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Abstract: Few-shot learning is becoming more and more popular in many fields, especially in the computer vision field.

This inspires us to introduce few-shot learning to the genomic field, which faces a typical few-shot problem because some

tasks only have a limited number of samples with high-dimensions. The goal of this study was to investigate the few-shot

disease sub-type prediction problem and identify patient subgroups through training on small data. Accurate disease sub-

type classification allows clinicians to efficiently deliver investigations and interventions in clinical practice. We propose

the SW-Net, which simulates the clinical process of extracting the shared knowledge from a range of interrelated tasks and

generalizes it to unseen data. Our model is built upon a simple baseline, and we modified it for genomic data. Support-

based initialization for the classifier and transductive fine-tuning techniques were applied in our model to improve

prediction accuracy, and an Entropy regularization term on the query set was appended to reduce over-fitting.

Moreover, to address the high dimension and high noise issue, we future extended a feature selection module to

adaptively select important features and a sample weighting module to prioritize high-confidence samples.

Experiments on simulated data and The Cancer Genome Atlas meta-dataset show that our new baseline model gets

higher prediction accuracy compared to other competing algorithms.

Introduction

Disease sub-type prediction aims at identifying sub-types of
patients so that it permits a more accurate assessment of
prognosis (Saria and Goldenberg, 2015). Predicting disease
sub-types with gene expression data is of great significance in
molecular biology (Rukhsar et al., 2022). Accurate
classification allows a more efficient and targeted succeeding
therapy (Sohn et al., 2017). However, patient genomic data
are hard to deal with because of the “big p, small N” issue,
which means high dimensional features with a small number
of samples (Liang et al., 2013). Especially when the disease is
rare (Yoo et al., 2021), this is a very crucial problem faced by
doctors and clinicians. Few-shot learning, which aims at
dealing with the “small data” issue, has attracted lots of
attention, and researchers have made significant progress in
many fields, such as computer vision (Li et al., 2006;
Munkhdalai and Yu, 2017; Snell et al., 2017; Qiu et al., 2018;
Mishra et al., 2018; Sung et al., 2018). Recently, researchers
have explored few-shot learning methods for genomic data

and achieved good performance in genomic survival analysis
(Qiu et al., 2020). This motivates us to introduce few-shot
learning for genomic analysis. Our goal in this study was to
address the issue of the few-shot disease sub-type prediction
problem. This problem is considered in isolation in
traditional machine learning methods. However, in practice,
doctors and clinicians take several clinical factors into
account simultaneously.

The basic idea of our proposed new model was to learn
from relevant abundant tasks and generalize to new classes,
which are rare diseases. This mimics the process by which
doctors and clinicians study the prediction of disease sub-
types. The model extracts shared knowledge or experience
from a range of interrelated tasks and applies it to new
tasks. Although increasingly complex models are being
proposed, experiments show that a simple baseline approach
can achieve desired results comparable to other complex
methods. The training procedure of our model includes a
pre-training stage and a fine-tuning stage, which is similar
to the transfer learning procedure (Weiss et al., 2016). In
the first stage, we trained a feature extractor and a classifier
at the same time with the base classes. In the fine-tuning
stage, we fixed the parameters of the feature extractor.
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However, a new classifier is learned in this stage with the few
samples with tags in the new class. In fact, with some twists of
performing fine-tuning and regularization, a simple baseline
method outperforms many other competing algorithms on
few-shot sub-type prediction tasks.

Most few-shot models are originally designed for images
(Vinyals et al., 2016; Finn et al., 2017; Garcia and Bruna, 2017;
Bertinetto et al., 2018; Rusu et al., 2018; Lee et al., 2019).
However, the high dimensionality of genomic data makes
predictions more difficult compared to images because of
the large number of redundant features. To address this
issue, our new model appends a feature selection module,
which is first proposed by Yang et al. (2020) to solve the
dimensionality issues.

