sorting is based on the dielectric
properties of CTCs (Fig. 2a). Jahangiri et al. (2020)
introduced a label-free cytological slide chip (CSC) based on
the AC electric field stimulation of breast cell lines and
blood cells at low frequencies (1–200 kHz). AC-CSC can be
used to separate CTCs from leukocytes (1% MDA-MB-
231:99% white blood cells (WBC)) with a capture efficiency
of 90%. Arslan et al. (2022) proposed a continuous-flow,
antibody-free, dielectrophoresis-based microfluidic device to
separate CTCs from blood cells. CTC recoveries ranged
from 74% to 98% at a frequency of 1 MHz and an
amplitude of 10–12 Vpp. The main commercial cell sorting
systems based on electrophoresis technology are the
DEPArray system (Medoro, 2003) (Menarini Silicon
Biosystems, Castel Maggiore (BO), Italy) and ApoStream
system (Gupta et al., 2012) (ApoCell, Houston, TX, USA).
Although such systems could achieve a high sorting
accuracy, the additional electrodes and other equipment
increase the cost of microfluidic chip fabrication and affect
cell activity owing to problems such as cell electroporation
caused by the electric field.

Magnetic sorting is primarily based on the
immunological properties of cells (Fig. 2b). It involves
binding magnetic beads coupled with specific
immunological markers to the target cells and their
separation from unlabeled nontarget cells through the
magnetic field generated by a permanent magnet or
electromagnet (Bakhshi et al., 2021; Ghafouri and
Badieirostami, 2021). Depending on the coupling target,

FIGURE 1. Summary of CTC isolation method including active
sorting and passive sorting, where active sorting includes electric
field sorting, magnetic field sorting, acoustic field sorting, and
optical tweezers sorting. Passive sorting includes microfiltration,
deterministic lateral displacement, and inertial sorting.
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magnetic sorting can be positive sorting, which directly
captures tumor cells, and negative sorting, which captures
WBC. Wang et al. (2021) developed an immunomagnetic
bead made of triiron tetroxide and calcium carbonate, which
enabled the complete sorting of all subpopulations of tumor
cells. Kim et al. (2013) proposed a CTC separator using
immunomagnetic beads bound to the CTC, separated by
transverse magnetic electrophoresis to purify 90% of the
spiked CTC to 97% at a flow rate of 5 mL/h. Mishra et al.
(2020) proposed an ultra-high-throughput microfluidic chip,
the LPCTC-iChip, which rapidly separates leukocytes from
over six billion nucleated cells. This increased the CTC
separation capacity by two orders of magnitude, with a
recovery rate of 86% at an enrichment of 105. During the
capture process, the nonspecific interaction between
magnetic beads and leukocytes worsens the purity problem.
To address this problem, Zhu et al. (2018) proposed the
coating of cancer-targeting molecules, such as folic acid and
magnetic beads on red blood cells, that would adhere to
CTCs to obtain CTC-RBCs. Subsequently, red blood cells
could be lysed to obtain CTCs. The CTC purity was >75%.
Shi et al. (2017) used a microfluidic device with a wavy
herringbone structure to separate CTCs using magnetic
nanoparticles coated with anti-EpCAM. The magnetic
nanoparticles were trapped on the wavy herringbone U-
shaped sites on the polydimethylsiloxane (PDMS) surface by
an external magnetic field and the magnetic particles were
released by removing the magnetic force. Tests were
performed on whole blood at low concentrations (down to
100 mL−1 of HCT-116 cells) with high capture efficiencies
in the range of 81%–95%. Although magnetic field sorting
has a high sorting accuracy, it requires an external field and
is not easily integrated with low throughput. The positive
sorting method does not remove the magnetic beads;
moreover, it is harmful to cells, and is unsuitable for
subsequent tumor cell culture analysis. The negative sorting
method does not ensure the purity of separation and has a
long processing time.

