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Abstract: Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease.

These interactions require physical contact between proteins and their respective targets of interest. These targets include

not only other proteins but also nucleic acids and other important molecules as well. These proteins are often involved in

multibody complexes that work dynamically to regulate cellular health and function. Various techniques have been

adapted to study these important interactions, such as affinity-based assays, mass spectrometry, and fluorescent

detection. The application of these techniques has led to a greater understanding of how protein interactions are

responsible for both the instigation and resolution of acute inflammatory diseases. These pursuits aim to provide

opportunities to target specific protein interactions to alleviate acute inflammation.

Introduction

The regulation of cellular processes by proteins forms the
foundation of all cellular biology and pathobiology. Fixed or
transient interactions of proteins with their respective
targets of interest allow for broad, dynamic modifications of
cell mechanisms for both health and disease (de Las Rivas
and Fontanillo, 2010). Targets of these interactions include
other proteins, RNA, DNA, carbohydrates, and lipids. These
interactions, in turn, regulate enzymatic alterations,
molecular transport, cell expression patterns, and global
signal transduction. While proper protein-mediated
interactions are necessary for cell homeostasis, the
importance of these interactions is no less true in acute
inflammatory conditions. Under these settings, the dynamic
protein-mediated interactions provide the dual purpose of
initiating an appropriate response to the inflammatory
challenge but also a mechanism to temper the response
when the threat is abated. These opposing responses ideally
work in concert to control the response and restore
homeostasis, with the survival of the host as the outcome.
However, dysregulation of these responses can lead to
enhanced or perturbed protein-mediated interactions,
causing the host to succumb to the disease. This mini-
review will provide broad strokes on the mechanisms of

protein-mediated interactions with a variety of cellular
components, how alterations in these interactions result
from and produce disease in acute inflammatory conditions,
and suggest potential therapeutic avenues to regulate these
mechanisms to tamper disease states (Fig. 1).

Mechanisms of Protein-Mediated Interactions

Protein-protein interactions
In the broadest sense, protein-protein interactions form the
mechanisms through which multi-protein complexes are
created (Dinant et al., 2009). The interactions fundamentally
depend on the amino acid sequences and the associated
charge of the proteins forming the interaction. In some
instances, gaps are formed in protein folding that allows for
other molecules or proteins to fill. This process is called
steric complementarity and forms the “lock-and-key”
approach to protein binding (Blaney et al., 1982).
Comparably, electrostatic charges of amino acid sequences
form the basis for protein folding (Roca et al., 2007). When
basic residues are in proximity to acidic residues, the
electrostatic charge pulls the opposingly charged sequences
together and can be used to form interactions between
adjacent proteins. These interactions and steric
relationships, create unique docking sites for protein-protein
binding (Vakser, 2014). A vast number of these sequences,
called conserved domains, have been cataloged and can be
readily assessed (https://www.ncbi.nlm.nih.gov/Structure/
cdd/cdd.shtml). In addition, both the hydrophobicity and
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shared bonding of hydrogen account for other mechanisms
through which proteins can interact to modify one another
(Jiang and Lai, 2002).

Protein-DNA and protein-RNA interactions
Similar to protein-protein interactions, it has been long
recognized that proteins can form direct binding
connections with nucleic acid structures (Blake and Oatley,
1977). Protein interactions with strands of various nucleic
acid sequences are necessary for DNA-mediated
production of proteins. Often these protein-mediated
interactions modify various aspects of this process, from
localization within the cell to sequence stability and editing
(Re et al., 2014). But while the transcription of DNA to
RNA and subsequent translation of RNA to amino acids is
well understood, it is approximated that up to 80% of
human DNA, and likewise RNA, do not code for proteins
(Consortium, 2012). Instead, much of this genetic material
has regulatory functions that include the modulation of the
cellular environment through protein-mediated
interactions (Elkon and Agami, 2017). In particular, non-
coding RNA (ncRNA) are RNA sequences, either long
(>200 bps) or short (<200 bps), that cannot code for a
protein. Despite this, ncRNAs have been shown to regulate
many aspects of cell biology, including through their
regulation of proteins (Kazimierczyk et al., 2020).
Understanding the role of these interactions is still in its
infancy, but it has been suggested that the more complex a
protein network is, the more likely it has interactions with
ncRNAs, such as microRNAs (miRNAs), to alter the

multi-protein complex function through dedicated ncRNA
docking sites (Liang and Li, 2007).