High noise is another challenging topic for accurate sub-
type prediction. Random noise and system bias may be prone
to overfitting and affect performance in generalization (Liang
et al., 2013). Commonly weights are assigned to samples to
deal with this issue. Opinions vary on the relationship
between sample weight and training loss: one holds that the
samples with larger training loss should be more emphasized
since they are more likely to be complex ones that are located
at the classification boundary. Typical methods include
AdaBoost (Freund and Schapire, 1997) and focal loss (Lin et
al., 2020). On the contrary, another approach is to give
priority to samples with smaller losses because these are more
likely to have high confidence. Typical methods include self-
paced learning (Kumar et al., 2010), iterative reweighting (de
la Torre and Black, 2003) and its variants (Jiang et al., 2014;
Wang et al., 2017). Meta-weight-net (Shu et al., 2019)
designed a network that adaptively learns an explicit
weighting function directly from data. This methodology
prioritizes small loss samples and is especially suitable for
heavy noise scenarios. The rationality lies in that the samples
with large losses may possibly have corrupted labels, and the
reweighting approach could suppress this issue to a certain
degree. Since high noise is a vital problem in gene expression
data, we adopted the method of Shu et al. (2019) to assign
weight to the samples and give higher weight to the data with
low loss to suppress the influence of the samples with high noise.

In summary, the proposed SW-Net mainly made the
following contributions.

First, we applied a new baseline method in the few-shot
disease sub-type prediction problem. The basic baseline has
been widely explored in many fields, especially computer
vision. Our contribution is to modify this baseline method
in the field of molecular biology, especially for disease
subtype prediction problems. The new model fits well. We
used support-based initialization for the classifier and
transductive fine-tuning technique in our work. We also
append an entropy regularization term on the query set to
reduce overfitting.

Second, based on the baseline, we further extended a
feature selection module and a sample weighting module to
solve the high dimensionality issue for few-shot prediction.
The extended modules aim to adaptively select vital features
and give priority to samples with small losses.

Third, experiments show that with support-based
initialization and transductive fine-tuning, we can achieve a
2%–6% improvement in prediction accuracy. With the
appended feature selection and sample weighting modules,
we can further achieve a 2%–2.5% improvement on The
Cancer Genome Atlas (TCGA) meta-dataset.

Materials and Methods

In this part, we first show the basic baseline model for few-
shot learning. Then, we present the variants we performed
to improve its performance. Finally, we elaborate our
extended modules. The model architecture is shown in Fig. 1.

Problem definition
To formalize the few-shot prediction problem, we need to
introduce some notation first. Let x; yð Þ represent a labeled
sample and its ground-truth label respectively. In the few-
shot learning context, we let Ds ¼ xi; yið Þf gNs

i¼1 and
Dq ¼ xi; yið Þf gNq

i¼1 denote the support and query datasets
respectively. yi 2 Ct represents some set of classes. The
number of classes |Ct | is called the ways. The number of
labeled samples in each class is called a shot. The goal is to

FIGURE 1. Structure of SW-Net.
We trained a feature selector gφ, an
embedding function fθ and a
weighting function v with the meta-
training dataset in the pre-training
stage. In the fine-tuning stage, we
train a new classifier C(·|Ws) with
the samples with label in the
support set. All the parameters are
fine-tuned transductively.
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train a network F to exploit the support set Ds to make a
prediction of the label from the query set, by the following
formula:

ŷ ¼ F x;Dsð Þ (1)

where xi; yið Þ 2 Dq. A few-shot learning problem also has a
meta-training dataset Dm ¼ xi; yið Þf gNm

i¼1, with abundant
data, where yi 2 Cm. The set of classes Cm has no
overlapping class with Ct . We can take advantage of Dm to
give parameters of the learning model a good initialization.