Acoustic sorting uses the various directions of motion of
different particles under the force of acoustic radiation to
achieve sorting (Fig. 2c). Acoustic radiation is generated by
piezoelectric crystals and sound surface waves (Augustsson
et al., 2012; Karthick et al., 2018). The most popular method
was developed by Professor Huang Jun of Duke University,
in which multiple pairs of forked-finger transducers were
used to generate acoustic surface waves and create standing
waves to assist in the aggregation of different cells in the
flow channel at locations such as wave peaks and troughs,
thereby completing sorting (Wu et al., 2017). Antfolk et al.
(2015) described a simple acoustic absorption-based cell
separator that recovered 86.5% of cancer cells at a sample
flow rate of 100 µmL/min. Increasing the acoustic intensity
resulted in the 94.8% recovery of cancer cells with 2.2%
leukocyte contamination. Wu et al. (2019) presented an
acoustic device integrated with 36° lithium niobium oxide
coated with indium tin oxide to separate CTCs. Their
results showed 91.5% ± 4.5% average separation efficiency of
cancer cell lines. A method for the acoustic separation of
CTCs from leukocytes was investigated by Wu’s group (Wu
et al., 2018). This method integrates acoustics and

microfluidics to isolate rare CTCs from peripheral blood at
high throughput with minimal cellular damage, maintaining
the structural, biological, and functional integrity of the
cells. At a throughput of 7.5 mL/h, the method achieves at
least 86% recovery of CTCs from leukocytes while
maintaining cell proliferation capacity. This acoustic sorting
method can achieve high throughput. However, the
integrated acoustic radiation generation device increases the
integration difficulty and fabrication cost of the chip, while
the cell size-based sorting method limits the purity of
sorting and is harmful to cells.

Optical sorting is based on the different deflection angles
of the trajectories of particles of different sizes and refractive
indices under the action of energy traps formed by laser
beams (Polimeno et al., 2018). Hu et al. (2019) constructed
a light-controlled system to trap tumor cells in the blood
(Fig. 2d). The tumor cells were used to target and bind
homologous blood cells, which significantly enhanced the
difference in optical constants between tumor cells and
blood cells and the tumor cells were efficiently sorted
(tumor cell recovery of 90% and purity >50%). Chou et al.
(2017) proposed a cell manipulation and flow rate control
technique based on optical-channeled electrophoresis, in
which a four-stage cell isolation system using four optical-
based virtual cell filters were designed in the optically-
induced-dielectrophoresis system to improve the cell
separation efficiency. The method resulted in a cell
separation purity of 94.9% ± 0.3% and cancer cell recovery
of 54% ± 7%. However, the auxiliary optical system is
limited in its highly complex setup, extremely low
throughput, and the damage to cells is also unacceptable for
clinical use.

Passive sorting
Among the passive sorting techniques, microfiltration sorting
(Kolostova et al., 2014; Rawal et al., 2016; Sonoda et al., 2020;
Zinggeler et al., 2015), such as the use of microcolumns to
complete tumor cell screening based on cell particle size,
was proposed by Professor Mehmet Toner of Harvard
Medical School and the work is published in Nature
(Nagrath et al., 2007). Han et al. (2022) designed a reusable
membrane filtration device that uses a horizontal rotor and
fluid assist in passing CTCs through a centrifugal filtration
membrane for rapid and efficient cell capture (Fig. 3a). The
device achieved an average capture rate of 95.8% for cancer
cells, with a survival rate of >90% and a leukocyte removal
rate of 99.72% after four treatments. A new method based
on biophysical properties was developed by Liu’s group (Liu
et al., 2018), who designed a pyramid-shaped microchamber
for efficient isolation of CTC from breast cancer patients at
an outlet height of 6 µm and a flow rate of 200 µL/min,
with a CTC capture efficiency of over 85%, and no blockage
problems. To date, filter-based sorting solutions no longer
use a single cutoff diameter. For example, McMasters has
reported a lamellar microporous sieve filter that uses
microfabrication processes, such as photolithography, to
provide arrays of 10, 15, and 20 µm microporous pores that
can effectively achieve the screening goals of simultaneously
sorting multiple cell sizes; moreover, it is not harmful to
health and does not require any external field. However, the
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sorting purity of microfiltration sorting is extremely low,
making it difficult to meet clinical testing requirements.