Other direct protein interactions
Though protein-protein and protein-DNA/RNA interactions
are important in signaling, proteins can interact with other
cellular components, namely lipids, and carbohydrates. Like
the mechanisms previously mentioned, protein-lipid or
protein-carbohydrate interactions often depend on charge
and hydrophobicity that allow for specific binding. In the
case of carbohydrates, the many hydroxyl groups (−OH)
present in carbohydrates allow for the potential of hydrogen
bond crosslinking (Zhang et al., 2021). Likewise,
electrostatic interactions and divalent cationic bridges also
account for protein-carbohydrate interactions, similar to
other protein-mediated mechanisms mentioned (Boraston et
al., 2004). In a similar context, protein-lipid interactions are
crucial for supporting cell membrane integrity. Binding sites
found on proteins help form these interactions. In
particular, pleckstrin homology domains on proteins have
been well-established to bind phosphatidylinositol lipids,
which aid in cytoskeleton rearrangements (Corey et al., 2020).

Detection methods
The capture of protein-mediated interactions can be
challenging due to their dynamic and transient nature.
Typically, for a protein-mediated interaction to be
considered meaningful, the interaction should be considered
intentional (i.e., not via Brownian motion) and with a
specific biological purpose to induce a physiologic change
(de Las Rivas and Fontanillo, 2010). Some more basic
detection methods include affinity purification-mass
spectrometry and co-immunoprecipitation, which identify
protein-binding partners (Rao et al., 2014; Cozzolino et al.,
2021). X-ray crystallography provides three-dimensional
structure and visualization of interactions, making this
technique exceptionally important in the lock-and-key
design of drug targets. Other fluorescent microscopic
techniques, such as proximity ligation assays (PLA) and
förster resonance energy transfer (FRET), provide some
spatial understanding of protein-mediated interactions
(Ivanusic et al., 2014). Assessing the strength of these
interactions can be performed with such techniques as
atomic force microscopy (AFM) and biolayer interferometry
(Whited and Park, 2014; Barrows and van Dyke, 2022).
More recently, computational techniques have been
developed to assess the complex and dynamic relationships
that protein-mediated interactions have on cell function.
These include computational models to predict possible
interactions and large-scale databases to test known binding
partners or interactions within biological networks (Ding
and Kihara, 2018; Droit et al., 2005; Yang et al., 2020). For
instance, the STRING Database (https://string-db.org/)
allows for the analysis of both physical and functional
interactions between multiple proteins of interest.
Understanding the mechanisms of protein-mediated
interactions, and the tools to assess them, have allowed for
investigations into the relevance of these relationships
during acute inflammation.

FIGURE 1. A schematic representation outlining how proteins of
interest interact with possible binding partners and the potential
therapeutic avenues that can be employed to modulate the known
interactions.
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Protein-Mediated Interactions in Acute Inflammation

At the most basic level, protein-mediated interactions are the
drivers of the cellular response to acute inflammatory
challenges. Starting with either cytokines, damage-associated
or pathogen-associated molecular patterns (DAMPs and
PAMPs), interactions of these molecules with pattern
recognition receptors (PRRs) start a signaling cascade.
During an inflammatory challenge, this cascade is initiated
and propagated by a series of protein-mediated processes
that include protein-protein, protein-DNA/RNA, protein-
carbohydrate, and protein-lipid interactions to drive the
biological response (Schweppe et al., 2015). One example is
lectins, which are non-enzymatic carbohydrate-binding
proteins and important instigators and regulators of the
host response to pathogens (Mason and Tarr, 2015). Indeed,
C-type lectin receptors (CLRs) are one of the primary
classes of PRRs that form a crucial first step to initiating an
inflammatory response to pathogenic challenge (Geijtenbeek
and Gringhuis, 2009). Another well-described class of PRRs
is toll-like receptors (TLRs), which are homo or
heterodimeric proteins that recognize foreign or endogenous
proteins, lipids, or DNA/RNA to start the inflammatory
response (Kawasaki and Kawai, 2014). Further protein-
mediated interactions at the cellular surface include the
previously mentioned protein-lipid interactions necessary
for the movement of proteins on the cell surface and
endocytosis-mediated signaling (Ewers and Helenius, 2011).