Baseline
A simple baseline form includes the following steps: pre-
training on the meta-training dataset, fine-tuning on the few-
shot dataset and making few-shot predictions (Weiss et al.,
2016; Chen et al., 2019). Our SW-Net follows the basic
procedure. In the pre-training stage, we first trained a model
with the cross-entropy loss on Dm ¼ xi; yið Þf gNm

i¼1. With the
training samples in meta-training set classes x 2 Dm, we can
learn a classifier C and an embedding function f that can
transfer high dimensional data of a sample to the low
dimensional feature vector. The feature vector will be used in
the next stage. Fine-tuning stage: To make our model well-
adapt to new classes, we fixed the network parameter h in the
embedding function fh (called the backbone) from the pre-
training stage, and then learn a new classifier C �jWsð Þ, where
Ws ∈ Rd�Ct is the weight matrix, d represents the dimension
of the feature vector, and Ct is the number of output classes.
Ws is optimized by minimizing cross-entropy loss L with the
few samples of support set. The classifier C �jWsð Þ is a
softmax classifier, which is built up with a linear layer and a
softmax function as shown in Eq. (2):

Softmax Ws
Tfh xið Þ þ b

� �
(2)

Careful initialization of the softmax classifier
C �jWsð Þ will make this process efficient. We initialized this
classifier with the feature mean of the support set to make it
adapts well.

Making few-shot predictions: In this stage, given a query
sample, fh obtains the feature vector of the query sample. Then
we entered it into the softmax classifier to make the final
prediction.

Support based initialization
In a few-shot task, let Sc denote the samples in class c of the
support set Ds. For the classifier, the weight and bias are Ws

∈ Rd�Ct and b ∈ RCt , respectively, Ws ¼ w1;w2; . . . ;wc; . . .½ �,
where Ct denote the number of classes of Ds and each class
of Ds is a d-dimensional vector. The first modification we
perform is to initialize wc by the average feature of class c.

wc ¼ 1
Scj j

X

x2Sc
fh xð Þ (3)

Intuitively, we can understand the weight vector Ws as a
prototype, similar to (Snell et al., 2017). The classification is
distance-based on the input feature and the prototypes, as
shown in Fig. 2. Moreover, we initialized the bias bc ¼ 0.
Given the labeled samples of support set, we further
fine-tune Ws, b, and h by minimizing cross-entropy
classification loss.

Cosine distance-based classifier
We design the classifier here differently from the linear one
used in the basic baseline to improve performance.
According to Chen et al. (2019), the authors compared the
effect of Euclidean distance and cosine distance on image
datasets and found that cosine distance achieves better
performance because of its reduced intra-class variation. For
an input feature vector fh xið Þ, we compute its cosine
distance to each weight vector Ws ¼ w1;w2; . . . ;wc; . . .½ �. A
prediction is made according to the probability that x is in
class c with Eq. (4). Operator sim ;ð Þ denotes the cosine
similarity between the input vectors and the weight vector.

p y ¼ cjxð Þ ¼ exp ðsim fh xð Þ;wcð ÞP
c0 exp ðsim fh xð Þ;wcð Þ (4)

Transductive fine-tuning
The main idea of transductive learning is to restrict hypothesis
space with samples from the test dataset. Some papers in the
few-shot learning field have exploited the idea of
transductive learning recently. For example, Nichol et al.
(2018) adapted batch-normalization parameters to query
samples. Liu et al. (2018) estimated labels of query samples
with label propagation. We denote � ¼ h;Ws; bf g the
combined parameters of fh and C. All the parameters � are
trained together in the fine-tuning stage.

At test time, we added a Shannon Entropy penalty term
of query sample predictions. This is inspired by semi-
supervised learning literature, close to work of Grandvalet
and Bengio (2004). More recent methods like Dai et al.
(2017) and Kipf and Welling (2016) are also suitable for our
model, but we used the Shannon Entropy penalty for
simplicity. We used unlabeled query samples for
transductive learning. x represents a query sample. p� �jxð Þ is
the prediction. H p� �jxð Þð Þ stands for the Entropy. Multiple
query samples can be processed together to get the mean of
H p� �jxð Þð Þ of all query samples, and we minimized cross-
entropy classification loss over all query labels. As we seek
outputs with a small Shannon Entropy H, we introduced
the regularizer. Thus, the transductive fine-tuning learning for

��¼ argmin�
1
Ns

X

x;yð Þ2Ds

� logp� yjxð Þþ 1
Nq

X

x;yð Þ2Dq

H p� �jxð Þð Þ(5)

It is worth noting that the first term uses the samples with
labels from the support setDs, whereas the second term, which
is the regularizer, utilizes the unlabeled samples from the

FIGURE 2. Vector Ws was initialized with the feature mean of each
class. For each class, we computed the cosine distances between the
input feature vector and the prototype weight vector.
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query set Dq. The two terms can be imbalanced. We could add
a coefficient for the entropy term to control the imbalance
problem. However, we set it equal to 1 as we wish to keep
its simplicity and avoid optimizing these hyper-parameters.

