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Abstract: Background: Recently, researchers have been attracted in identifying the crucial genes related to cancer, which

plays important role in cancer diagnosis and treatment. However, in performing the cancer molecular subtype

classification task from cancer gene expression data, it is challenging to obtain those significant genes due to the high

dimensionality and high noise of data. Moreover, the existing methods always suffer from some issues such as

premature convergence. Methods: To address those problems, we propose a new ant colony optimization (ACO)

algorithm called DACO to classify the cancer gene expression datasets, identifying the essential genes of different

diseases. In DACO, first, we propose the initial pheromone concentration based on the weight ranking vector to

accelerate the convergence speed; then, a dynamic pheromone volatility factor is designed to prevent the algorithm

from getting stuck in the local optimal solution; finally, the pheromone update rule in the Ant Colony System is

employed to update the pheromone globally and locally. To demonstrate the performance of the proposed algorithm

in classification, different existing approaches are compared with the proposed algorithm on eight high-dimensional

cancer gene expression datasets. Results: The experiment results show that the proposed algorithm performs better

than other effective methods in terms of classification accuracy and the number of feature sets. It can be used to

address the classification problem effectively. Moreover, a renal cell carcinoma dataset is employed to reveal the

biological significance of the proposed algorithm from a number of biological analyses. Conclusion: The results

demonstrate that CAPS may play a crucial role in the occurrence and development of renal clear cell carcinoma.

Introduction

As cancer lesions are reflected in abnormal expression of cellular
genes in the body (Zakiryanova et al., 2019), the study of gene
expression data can be useful both for making early judgments
about a patient’s cancer status and for the precise treatment of
drugs (Vamathevan et al., 2019). The important process in the
early detection and treatment of cancer is to identify the
subtypes of the high-dimensional cancer gene expression data
(Sayed et al., 2019). Therefore, a large number of methods
have been proposed to classify those datasets.

Feature selection methods have been utilized since the
1990s (Yu and Liu, 2003; Li and Yin, 2013; Bolón-Canedo

et al., 2014). For instance, a new feature selection method
based on iBPSO was proposed for cancer diagnosis and
classification, the classification performance of which was
superior to the other compared algorithms (Jain et al., 2018).
To select desired feature subset, two feature selection
methods including relevant estimation and redundant
estimation are combined (Kavitha et al., 2020), which used
different criteria for attribute selection. Moreover, as one of
the various feature selection methods, the Relief-F technique
is widely used for selecting the most relevant features
(Robnik-Šikonja and Kononenko, 2003). Hakim et al. (2021)
applied ReliefF-support Vector Machine (SVM) in seven
biomedical datasets for classification and concluded that
ReliefF outperformed compared with correlation-based
feature selection (CFS). To remove redundancy in microarray
data, we used the k-means method as the clustering approach
for feature selection, which could classify similar features
(Aydadenta and Adiwijaya, 2018). Kang et al. (2019)
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combined relaxed Lasso and generalized SVM to solve tumor
classification and verified that the proposed method had better
performance in reduction and accuracy of classification.
However, due to the dimension curse and high data noise of
those cancer gene expression datasets, classification is a
challenging task to perform the classification. Therefore, it is
urgent to propose an effective method to enhance the
classification accuracy and choose the optimal feature subset
on those cancer gene expression datasets.

Recently, swarm intelligence methods have aroused
universal interest due to their strong robustness, simplicity,
self-organization and extensibility (Li et al., 2011, 2015;
Islam et al., 2018; Wang et al., 2020a; Mitra et al., 2022).
Consequently, more and more classification methods are
developed based on swarm intelligence. For instance, Li et
al. (2017) combined the genetic algorithm and the grey wolf
optimization algorithm were combined to address the
classification task. This hybrid approach yielded the best
subset of features by changing the initial position and
changing the group position in real-time. An improved
artificial bee colony algorithm combined with the SVM
classifier was proposed by Zhang (2016), which obtained a
subset of features with better classification performance. The
optimal subset of features was chosen by the combination of
the genetic algorithm and the SVM classifier by Huerta
et al. (2006). The authors proposed a novel hybrid swarm
intelligence method based on the chaos-based firefly
algorithm and the other heuristic method to reduce
computing costs (Dash et al., 2019). To select the optimal
feature set, an Altruistic Whale Optimization Algorithm
(AWOA) was proposed which could get the global optima
(Kundu et al., 2022). Dash et al. (2019) used an ASVM
method that combined the Shuffled Frog Leaping Algorithm
and proposed an SVM that proposed and performed better
than SVM based on Grid Search and Random Search.