The protein-mediated signals that occur at the plasma
membrane and beyond are typically the result of a series of
assembling and dissembling multi-protein complexes that
exert their effect on various parts of the cell. These multi-
protein complexes aid in signal transduction through a
variety of post-translational modifications to induce protein
targets to carry out specific functions (Ramazi and Zahiri,
2021). Signal transduction through inflammatory cascades is
also under the influence of either internal or external
factors, such as non-protein coding RNA products. These
products can, in turn, either enhance or abate the
inflammatory response. The overall downstream protein-
mediated processes related to this are far beyond the scope
of this mini-review; however, the focus will be provided on
two crucial aspects of inflammatory signaling: protein-RNA
interactions in modulating the inflammatory response and
protein-protein interactions in inflammation-mediated
metabolism.

NcRNAs in pathogen-mediated inflammation
As mentioned previously, a majority of DNA does not code
for a specific protein. Nevertheless, these non-coding regions
have important regulatory functions in host defense (Li et
al., 2021). In one recent study in neonates with sepsis,
which is a severe immunological response to a pathogen, 89
long non-coding RNAs (lncRNAs) were found to be altered
(Bu et al., 2020). One well-described lncRNA is metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1).
Elevated circulating levels of MALAT1 have been shown in
patients with sepsis and coronavirus disease (COVID)-19,
and these levels correlate with the severity of the disease
(Chen et al., 2020; Huang et al., 2022). MALAT1 is known

to interact with several proteins involved in RNA processing
and gene transcription; however, a study using a
combination of RNA pull-down and mass spectrometry
showed that MALAT1 has potentially up to 127 protein
binding partners. In particular, MALAT1 binds to a protein
called depleted in breast cancer 1 (DBC1) and in doing so,
increases a protein called sirtuin 1 (SIRT1) which is a
regulator of cellular metabolism (Chen et al., 2017).
MALAT1 also functions as a miRNA sponge (Liu et al.,
2019). The term “sponge” is used when direct interactions
occur between a miRNA and another molecule, which
inhibits the miRNA of interest from carrying out its
regulatory function (Bak and Mikkelsen, 2014). A meta-
analysis of samples from patients with sepsis demonstrated
that 39 miRNAs were differentially regulated (Formosa et
al., 2022). One of these, miR-125B, has been associated with
MALAT1. Data has shown that as MALAT1 expression
increased, miR-125B decreased in proportion, and this again
correlated with disease severity (Le and Shi, 2022). In this
sense, miRNA expression patterns have been suggested as
biomarkers to delineate disease and the severity of illness
(Dumache et al., 2015). But beyond expression patterns,
miRNAs have functional roles mediated through direct
interactions. Once produced in the nucleus, they can exert
their effect locally, such as via histone modifications or RNA
silencing with subsequent protein reduction. They can also
be packaged into exosomes for more distal impact. TLR4, a
well-studied PRR whose primary agonist is gram-negative
lipopolysaccharide, produces an array of miRNAs when
activated, but in turn, its signaling cascade is also modulated
at various points by miRNAs (Szilagyi et al., 2019). Thus, it
can be seen that non-protein coding RNA products are
mechanisms through which the host fine-tunes the
inflammatory response to a challenge via direct protein-
RNA or RNA-RNA interactions.