Feature selection net
We aimed to solve the few-shot disease sub-type prediction
problem. However, genomic data is hard to handle due to
the high dimensionality, as we mentioned above. To
overcome this issue, we extend our baseline with a feature
selection module to screen out the genes that are irrelevant
to the disease. For each sample x 2 Rp. The dimension of
genomic data p can be very high. We can utilize a selection
β = (β1, β2, …, βp). vector to get a new representation
x0 which is the element-wise product of x′ and b. This can
help us remove useless features.

x0 ¼ b� x; bj 2 0; 1½ � (6)

Most regularization methods are based on some
assumptions about the training data. However, when we do
not have a significant understanding of the basics of gene
expression data, it was not feasible to specify a specific
regularization form. Here, we set a Softmax layer as the
feature selection vector b. Then we obtained the element-
wise product that can adaptively learn feature weighting
from data.

x0 ¼ gu xð Þ ¼ b uð Þ � x

bi uð Þ ¼ exp uð Þi=
X

j

exp uð Þj;
X

i

bi uð Þ ¼ 1 (7)

where j 2 Rp represent the parameter of the Softmax
classifier. Here we can easily embed gj xð Þ into Eq. (4) and get:

pu;h y ¼ cjxð Þ ¼ exp sim fh gu xð Þ� �
;wc

� �� �
P

c0 exp sim fh gu xð Þ� �
;wc0

� �� � (8)

And in Eq. (3) becomes

wc ¼ 1
scj j

X

x2Sc
fh gu xð Þ� �

(9)

This regularization form needs no expert knowledge of
the underlying data. u can be learned along with �. Now
we donate the new combined parameters as
�0 ¼ u;Ws; b;jf g: All the parameters �0 are trained in the
fine-tuning stage transductively:

�0ð Þ� ¼ argmin�
1
Ns

X

x;yð Þ2Ds

� log p�0 yjxð Þ

þ 1
Nq

X

x;yð Þ2Dq

H p�0 �jxð Þð Þ
(10)

Sample weighting net
The high noise issue in genomic data is another challenging
problem. We set weights to samples to prioritize high-
confidence data, with the hope to restrain the influence of
the samples with high noise. The weight vector wc is the
weighted representation of all samples for class c from the
support set,

wc ¼ 1
scj j

X

xi2Sc
vi � fh gu xið Þ� �

(11)

where vi reflects how much we believe that sample xi is clean
data. Larger weight vi represents we treat it as clean data with
higher confidence.

To determine the v, we modified the method proposed by
Shu et al. (2019), which attempts to learn a weighting function
to assign different weights to clean the noisy samples. The
sample weight v is an MLP network. The input of the MLP
network is the loss for the sample, and the output of it is
the weight, as shown in Fig. 1. Since our baseline model
treats the support samples as prototypes and we did not
compute the losses. The feature vector of each sample is the
input instead of the loss. So, the Eq. (11) function can be
rewritten as:

wc ¼ 1
scj j

X

xi2Sc
V fh gu xið Þ� �

x
� � � fh gu xið Þ� �

(12)

Results

To evaluate the performance of our proposed SW-Net, we
conducted experiments on both simulated data and the TCGA
gene expression dataset. Our SW-Net outperformed conventional
machine learning methods and typical few-shot methods.