As one of the swarm intelligence methods, the ant colony
optimization (ACO) algorithm is a heuristic evolutionary
algorithm inspired by foraging ants (Dash et al., 2019). Ant
colony optimization has the characteristics of parallel,
robust and positive feedback (Peake et al., 2018;
Dhanasekaran et al., 2020). Now, the ant colony algorithm
has extensive use in combinatorial optimization problems
such as the traveling salesman problem (Gülcü et al., 2018),
vehicle routing problems (Yan, 2018), and mobile robot
path planning (Ajeil et al., 2020). The ACO algorithm is
widely applied to solve the problem of high-dimensional
feature selection (Ma et al., 2021). For instance, a fuzzy
adaptive ACO was proposed by Wang et al. (2015). Could
achieve better classification results under specific conditions.
Based on ACO, a classification system for microarray data
was designed (Bir-Jmel et al., 2019) and the study proved
that the F-score could increase by 0.86 when combined with
ACO. In (Aldryan et al., 2018), the authors proposed a new
method (ACO-FLANN) that combined ACO and functional
link artificial neural network. However, the shortcomings in
traditional ACO are obvious: local optimal solution and
slow convergence speed (Mallick et al., 2021), affecting
negatively the efficiency of algorithm optimization.

Therefore, to address those problems in the traditional
ACO algorithm, we propose the development of an ACO

algorithm (DACO) to conduct the classification task. First, the
initial pheromone concentration based on the weight ranking
vector is proposed to accelerate the convergence speed; second,
a dynamic pheromone volatility factor is designed to prevent
the convergence premature; last, the pheromone update rule in
the Ant Colony System is employed to update the pheromone
globally and locally. In the experiment, eight high-dimensional
cancer gene expression datasets and a renal cell carcinoma
dataset are employed to demonstrate the excellent
performance of the proposed algorithm. Then, we compare
the proposed algorithm with effective methods from different
perspectives. Experimental results show that DACO
outperforms the other comparative methods in terms of the
accuracy and the optimal number of feature subsets.

Methodology

Feature selectionmethods for cancer gene expression data always
suffer from the curse of dimensionality. Indeed, the redundant
and irrelevant features can adversely affect the classification
accuracy, since noise information is added more than useful
information. In this paper, we propose a novel algorithm
(DACO) based on the ACO algorithm to enhance the quality
of classification and minimize the number of irrelevant
features. In DACO, two states are split in each feature, with
corresponding ants passing through or not passing through the
node. To obtain the optimal subset of features, the search
process is iterated multiple times in the proposed algorithm.

Ant colony algorithm
Inspired by the social intelligence of ants, the ant colony algorithm
mimics the foraging behaviors of ants. Studies have shown that it
is difficult for one ant to find the food; instead, in colony of ants,
the path information can be shared, so that food and the shortest
path can be found with ease. To be more specific, during the
process of foraging, subsequent ants are led rationally to choose
suitable paths through the pheromone released on the paths.
The paths with more pheromones are more likely to be chosen
by ants. Eventually, after continuous positive feedback, the
shortest route accumulates the most pheromones. Generally
speaking, and with multiple iterations, ongoing pheromone
updates are essential to finding the best solution for the
optimization problem. Furthermore, the ant colony algorithm
follows the following rules in the search process:

1. Each ant searches the path independently and the
communication between ants is based only on the
pheromones.

2. Each ant does not repeatedly pass through the nodes
that it has already passed through during each iteration.

(1) In each iteration of the ant k, the possibility pkij is
utilized to make ant k select the next node j at the current
node i, which is calculated using the following equation:

pkij ¼
saij tð Þ �hb

ij tð ÞP
k2allowedk s

a
ij tð Þ �hb

ij tð Þ
k 2 allowedk

0 others

8><
>: (1)

where allowedk indicates the set of nodes to be selected by the
ant k in the next step, which is updated at once when the ant k
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passes through a path. It is worth noting that the empty
allowedk denotes the end of the current iterative process of
the ant k. For pkij, sij is the pheromone concentration on
path i; jð Þ at the current moment t; g is the heuristic factor,
which is the reciprocal of dij; dij is the distance between
node i and node j; a and b are the information heuristic
factor and expectation heuristic factor, respectively.