Protein interactions in the regulation of inflammatory
metabolism
The crux of a host response to combat a severe inflammatory
challenge is to ensure that the energy needs of the cells are met
(Lee and Huttemann, 2014). Under resting conditions, much
of the energy produced as adenosine triphosphate (ATP) is
through mitochondrial oxidative phosphorylation as
opposed to glycolysis, the latter of which also generates
ATP, though to a much lesser degree (Bonora et al., 2012).
However, in times of stress, the phosphate group is quickly
utilized, producing adenosine monophosphate and
adenosine diphosphate, which must be readily restored to
ATP. Though in the resting state, oxidative phosphorylation
is the premier source of ATP generation, during an
infectious challenge, the path of energy production pivots
towards glycolysis (van Wyngene et al., 2018). This
described “metabolic shift” is important in host defense and
survival (Cheng et al., 2016). The processes that regulate
this shift are highly dependent on protein-mediated
interactions and disruptions can lead to an altered
immunometabolic phenotype. Hypoxia-inducible factor 1
alpha (HIF-1α), a key regulator of metabolism during stress,
is impacted by the capture of a protein called von Hippel–
Lindau protein (VHL), leading to HIF-1α degradation
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(Weidemann and Johnson, 2008). Upregulation of HIF-1α
occurs during sepsis, and its destruction by protein-protein
interactions with VHL is thought to shift the cells toward
fatty-acid metabolism and an anti-inflammation phenotype
(Fitzpatrick, 2019). Similarly, SIRTs are another class of
proteins that are thought to be important mediators of
metabolism during times of acute stress. Of the seven
subtypes of SIRTs known, SIRT1 is the best described in its
link with metabolism (Chang and Guarente, 2014). SIRT1
has a vast array of proteins it interacts with through its
deacetylation activity (McBurney et al., 2013). In endothelial
cells, SIRT1 interacts with several key regulatory and
homeostatic proteins (Stark et al., 2022). These interactions
include not only those with metabolism-related functions,
such as endothelial nitric oxide synthase and forkhead box
O1, but also with structural proteins, such as vascular
endothelial cadherin (VE-cadherin), putting SIRT1 protein
networks at the crossroads of structure and function
(Fig. 2). In total, alternations or disruptions in these
protein-mediated interactions drive the clinical phenotypes
seen and provide opportunities for potential therapeutic
intervention.

Methods of Targeting Protein Interactions

The importance of understanding protein-mediated
interactions cannot be understated, especially in the context
of drug discovery to mitigate disease. Potentiating or
inhibiting key interactions during a disease process provides
the possibility to hasten or restore homeostasis. As

mentioned previously, the foundation of most protein-
mediated interactions involves a lock-and-key interaction.
Interactions can be directly targeted through orthosteric
mechanisms or via indirect targeting through allosteric
mechanisms (Nussinov and Tsai, 2012). Lu et al. (2020)
have already provided an excellent and thorough review of
this subject matter, so this discussion will focus on key
highlights and generalized methods of targeting protein
interactions, especially within the context of acute
inflammation.

Large molecule biologics
The use of large-molecule biologics to regulate inflammation
has been well-established for chronic inflammatory
conditions. In these settings, the biologics act as scavengers
of pro-inflammatory soluble molecules circulating in the
blood or as receptor antagonists (Rider et al., 2016). Many
of these biological substances come in the form of
monoclonal antibodies. Unfortunately, due to their long
half-life and the necessity of proper cytokine signaling in
acute inflammatory conditions, the application of these
therapeutics comes with a significant risk of secondary
infections or reactivations (Lang et al., 2012). However,
large molecules with shorter half-lives may be of some
utility. This includes drugs such as anakinra, an interleukin-
1 receptor antagonist that has an elimination half-life of
6 hours and has been long used in the treatment of
autoimmune diseases (Bedaiwi et al., 2021). Given its
relatively good safety profile, it has been used in acute
inflammatory conditions. Though global results have not

FIGURE 2. Demonstration of forkhead box 1 (FOXO1, top) or endothelial nitric oxide synthase (eNOS, bottom) and sirtuin 1 (SIRT1)
interactions in human microvascular endothelial cells during acute challenge by gram-negative lipopolysaccharide (LPS).
Immunofluorescence staining of endothelial VE-cadherin (red) and FOXO1-SIRT1 (yellow) or eNOS-SIRT1 (green) interactions by
proximity ligation assay (PLA) with nuclei (blue). Merged images with inserts shown at the far-right demonstrate FOXO1-SIRT1 and eNOS-
SIRT1 protein-protein interactions within the projections of VE-cadherin, necessary for maintaining tight gap junctions, between adjacent
endothelial cells during pathogenic inflammatory challenge. Captured on a Zeiss LSM 880 inverted confocal microscope. Bar = 50 μm.
Unpublished image courtesy of R. Stark derived from experiments outlined in Stark et al. (2022).
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been promising, selectivity in patient selection based on
immunological profiling may provide more encouraging
results (Fisher et al., 1994; Shakoory et al., 2016).