Simulated dataset
We constructed the training dataset Dtrain and test dataset
Dtest , where they had non-overlapping classes. We referred
to the work of Ma and Zhang (2019) to generate simulated
data. For Dtrain, we sampled 100 points from each of the ten
Gaussian distributions, which were 2-dimensional
distributions with covariance matrix and ten different mean
l = (2, 2), (6, 6), (0, −5), (4, −4), (−2, 2), (−5, 0), (−6, 6),
(−2, −9), (−5, −5), (−9, −6), respectively as the true features.
We then appended 40-dimensional Gaussian irrelevant
features with the covariance matrix

P ¼ diag(10, …, 10)
and mean l = diag (2.5, …, 2.5). Therefore, each sample has
42-dimensional features, including the two true features and
the forty irrelevant features. For Dtest , 1000 points were
drawn from each of the four Gaussian distributions with the
covariance matrix

P ¼ diag 1; 1ð Þ and four different means
m = (0, 0), (1, 0), (0, 1), (1, 1), as the true features. Then we
appended the 40-dimensional Gaussian irrelevant features
the same as the setting.

Implementation details
We compared SW-Net with conventional machine learning
methods and two typical meta-learning methods (including
Prototypical net and Matching net). SW-Net was firstly pre-
trained with the training dataset Dtrain, which contains 10
classes. Then we randomly selected 1% of the samples from
Dtest , for each of the four classes as support datasets, and
the remaining samples were placed into the query set. The
accuracy of SW-Net was tested with 50 random runs. The
conventional machine learning methods were trained on 1%
of the test set per-class and tested on the remaining
samples. The implementation detail adopts the same setting
as the work in Ma and Zhang (2019).
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Results on different feature dimension settings
To test the feature selection capability of SW-Net, we increased
irrelevant feature dimensions to four levels, which are 100, 500,
1000, and 2000, respectively. Basic implementation settings
keep the same. The result is demonstrated in Tables 1 and 2
with 50 random runs by 5-fold cross-validation. In the ablation
experiment, the baseline denotes the basic baseline model
without any modifications. SI denotes “Support-based
Initialization”; “SI+TF” means that Support-based Initialization
and Transductive Fine-tuning were both added to the baseline;
In “SI+TF+FS”, the FS denotes the Feature Selection net, and in
SW-net, we added all modules, including the sample
reweighting net, to the baseline. SW-Net outperformed all other
comparison methods, including two typical meta-learning
methods and five conventional machine-learning methods.
With the increase of dimension, the performance gaps between
SW-Net and the competing methods increased. This shows the
capability of our model to deal with high-dimension data.

Moreover, we tested SW-Net’s ability to select vital features.
We selected a representative machine learning method, which is
Logistic Regression, and compared its learned weights of
features with SW-Net on a 42-dimensional feature setting. Fig. 3
shows the learned weights of features by logistic regression, and
Fig. 4 represents the weights of features learned by SW-Net; we
can see that the red bar of SW-Net is much higher than the
blue bar, which demonstrates that the selection of true features
is better through our model compared with the conventional
method.

Experiments on the cancer genome atlas meta-dataset
TCGA Meta-Dataset: The field of genomics lacks a consistent
benchmark data set. To address this issue, TCGA Meta-

Dataset (Samiei et al., 2019) offers a dataset from the
publicly available clinical dataset, which is TCGA Program.
There are 174 tasks which are all classification problems.
The input gene-expression data is with 20530 genes. These
are good proxy tasks to develop algorithms for few-shot
problems. They consist of a variety of clinical problems,
such as predicting tumor tissue site, histological type, and
many others. The task definition and data can be found at
https://github.com/mandanasmi/TCGA_Benchmark.

Implementation Details: We selected 68 clinical tasks
from it. Each task included two classes and each class had
no less than 60 samples. To evaluate the performance of
SW-Net and other competing methods, we used 80 classes
for training and tested the remaining 56 classes. They were
tested on the 5-shot and 1-shot settings, respectively. For
simplicity, we did not perform a separate hyper-parameter
search. All methods utilized the same network as the
backbone, which consisted of 2 fully connected layers, both
with ReLU (Nair and Hinton, 2010) activation. The sizes of
the two hidden layers were 6000 and 2000, and the output
size was 200. We used the Adam optimizer, and the
learning rates were determined based on a grid search of
[0.001, 0.0005, 0.0001, 0.00005, 0.00001]. A learning rate of
0.0001 was selected for the pre-training stage. All other
methods used the same learning rate of 0.0001. For the fine-
tuning stage, an SGD optimizer with a 0.001 learning rate
was selected.