(2) In each iteration of the ACO algorithm, the initial
pheromone concentration on each path is the same. After
that, update rules are used to update the following
pheromone concentrations, which are denoted as follows:

sij t þ 1ð Þ ¼ 1� qð Þ � sij tð Þ þ Dsij tð Þ (2)

Here, q is the pheromone volatility factor (0 < q < 1);
Dsij tð Þ denotes the pheromone concentration on path i; jð Þ
at the iteration t, which is updated in the following equation:

Dsij tð Þ ¼
XN

k¼1
Dskij tð Þ (3)

Here, Dskij tð Þ is the pheromone concentration released by
the ant k on path i; jð Þ at the iteration t. The equation that can
update Dskij tð Þ is defined as follows:

Dskij tð Þ ¼
Q

Lk tð Þ if ant k passes through path ij

0 others

8<
: (4)

Here, Lk tð Þ is the length of the route that the ant k takes
to find food throughout the whole iteration. Q is a constant.

Development of an ant colony optimization algorithm
Considering the shortcomings of the traditional ACO
algorithm, a developed ACO algorithm (DACO) is proposed
in this paper.

First, the traditional ACO algorithm is prone to slow
convergence speed during early iterations. This is partly
due to the fact that the initial pheromone concentration is
the same between features, leading to the ants selecting the
features randomly initially. In the initial search, the
randomness makes the ants blind and increases the time
cost of the initial search. In addition, this drawback can be
aggravated due to the high dimensionality of the research
object. To address this problem, the initial pheromone
concentration is positively correlated with the weights of
features. The definition is as follows:

s 0ð Þ ¼ s0

exp

�
1þ r

nf

�2
 ! (5)

Here, s0 is a hyperparameter for pheromone concentration;
nf stands for the number of genetic features participating in the
ACO; and r is the weight ranking vector of the features filtered by
the Relief-F algorithm.

Then, to prevent the algorithm from getting stuck in the
local optimal solution, we designed a dynamic pheromone
volatility factor to resize itself adaptively. Early in each
iteration, pheromones are released on features that pass
through what is likely to be locally optimal solutions, thus
attracting more ants to pass through these solutions. As
time accumulates, the positive feedback can widen the
difference between the local optimal solution and other

solutions, restricting the ACO algorithm get stuck in the

local optimal solution. The adaptive calculation formula is
as follows:

q tð Þ ¼
q0 t � 10

0:9 � q t� 1ð Þ 0:9 � q t� 1ð Þ.0:2;gap tð Þ,10�4

0:2
q t� 1ð Þ

0:9 � q t� 1ð Þ � 0:2
others

8><
>: (6)

And

gap tð Þ ¼ fit tð Þ � fit t � 10ð Þ if t. 10
1 others

�
(7)

Here, q0 is the initial value of the pheromone volatility
factor; q has a minimum value of 0.2; gap (t) represents the
gap between the global optimal solution at the iteration t and
the iteration t � 10ð Þ. Alternatively, if the gap is less than
0.0001, or the algorithm may enter the stagnation period, q is
updated to 0.9 times in terms of the pheromone volatility
factor of the previous iteration. The fit tð Þ is the evaluation
value of the optimal solution for the iteration t. It is worth
noting that the optimal solution gets better when the
evaluation value reduces. Lastly, we utilized the pheromone
update rule in the ant colony system as follows to address the
problem that was stuck in the local optimal solutions:

(1) For each path of the best routine in each iteration, the
pheromone is updated globally after the completion of the
current iteration with the following equation:

sij ¼ 1� nð Þ � sij þ n � Dsij (8)

Here, n is a hyperparameter on the pheromone update
(0 < n < 1), sij is the pheromone concentration of the path
i; jð Þ where the ant with the optimal solution in the current
iteration passes; Dsij is equal to the reciprocal of fG; and fG
is the optimal solution in the current iteration.