The concept of deterministic lateral displacement (DLD)
was introduced by Huang of Princeton University in their
study published in Science (Huang et al., 2004). The main
design idea was to set up a series of inclined microcolumn
arrays in the microfluidic channel to achieve particle sorting
based on the different angles of deflection of the trajectories
of particles of different sizes after perturbation by the
columns (Edd et al., 2020; Fachin et al., 2017; Khodaee et
al., 2016; Liu et al., 2018; Tang et al., 2022) (Fig. 3b). Liu et
al. (2013) introduced a microfluidic system integrating a
microfluidic DLD array and a cell capture structure. The
system achieved a CTC capture rate of 90% and capture
purity of >50% at a cell concentration of 102 cells/mL. Au et
al. (2017) developed a two-stage continuous microfluidic
chip to isolate and recover of viable CTC clusters from
blood. The method used both the size and asymmetric
geometric properties to sort clusters via DLD, with a 99%
CTC recovery rate and cell survival rate of over 87%. In
2021, Liu et al. (2021) proposed the concept of the

deterministic lateral displacement of filters by combining
filtration concepts with DLD structures for hydrodynamic
sorting. This resulted in a separation efficiency of >96%,
high cell purity of 99.995% through WBC removal, high cell
viability of >98%, and high processing efficiency of
1 mL/min. Bhattacharjee et al. (2022) designed an
asymmetric microcolumn array that regulated the flow
resistance of fluid in the flow channel, which was more
conducive to the differentiation of tumor cells from
leukocytes. Ahmed et al. (2017) developed a size-controlled
immunocapture chip with a triangular microarray structure
that selectively enhances CTC interactions by deterministic
lateral displacement. The microcolumns of this chip
successfully captured more than 90% of CTCs (92.2% ±
6.4%). However, the sorting purity of deterministic lateral
displacement sorting was lower, and the processing of
microcolumn arrays was more difficult, resulting in the low
success rate of microarray fabrication.

Currently, inertial sorting is the most popular and
widely used sorting scheme in passive sorting (Fig. 3c). The
main principle is based on the hydrodynamic properties of

FIGURE 2. Schematic diagram of the microfluidic device for separating circulating tumor cells (CTC) in active sorting. (a) Schematic diagram
of the dielectrophoresis apparatus used to separate CTCs (Gupta et al., 2012); (b) Schematic representation of label-free isolation of HeLa cells
in a ferromagnetic fluid by magnetic buoyancy under a magnetic field (Zhao et al., 2016); (c) Schematic diagram of the integrated
acoustic-fluidic device for the separation of CTC (Wu et al., 2017); (d) Schematic diagram of the optical separation device used to separate
CTCs (Hu et al., 2019).
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particles in the flow channel under the joint action of inertial
lift, Dean’s traction, and other forces to complete the high-
throughput separation of particles of different sizes (Mutlu
et al., 2020; Oakey et al., 2010; Smith et al., 2021; Zhou

et al., 2019). In addition to Toner’s group at Harvard
University, which pioneered the concept of inertial
microfluidics in the Nature Journal, di Carlo et al. (2009) at
the University of California, Los Angeles, proposed the

FIGURE 3. Schematic diagram of the microfluidic device for separating circulating tumor cells (CTC) in passive sorting. (a) Schematic
diagram of a polydimethylsiloxane microfiltration membrane integrated microfluidic device for CTC capture (Han et al., 2022); (b)
Schematic diagram of a deterministic lateral displacement microfluidic chip for CTC isolation (Fachin et al., 2017); (c) Schematic of the
inertial sorting microfluidic chip for CTC separation (Kulasinghe et al., 2017).

TABLE 1

Summary of active and passive methods for circulating tumor cells (CTC) sorting

Isolation method Basis Recovery Flow rate Purity Advantage Defect Ref.