Small molecule inhibitors and peptides
The utility of designing drugs to interfere with protein-
mediated interactions was never made clearer than during
the pandemic associated with COVID-19. This resurgence
of interest led to the application of small molecule
compounds designed to interfere with the interactions of
coronavirus with the host. Remdesivir, a nucleoside analog
that interferes with the RNA-dependent RNA polymerase
complex used in viral replication, was quickly approved for
use in COVID-19 (Kokic et al., 2021). The small molecule
Janus kinase 1/2 inhibitor, known as baricitinib, was also
found to be effective with increased efficacy when combined
with remdesivir in patients with COVID-19 (Kalil et al.,
2021). An additional trial (NCT04311697) using synthetic
vasoactive intestinal peptide (aviptadil) in the treatment of
COVID-19 is currently awaiting results, overall
demonstrating the feasibility and efficacy of these
therapeutics in acute inflammatory diseases. Beyond this,
the discovery of future small molecule compounds is likely
to accelerate with the development of high-throughput
compound screening libraries. For instance, utilizing such a
library revealed that niclosamide, approved as an anti-
helminthic drug, had broad anti-inflammatory properties via
inflammasome inhibition that worked against coronavirus,
as well as several different TLR ligands (de Almeida et al.,
2022). Similarly, cell-penetrating peptides (CPPs), along
with naturally occurring antimicrobial peptides, have been
suggested to have therapeutic potential in modulating
protein-mediated interactions. Several compounds have
been shown to affect intracellular pathogens as well as
regulate infection-mediated endothelial barrier dysfunction
(Buccini et al., 2020; Koch and Stark, 2022). However,
despite the pre-clinical promise of CPPs, none have been
approved for clinical use thus far (Xie et al., 2020).

MiRNA therapeutics
Manipulation of protein production and signal transduction
by miRNAs has been previously discussed. Given the wide
impact miRNAs can have on proteins, it makes them an
attractive potential therapeutic avenue for targeting cellular
processes (Rupaimoole and Slack, 2017). Data thus far
regarding the therapeutic potential of miRNAs in the
treatment of disease have been limited. Several clinical trials
utilizing miRNAs have been performed targeting cancers or
chronic viral infections (Janssen et al., 2013; Hong et al.,
2020). In addition, there are several ongoing clinical trials
targeting miRNAs to improve outcomes in ulcerative colitis
(NCT04023396) or myocardial infarction (NCT05350969).
While currently there are no miRNA therapeutics aimed at
regulating acute, acquired inflammatory diseases, such as
sepsis or COVID-19, the concept has gained some traction
(Giza et al., 2016). Regarding COVID-19, there is currently
an ongoing clinical trial examining the use of exosomes
containing miRNA to treat COVID-19-mediated
inflammation (NCT05216562). Though the therapeutic
application of miRNAs to successfully treat acute

inflammatory diseases remains to be seen, they nevertheless
continue to be a topic of significant investment.

Conclusion

Great strides have been made in recent decades that have
begun to pull back the veil of complexity that is the host’s
defense to acute inflammatory challenge. With the advent of
more sophisticated techniques, coupled with enhanced
computing tools and machine learning, we now know more
about the interconnected and dynamic proteome involved in
modulating a host’s response. This knowledge has been
further expanded by understanding new facets of the role of
the genome in producing non-coding RNA, which regulate
protein structure and function, as well as the importance of
multi-protein complexes forming the appropriate metabolic
response to an inflammatory challenge. As these protein-
mediated interactions are further elucidated, high-
throughput screening techniques that repurpose old drugs,
or allow for the creation of new ones, will hopefully allow
for the correction of aberrant protein interactions that
instigate and perpetuate acute inflammatory conditions. The
development of such compounds will no doubt usher in a
new era of therapeutics that will provide improved
outcomes for those patients suffering from diseases
associated with acute inflammation.
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