(2) The pheromone concentration is updated locally for
each passed path. The local updating rule of pheromone is
expressed as follows:

sij ¼ 1� qð Þ � sij þ q � s0 (9)

In each iteration, the search efficiency is enhanced by the
difference between the pheromone concentration of the best
solution and other solutions. Meanwhile, the probability of
searching for unused paths for the ants can be increased by
the local update rule of pheromone, effectively avoiding the
stagnation of the algorithm. In specific, the pseudocode of
the proposed DACO algorithm is described in Algorithm 1:

Algorithm 1: Pseudo code of developed ant colony
optimization (DACO)

Initialize the data set matrix D, the maximum iteration T , the
number of ants N , the weight ranking vector r, and the other
parameters;
Set the initial pheromone concentration of each node based on
Eq. (5);
while (i < T) do
Reset the forbidden table X;
for (k < N) do

Randomly generate the total number nf of nodes that
all ants pass through;

Place the ant k on any node;
(Continued)
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for each node in (1, nf ) do
Make ant k select the next node j based on Eq. (1);
Update the pheromone locally based on Eq. (9);

end for
Evaluate the performance of the routine of the k-th

ant;
end for
Update the global optimal solution fG;
Update the pheromone volatilization factor based on

Eqs. (6), (7);
Update the pheromone globally based on Eq. (8).
end while

Retain the global optimal solution fG;
Return the subset of features corresponding to fG.

Results

Data collection
The proposed algorithm and other comparative algorithms
were evaluated on eight cancer gene expression datasets,
including Brain_Tumor_1, Brain_Tumor_2, DLBCL,
Leukemia_1, Leukemia_2, Leukemia_3, Lung Cancer, and
Prostate_Tumor_1. Table 1 shows the description of these
datasets specifically, consisting of the number of features,
samples and classes. As can be seen from Table 1, most of
the datasets have multiple categories, the number of features
varied from 5429 to 12600, and the number of samples from
72 to 203. In the data pre-processing phase, the number of
features in these datasets was greatly reduced by the Relief-F
algorithm (Robnik-Šikonja and Kononenko, 2003), which
removes the irrelevant features among all the features using
the weights. Meanwhile, the 200 most important features
were retained for each cancer gene expression dataset.

Parameter setting
For the proposed algorithm, the number of ants, the maximum
number of iterations, the initial pheromone decay coefficient, the
pheromone update coefficient, the initial pheromone parameters,
and the pheromone action coefficient are essential parameters.
All the parameter settings are detailed in Table 2. For a fair
comparison, the ratio of the training and test sets is set to 8 to
2 (Tang et al., 2017; Wang et al., 2020b), the K-Nearest

Neighbor (KNN) algorithm was used as an evaluation function
for all the comparison algorithms. The hyperparameter K in
the KNN algorithm was set to 10. All other classifiers used the
10-fold cross-validation method. Moreover, each algorithm
runs 20 times independently on each dataset.

Other related methods from literature
To verify the performance of the developed ant colony
algorithm, several swarm intelligence algorithms were
compared with the proposed algorithm, including particle
swarm optimization (PSO) (Kennedy and Eberhart, 1995),
genetic algorithm (GA) (Ghareb et al., 2016), differential
evolution algorithm (DE) (Fleetwood, 2004), and ACO
algorithm (Dorigo et al., 2006). Each algorithm represents a
specific algorithm paradigm. PSO originated from the study
of the predatory behavior of birds, obtaining the optimal
solution by leveraging the information sharing of individuals
in a group. GA searches for the best solution by simulating
the natural evolutionary process. DE is a global optimization
algorithm, which could be applied in terms of accuracy,
speed, and stability of solutions. ACO is the basic algorithm
of the proposed algorithm.