We kept the backbone the same for all methods. For the
conventional methods, we used the implementation in scikit-
learn (https://scikit-learn.org/) for Naive Bayes, Logistic
Regression, and Random Forest with default settings. We
implemented NeuralNet and AffinityNet with default

TABLE 2

The prediction accuracy of ablation experiment by 5-fold cross validation

Algorithm 100 500 1000 2000

Baseline 67.23 ± 1.84 62.19 ± 2.71 57.24 ± 3.07 45.39 ± 2.38

SI 75.02 ± 4.43 63.52 ± 4.28 27.22 ± 5.45 47.98 ± 6.60

SI+TF 79.50 ± 3.28 72.29 ± 5.30 71.32 ± 8.19 64.43 ± 6.27

SI+TF+FS 83.68 ± 3.59 83.50 ± 6.55 79.52 ± 6.38 73.86 ± 4.25

SW-Net 87.25 ± 4.34 84.38 ± 3.83 80.92 ± 5.82 77.64 ± 5.74

TABLE 1

The prediction accuracy by 5-fold cross validation under different feature dimensions

Algorithm 100 500 1000 2000

NeutralNet 32.88 ± 1.67 26.89 ± 0.72 25.39 ± 0.88 25.02 ± 0.64

Logistic Regression 42.62 ± 1.98 32.80 ± 0.98 28.96 ± 2.07 27.92 ± 0.55

Random Forest 53.44 ± 2.70 29.43 ± 2.34 26.22 ± 2.31 24.70 ± 2.63

Naïve Bayes 75.98 ± 6.23 55.56 ± 5.39 47.17 ± 3.77 42.48 ± 3.18

MatchingNet 77.92 ± 3.95 70.04 ± 5.36 51.24 ± 6.88 48.87 ± 9.66

PrototypicalNet 81.49 ± 4.60 72.08 ± 4.70 54.05 ± 9.92 49.66 ± 7.79

SW-Net 87.25 ± 4.34 84.38 ± 3.83 80.92 ± 5.82 77.64 ± 5.74
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settings in the original paper (Ma and Zhang, 2019). For
matching net, prototypical network, and the baseline method,
we followed the implementation by Chen et al. (2019), https://
github.com/wyharveychen/CloserLookFewShot. The selected
tasks for our experiment can be found at https://drive.google.
com/file/d/1cYzuMJKbxWsIZqbwhH1LW0bzfkW_Cc9h/view?
usp=sharing.

Results on the cancer genome atlas meta-dataset
We compared SW-Net against the following methods: two
representative meta-learning algorithms (including
Matching Net and Prototypical Networks) and conventional
learning methods (including Logistic Regression, Neural
Network, and majority class prediction). We also conducted
an ablation experiment to test the performance of each
component of the proposed model. For the conventional
methods, we randomly selected 120 samples for each task to
take 80 of them as training data and use the rest for testing.
Each task had two classes. For meta-learning methods and
SW-Net, we tested them under 5-shot and 1-shot settings.

The result is shown in Table 3. The query shot was set to 15
in this experiment unless otherwise specified. Fine-tuning
was performed on one GPU for 30 epochs for SW-Net. Two
updates for the weight were made in each epoch: we first
updated the cross-entropy term with the support samples
and then updated the Shannon Entropy term with the query
samples.

As in Table 3, the ablation experiment is mentioned in
the bottom section of the table. If we only adopted support-
based initialization, the performance can be comparable to
the other meta-learning algorithms. For the 1-shot
experiment, only performing support-based initialization
leads to a minor improvement in accuracy over other
methods. For the 5-shot setting, performing support-based
initialization and fine-tuning obtains a better result than the
other methods.