Active
sorting

Electric field sorting Dielectric
properties

90% 6 μL/min Not
mentioned

High sorting
accuracy; no mark

Not easy to
integrate

Jahangiri et al.
(2020)

Magnetic
field
sorting

Positive
sorting

Immune
properties of
tumor cells

97% 5 mL/h Not
mentioned

High sorting accuracy Irremovable
magnetic
beads

Kim et al.
(2013)

Negative
sorting

Immune
properties of
white cells

86% 73 mL/h Not
mentioned

High flux; no mark Long
processing
time

Mishra et al.
(2020)

Acoustic field sorting Cell size, cell
density

86.5% 100 μL/min Not
mentioned

High sorting
accuracy; no mark

Not easy to
integrate

Antfolk et al.
(2015)

Optical separation Cell size,
refractive
index

90% 1.5 μL/h >50% High sorting
accuracy; no mark

Extremely
complex
system

Hu et al.
(2019)

Passive
sorting

Microfiltration
sorting

Cell size 80% 60 mL/h Not
mentioned

Simple structure; low
cost; no mark, no
outfield

Low sorting
accuracy

Sonoda et al.
(2020)

Deterministic lateral
displacement

Cell size 90% 1.2 mL/min <50% No mark; high
throughput; no
outfield

Difficult to
fabricate

Edd et al.
(2020)

Inertial sorting Cell size 85% 5 mL/min 35.2% No mark, high flux;
no outfield; easy to
integrate; low cost

Low sorting
accuracy

Zhou et al.
(2019)
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concept of inertial microfluidics. Khoo et al. (2018) at the
National University of Singapore have been working on
developing and commercializing spiral inertial microfluidic
chips for tumor cell sorting. Wang et al. (2022) at
Southeast University have been working on the theory and
application of inertial microfluidic chips. A double-spiral
microfluidic device with a finely tunable cutoff value of
9 µm and a separation range of 2 µm was proposed and
validated by Pena (Rodriguez-Pena et al., 2022). They
isolated 17 CTCs/mL from the peripheral blood of a
hepatocellular carcinoma patient with leukocyte and
erythrocyte removal rates of 96.03% and 99.99%,
respectively. Using the inertial lift, Gao et al. (2020)
developed a label-free separation microfluidic device using
multi-stage channels, a chip with mainly a herringbone
channel, a rectangular vessel, and inertial focusing
microchannels, which can be used to separate CTC. At a
flow rate of 9 L/min, the device had a separation efficiency
of 90% and a purity of 84.96%. However, this method is
based solely on cell size, and the purity of separation is
unable to meet clinical requirement.

The above methods were compared in detail and
summarized in Table 1.

Conclusions

CTC, as one of the main markers of liquid biopsy, is an
effective means of improving our understanding of cancer
metastasis. The ability to sort high-purity, high-viability
CTCs is, therefore, critical to the development of clinical
medicine and cell biology. Researchers have conducted
various more efficient microfluidic devices than traditional
filtration, centrifugation, and immunomagnetic bead
methods. This paper reviewed the latest developments in
microfluidic-based CTC sorting via active and passive
sorting and compared the advantages and disadvantages of
different methods. In general, additional external sources,
such as electrodes, signal generators, electromagnets, forked-
finger transducers, and light transmission paths, must be
integrated into the microchip when building an active
sorting system. However, these additional devices increase
the complexity of the system and the difficulty of
processing. More importantly, the addition of sources is
detrimental to cell activity and, consequently, to clinical
studies of downstream cancers. In contrast, the passive
sorting method does not affect cell activity. However,
because the cell particle size is the main sorting criterion, it
cannot overcome the problem of the size overlap between
CTCs and leukocytes owing to the presence of cell
heterogeneity. Therefore, chips with integrated active and
passive sorting should be the focus of subsequent research.
The multimethod coupled integrated system could solve the
current problems of CTC sorting, such as the inability to
simultaneously achieve a high recovery rate, high purity,
and high throughput. Based on the current research status,
we believe the microfluidic device could be more reliable
and stable in the future when separating CTCs, and these
novel microfluidic technologies for CTC capture and

isolation will play a crucial role in the early detection of
cancer, real-time monitoring and more.
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