Comparison with the related methods
Classification results under different classifiers
In this section, our proposed algorithm with five other different
classifiers including SVM, Decision Tree (DT), Random Forest
(RF), Naïve Bayesian (NB), and Discriminant Analysis (DA), is
used to compare with our algorithm. The experiment is
repeated 20 times on each cancer gene expression dataset
independently. The comparison results are summarized in
Table 3. As shown in Table 3, for each row in the table,
the classification accuracy obtained by our proposed
algorithm with different classifiers varied greatly. The
classification accuracy of our proposed algorithm is much
better than that of the other five classifiers. Meanwhile, the
accuracy of the proposed algorithm with the other five
classifiers also differed greatly from each other. For
instance, the algorithm with RF outperformed that with
DT by 7% on Leukemia_1 and the proposed algorithm
with SVM outperforms that with DA by 14% on
Prostate_Tumor_1. We conclude that KNN is appropriate
for our proposed algorithm to conduct the cancer
molecular subtype classification task.

Algorithm 1 (continued)

TABLE 1

Description of eight cancer gene expression datasets

DataSet Genes Samples Classes

Brain_Tumor_1 5920 90 5

Brain_Tumor_2 10367 50 4

DLBCL 5429 77 2

Leukemia_1 5327 72 3

Leukemia_2 7129 72 4

Leukemia_3 11225 72 3

Lung_Cancer 12600 203 5

Prostate_Tumor_1 5966 102 2

TABLE 2

Parameters settings of the proposed algorithm

No. Symbol Meaning Value

1 N Number of ants 50

2 T Maximum number of iterations 100

3 q0 Initial pheromone decay coefficient 0.9

4 n Pheromone update coefficient 0.5

5 s0 Initial pheromone parameters 2

6 a Pheromone action coefficient 3

7 b Heuristic function action coefficient 1

8 g Heuristic function 1
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Comparison between two ant colony algorithms
To investigate whether the developed ant colony algorithm can
overcome the problems of slow convergence in the initial
iterations and fall into local optimum, the traditional ACO
algorithm was used to compare with our proposed algorithm
DACO. In particular, two classifiers were employed in those
two algorithms respectively. The algorithms were repeated 20
times independently on each cancer gene expression dataset and
the average classification accuracy is summarized in Table 4.
Moreover, the convergence curves of those two algorithms
under the KNN classifier are shown in Fig. 1. We choose the
error rate as the fitness value, which is equal to 1-accuracy.

From Table 4, the average classification accuracy
obtained by our proposed algorithm DACO was generally
higher under both KNN and SVM classifiers. In particular,
the classification accuracy of the eight feature subsets
obtained by DACO was above 90% under the KNN
classifier and mostly above 75% under the SVM classifier.

As shown in Fig. 1, the fitness value decreased as the number
of iterations increased. The convergence curves of DACO were
always at the lower left of the convergence curve of ACO,
demonstrating the convergence performance and classification
accuracy of the proposed algorithm are better than the other
algorithm. More specifically, the proposed algorithm converged
faster in the early iterations compared to the conventional

algorithm. From the perspective of the convergence curve,
DACO has the potential to find the global optimal solution,
since it can jump out of the local optimal solution several times.

Effect of different feature subset sizes on classification accuracy
Different sizes of feature subsets were set to explore the
classification accuracy under different sizes of feature
subsets obtained by the proposed method. Specifically, the
feature subset size ranged from 10 to 150. The average
accuracy obtained by our proposed algorithm with different
numbers of features on those eight cancer gene expression
datasets is summarized in Fig. 2.

As can be seen from Fig. 2, the curves of the classification
accuracy did not increase monotonically. In addition, as the
number of features increases, the classification accuracy
shows a smooth trend of Brain_Tumor_1, DLBCL and
Prostate_Tumor_1; a small increase in Brain_Tumor_2,
Leukemia_1, Leukemia_2 and Lung_Cancer; and a large increase
in Leukemia_3. In conclusion, as more and more features are
gradually involved in the classification task, more meaningless
features can negatively interfere with the classification accuracy.