Transductive fine-tuning in the experiment results in a
nearly 5% improvement in prediction accuracy for 1-shot
over the support-based initialization. Meanwhile, it led to an
improvement of nearly 4% prediction accuracy for the

FIGURE 3. Learned feature weights by logistic
regression on a simulated dataset. The red bar
shows the true features.

FIGURE 4. Learned feature weights by SW-Net on a
simulated dataset. The red bar shows the true features.
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5-shot setting. This demonstrates that the unlabeled query
samples used in the transductive fine-tuning are vital for the
few-shot setting. SW-Net led to 1%–2% improvement in
1-shot and 5-shot settings over transductive fine-tuning. This
shows that the selection vector indeed filtered out the useless
features and has a positive effect on the prediction accuracy.

We further compared SW-Net with other methods on
the lung cancer subtype task and GBM (glioblastoma
multiforme) gene expression subtype task separately under
5-shot settings through 5-fold cross-validation. The
evaluation criterion included accuracy and area under the
ROC curve (AUC). The result of accuracy is shown in
Tables 4 and 5. “SI” denotes “Support-based Initialization”;
“SI+TF” denotes “Support-based Initialization and
transductive fine-tuning”; “SI+TF+FS” represents Feature
Selection net is added; SW-net represents that we add the
sample reweighting net to the previous model. In Fig. 5, we
show the AUC on the lung cancer subtype task and GBM
gene expression subtype task. The supported-based
initialization improved both AUC and accuracy. Both tasks

benefited from the feature selection module and sample
reweighting module at different degrees.

Fig. 6 presents the effect of changing the query shot on
the mean accuracy of the tasks for 1 support shot and 5
support shots. For the 1 support shot experiment, the
Shannon entropy penalty term in SW-Net resulted in an
increase in prediction accuracy as the query shot increased.
This effect was not obvious in the 5-support shot setting
because more labeled data in the support set is available.
One interesting point we observed is that 1 query shot gets
a higher result because our transductive fine-tuning method
can adapt to the few query samples. The 1 query shot is
enough to benefit from this method.

To further test the feature selection capability of the SW-
Net, we selected 20 top-ranked significant genes of the lung
cancer sub-type task with SW-Net and draw the Kaplan-
Meier (KM) curve (Cerami et al., 2012) with cBioPortal
https://www.cbioportal.org as shown in Fig. 7. Survival
analysis of the selected important genes is performed based
on the Pan-Cancer Atlas dataset (Hoadley et al., 2018). The
two curves do not intersect. The Log-rank test p-value was
4.387e-4. The blue line, which represents the unaltered
group of patients in the selected genes, has a longer
survival time.

Moreover, we experimented on the lung cancer dataset to
investigate the significance of the important genes selected by
our model. We selected the 50 top-ranked genes and
performed enrichment analysis with Metascape (Zhou et al.,
2019). The database we use includes WikiPathway (Slenter
et al., 2018) and Rectome Pathway (Fabregat et al., 2018).

Fig. 8 shows that they are enriched in the “non-small cell
lung cancer” pathway. Signaling by epidermal growth factor
receptor (EGFR) and cytokine signaling in the immune
system are also related to lung cancer. Tuberculosis, which
has been proven to be associated with lung cancer (Wu et
al., 2011; Yu et al., 2011), is enriched in the enrichment
analysis in our experiment. Other enriched pathways
include fms-like tyrosine kinase 3 (FLT3) signaling, S
phase, and so on, which are associated with the cell cycle

TABLE 3

Mean accuracy on all TCGA meta-dataset test tasks under 1-shot
and 5-shot settings by 5-fold cross validation. Best results
highlighted in bold

Algorithm 1-shot 5-shot

Majority 63.28 ± 8.35

Logistic regression 68.06 ± 10.26

Neural network 68.67 ± 11.77

MatchingNet 61.08 ± 16.94 70.86 ± 12.55

Prototypical networks 66.56 ± 14.36 74.55 ± 13.21

Baseline 59.89 ± 13.02 70.31 ± 9.88

SI 61.69 ± 14.90 73.44 ± 9.01

SI+TF 66.22 ± 12.05 78.01 ± 8.87

SI+TF+FS 66.90 ± 11.43 79.93 ± 9.92

SW-Net 70.05 ± 9.40 81.03 ± 8.58

TABLE 4

Accuracy on lung cancer sub-type task by 5-fold cross validation

Algorithm Accuracy%

Majority 47.86 ± 8.83

Logistic regression 62.60 ± 5.34

Neural network 64.25 ± 1.98

MatchingNet 73.36 ± 10.52

Prototypical networks 72.56 ± 8.22

AffinityNet 78.20 ± 6.76

Baseline 72.22 ± 6.43

SI 75.25 ± 4.01

SI+TF 76.23 ± 5.82

SI+TF+FS 79.41 ± 6.92

SW-Net 84.55 ± 6.78

TABLE 5

Accuracy on the glioblastoma multiforme (GBM) gene expression
sub-type task by 5-fold cross validation

Algorithm Accuracy%

Majority 42.77 ± 9.34

Logistic regression 56.25 ± 4.56

Neural network 60.20 ± 6.98

MatchingNet 69.33 ± 8.55

Prototypical networks 68.40 ± 6.51

AffinityNet 71.05 ± 5.89

Baseline 67.45 ± 4.45

SI 69.25 ± 6.08

SI+TF 73.13 ± 7.81

SI+TF+FS 74.49 ± 6.78

SW-Net 78.78 ± 5.89
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(Sage et al., 2003). EGF and EGFR play a vital role in the
development of cancer proliferation (Huang et al., 2014).

Discussion and Conclusion

Most computational methods are developed for one particular
clinical task in isolation. For example, (van Wieringen et al.,
2009) worked on survival prediction. Lyu and Haque (2018)
researched on tumor cell type classification. This is quite
different from the real clinical process. Clinicians and doctors
need to take several clinical variables into account
simultaneously. In other words, these tasks are interrelated
with each other. We can get a more reliable result if we have
comprehensive knowledge about the patient. It is practical to
take relative tasks into account to get more precise prediction
accuracy. We utilized a collection of interrelated tasks and
build some prior knowledge for the general prediction. Our
new SW-Net can achieve competitive disease sub-type
prediction accuracy compared to other traditional methods
because we considered the correlated tasks.

What’s more, the ability of our model to prioritize the genes
for survival analysis was validated by experiments. We
performed gene set enrichment analysis. The top-ranked genes
were enriched in crucial cancer pathways, such as cell cycle,
cell death, interleukin, cytokine signaling in the immune
system, and so on. Besides the well-known cancer pathways,
our experiment reveals that viruses can be a potential factor
affecting cancer development, which is not well-studied yet.
For lung cancer, the Epstein-Barr virus infection pathway is
enriched, which also reveals that hepatotropic viruses may be
associated with lung cancer. In recent research, it has been
found that hepatotropic viruses are related to advanced non-
small cell lung cancer (Zapatka et al., 2020).

In conclusion, the small data and high noise are crucial
problems researchers encounter when analyzing genomic
data. To address this issue, we utilized a modified approach
with a reweighting strategy, which can learn from a small
number of samples, and the reweighting module suppressed
the samples with high noise. We demonstrate that the
proposed framework can achieve competitive performance
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with traditional methods and other complex models. Last,
experiments show that the proposed method is interpretable.
The top-ranked genes of lung cancer are enriched in
biological pathways associated with cancers.

The small data issue is a factor that limits many
biomedical analyses. Our work further demonstrates the
prospect of meta-learning for solving biomedical problems
with small data. In the future, we want to explore the

FIGURE 7. K-M curves of 20 top-
ranked genes of lung cancer
selected by SW-Net.

FIGURE 8. Enrichment analysis for the 50 top ranked genes by meta-learning with the reweighting method in the lung cancer dataset.
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applications of meta-learning for other biomedical problems,
including cancer subtype prediction, drug discovery, and
medical image analysis.
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