Comparisonwith different swarm intelligence optimization algorithms
To evaluate the performance of the proposed algorithm, we
compared DACO with multiple swarm intelligence

TABLE 3

Classification accuracy obtained by the proposed algorithm with different classifiers (percentage)

DataSet KNN SVM DT RF NB DA

Brain_Tumor_1 94.44 74.89 69.44 76.33 76.56 73.78

Brain_Tumor_2 98.00 65.60 56.20 63.20 62.20 62.20

DLBCL 100.00 87.29 84.04 87.61 84.30 83.86

Leukemia_1 100.00 78.64 72.93 80.11 75.61 73.18

Leukemia_2 91.43 76.75 72.57 78.50 74.00 73.04

Leukemia_3 100.00 86.04 77.61 82.14 78.25 78.07

Lung_Cancer 98.00 86.10 81.91 86.33 80.03 80.60

Prostate_Tumor_1 95.00 77.89 70.91 77.58 61.96 63.05

Average 97.11 79.15 73.20 78.98 74.11 73.47

TABLE 4

Classification accuracy obtained by ant colony optimization ACO and the proposed developed ACO (DACO) with two classifiers

DataSet KNN SVM

ACO DACO ACO DACO

Brain_Tumor_1 94.14% 94.44% 74.11% 74.89%

Brain_Tumor_2 98.00% 98.00% 65.20% 65.60%

DLBCL 100.00% 100.00% 82.80% 87.29%

Leukemia_1 99.29% 100.00% 78.88% 78.64%

Leukemia_2 91.14% 91.43% 76.52% 76.75%

Leukemia_3 100.00% 100.00% 81.46% 86.04%

Lung_Cancer 97.50% 98.00% 86.52% 86.10%

Prostate_Tumor_1 95.00% 95.00% 76.54% 77.89%

DACO FOR CANCER MOLECULAR SUBTYPE CLASSIFICATION 559



optimization algorithms including PSO, DE, GA, and ACO.
The sizes of the feature subsets obtained by different
comparative algorithms are summarized in Table 5, and the
classification accuracy of different swarm intelligence
methods is shown in Fig. 3.

Table 5 indicates that the proposed ant colony algorithm
DACO could greatly reduce the size of the feature subset, that
is, redundant features can be removed to a large extent. For
instance, the average number of feature subsets obtained by
the developed ant colony algorithm is 3.9 for the Leukemia_3
dataset. Fig. 3 shows the classification accuracy of different
comparison algorithms based on KNN and SVM respectively.
Clearly, the proposed algorithm performed better than other
swarm intelligence algorithms on most cancer gene expression
datasets, which could also verify the good performance of the
proposed method in cancer subtype classification.

Case study and biological analysis
To further demonstrate the biological performance of the
proposed algorithm, we applied it to analyze the renal cell
carcinoma dataset GSE40435 from the Gene Expression

Omnibus database. Renal cell carcinoma (RCC) is one of
the most lethal urological tumors and takes about 3% of all
diagnosed cancers in humans (Padala et al., 2020). It is
characterized by different subtypes such as the clear cell
RCC (ccRCC) which accounts for ~75% of cases
(Patergnani et al., 2020). Although ccRCC patients have
improved survival rates through surgical techniques and
specific targeted therapy, the predictability of outcome is
still poor (Ma et al., 2013). Therefore, the pathogenesis of
ccRCC needs to be further studied.

From our algorithm DACO, we selected a number of
genes using the Relief-F algorithm on GSE40435, then 13
genes including CAPS, CD27, CP, DMBX1, EEPD1,
EXOSC2, GSTM4, MRPL43, MRPL55, NAP1L1, PPM1F,
TIMM9 and TTTY2 are selected.

First, we employed the Gene Expression Profiling
Interactive Analysis (GEPIA) (Tang et al., 2017) and the
University of Alabama at Birmingham CANcer (UALCAN)
(Chandrashekar et al., 2017) websites to analyze the
difference between tumor tissues and normal tissues. GEPIA
is used to profile cancer and normal gene expression and

FIGURE 1. The convergence curves of the traditional method of ant colony optimization ACO and the proposed developed ACO (DACO)
method.

FIGURE 2. The accuracy obtained by developed ant colony optimization (DACO) using different feature subset sizes on eight cancer gene
expression datasets.
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analyze the interactive, available at http://gepia.cancer-pku.cn/;
UALCAN is used for tumor gene expression and survival
analyses, which can be found in http://ualcan.path.uab.edu/.
The RNA sequencing expression data based on thousands of
samples in those tissues were from the Cancer Genome Atlas
(TCGA) and Genotype Tissue-Expression (GTEx) databases
(Tang et al., 2017). The differential expression of those 13
genes using the GEPIA and UALCAN websites are
summarized in Fig. 4. Fig. 4 shows that CAPS, CD27, and CP
have different expression levels between tumor tissues and
normal tissues in TCGA and GTEx databases. Therefore,
CAPS, CD27, and CP can be used as biomarkers in ccRCC.

Then, to demonstrate whether the gene expression of
those three genes can affect the clinical outcome of RCC, we
applied the GEPIA website and Kaplan-Meier plotter to
analyze the survival rate of the three genes (Fig. 5). The
results indicate that the expression of CAPS is prognostic of
poor clinical outcomes for RCC.

Finally, to identify the potential function of the expression
of CAPS, we searched for genes co-expressed with CAPS in
RCC from the cBioportal database (Gao et al., 2013) and
discovered 20041 genes. Then we select 150 genes with the
highest Spearman’s correlation coefficient. All the 150 genes
were analyzed by the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) (Huang et al., 2009)
software and the results of GO analysis tabulated in Table 6
indicate that the co-expressed genes are particularly enriched
in cell cycle and methylation. We also conducted the Kyoto
Encyclopedia for Genes and Genomes (KEGG) analysis, the
results of which are summarized in Table 7. According to
Table 7 we demonstrate that co-expressed genes are enriched
in the lysosome, ether lipid metabolism and Endocytosis.

Based on the above analysis, we infer that CAPS can be used
as a biomarker and an important potential target drug in the
treatment of ccRCC. That provides evidence that our
algorithm can bring us new insights to identify important
genes in the cancer gene expression data.

Discussion

In this paper, we propose a DACO to classify cancer gene
expression data. First, the initial pheromone concentration
based on the weight ranking vector was proposed to
accelerate the convergence speed; then, to prevent the
algorithm from getting stuck in the local optimal solution,
we proposed a dynamic pheromone volatility factor to resize
itself adaptively; finally, the pheromone update rule in the
Ant Colony System was utilized to update the pheromone
globally and locally. To demonstrate the performance of the
proposed algorithm, eight cancer gene expression datasets
and a renal cell carcinoma dataset were employed. The
experiment results showed that the proposed algorithm not
only provides excellent performance in terms of
classification accuracy but also in the small size of the
feature subset. The proposed algorithm outperformed other
existing methods. By our proposed algorithm, CAPS of the
renal cell carcinoma dataset was screened and may play a
crucial role in the occurrence and development of renal
clear cell carcinoma from multiple bioinformatics analyses.
These results can provide a novel idea for the future
treatment of renal clear cells. In the future, we plan to apply
our proposed algorithm to other real cancer gene expression
datasets. We would also like to test the expression of CAPS
between the cancer issue and the normal issue with IHC.

TABLE 5

The average size of feature subsets obtained by different methods

DataSet PSO DE GA ACO DACO

Brain_Tumor_1 55.5 113.5 12.3 36.1 25.8

Brain_Tumor_2 57.5 91.8 14.5 24.1 13.9

DLBCL 55.4 53.6 7.6 6.2 4.2

Leukemia_1 55.1 75.4 13.2 31.3 12.2

Leukemia_2 56.4 80.0 10.5 34.0 16.9

Leukemia_3 49.2 79.4 20.1 28.5 3.9

Lung_Cancer 67.7 113.5 35.4 59.5 49.4

Prostate_Tumor_1 66.5 98.6 26.3 25.9 10.5

Average 57.9 88.2 17.5 30.7 17.1

FIGURE 3. Classification accuracy obtained by different algorithms.
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FIGURE 4. (Continued)
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FIGURE 4. The differential expression of those 13 genes selected by our proposed algorithm using Gene Expression Profiling Interactive
Analysis (GEPIA) and the University of Alabama at Birmingham CANcer data analysis Portal (UALCAN) websites.
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FIGURE 5. The survival rate of CAPS, CD27, and CP by Gene Expression Profiling Interactive Analysis (GEPIA) website and Kaplan-Meier
plotter, respectively.
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