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Abstract: As the climate worsens and the demand for food grows, so does the interest in nanoagriculture. The interaction

between plants and nanomaterials (NMs) has been extensively and intensively examined. However, stopping at the

outcome of a phenomenon is often insufficient. Therefore, we introduce three important processes of nanoparticle-

plant interactions: translocation, transformation, and plant metabolism. During the migration of nanoparticles, size

and surface electrical properties are the main determining factors. Additionally, the interaction of nanoparticles with

cell membranes is another key aspect of research. The transformation of nanoparticles in plants is mainly due to

redox substances. The way that nanoparticles affect plant metabolism may be able to shed light on the interaction of

nanoparticles with plants. This review adds to the existing knowledge on the design of nanoagrochemicals and

summarizes the mechanism of interaction of NMs with plants. In this way, NMs can be used for their beneficial

effects and thus contribute to the maintenance of food security and sustainable development.

Introduction

As the population continues to grow, the demand for food
gradually increases. By 2050, the demand for food will rise
by 70% (Bindraban et al., 2018). In the face of food needs
and security, nanomaterials (NMs) emerge as a promising
solution. Traditional agrochemicals cause some environmental
pollution, and although they are of great help to agricultural
production, the cost is also unaffordable for people. Climate
degradation is also urging an accelerated exploration of
nanotechnology applications in agricultural environments.
Currently, the NMs are used in a number of environmental
applications, including the reduction of air pollution (Lou
et al., 2022; Zhao et al., 2022b), mitigation of heavy metal
stress (Zhou et al., 2021b), and water purification (Chong
et al., 2010; Jjagwe et al., 2021). The more thorough
investigation has also inadvertently assisted in the
understanding of NMs’ effects on plant physiology (Faizan
et al., 2021; Iannone et al., 2014; Juarez-Maldonado, 2022;

Juárez-Maldonado, 2022). It has been demonstrated that NMs
can encourage plant development and enhance the condition
of plants’ growth (Adeel et al., 2021; Farooq et al., 2021; Li
et al., 2021; Pang et al., 2021; Shakoor et al., 2022; Wang et al.,
2020). However, NMs are like two sides of the same coin, and
some studies have pointed out that NMs may have adverse
effects on plants under certain conditions (Bai et al., 2021;
Guo et al., 2022; Wang et al., 2019). Excessive amounts of
NMs can be toxic and hinder the growth and development of
soil microorganisms and plants (Chen et al., 2022; Dev et al.,
2018; Li et al., 2022; Sardoiwala et al., 2018; Yusefi-Tanha
et al., 2022; Zhao et al., 2022a). The accumulation of NMs in
the environment poses a concern to the human body since
they can enter through a number of different channels
(Moore, 2006; Sharifi et al., 2012; Zhang et al., 2018).

Understanding the biological impacts of NMs on plants
requires an understanding of their transport, change, and
impact on plant metabolism (Lin et al., 2009; Schymura et al.,
2017). The application of NMs includes foliar, root
application, and seed germination (Wang et al., 2022d; Yue
et al., 2022; Zhao et al., 2020). The NMs migrate into the
plant, which has been explored in depth in a previous review
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(Dietz and Herth, 2011; Lv et al., 2019; Siddiqi and Husen,
2017; Singh et al., 2018; Usman et al., 2020; Verma et al.,
2019). We are especially interested in the migration of NMs
at the cellular level (Gao et al., 2019; Hua et al., 2021; Qu
et al., 2022), which has gotten less attention. The size of the
nanoparticles (NPs), which are the main barriers to NM
entrance into plant cells, has the biggest impact. The barriers
to entry of NPs into plant cells mainly consist of cell walls
and membrane structures. The charge carried by NPs and
cell wall and membrane structures is also one of the factors
worth considering (Hu et al., 2020). We will describe it in
detail below. The migration is accompanied by the
transformation of NPs, and the transformation also facilitates
the migration of elemental species to some extent. For
example, in ZnO NPs as nanopesticides, the Zn2+ ion exhibits
the antibacterial effect. Reactive oxygen species (ROS) that
have a sterilizing effect, are also produced by ZnO NPs
(Khan et al., 2016; Molnár et al., 2020; Wagner et al., 2016).
The entry of NPs into plants also affects plant metabolism
indirectly through phytohormones and light and efficiency,
which will be described in detail here.

We searched the web of science using the subject terms
(1) “plants” and “nanomaterials” and “transfer”; (2) “plants”
and “nanomaterials” and “transformation”; (3) “plants” and
“nanomaterials” and “metabolism”. A total of 70 reviews
were screened, and keyword co-occurrence analysis was

performed on these 70 reviews (Fig. 1). In the co-occurrence
illustration (Fig. 1), we could draw some conclusions from
the current reviews: (1) There are only a few reviews on the
effects of the migration transformation process of
nanoparticles; (2) Applications for nano-agriculture, such as
nano-fertilizers and nano-sensors, are increasingly becoming
research topics of interest; (3) Engineered nanomaterials
have a large body of research and are a major research
target for studying plant-nanomaterial interactions.

This review introduces the migration, transformation,
and influence of NPs on plant metabolism (Fig. 2). The
mechanisms of these processes and the factors affecting the
migration and transformation of NPs were explored, and
challenges and future research directions are highlighted.
The novelty of this paper lies in the overview of the
important activities faced in the internalization of
nanoparticles and the presentation of the process from the
outside to the inside of the plant system. This review thus
sheds light on the current research on NPs at the plant
cellular level.

The Translocation of Nanomaterials in Plant

NMs are structurally prevented from entering the plant cell
walls and membranes. NPs also interact with the elements
of the cell wall and membrane. For the design and

FIGURE 1. An illustration of co-occurrence analysis of a review on nanomaterial migration, transformation, and impact on plant metabolism.
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application of NPs, it is crucial to investigate the challenges
and influencing factors encountered during the migration of
NPs (Fig. 3). We will next discuss the structure of plant cells
from the outside to the inside, in terms of the cell wall
dimensions, the interaction of NMs with the cell wall and
the interaction of NMs with the membrane structure in turn.

The pore size of plant cell wall
The cell wall is a more solid, durable, and slightly more flexible
structure than the cell membrane. Cellulose, hemicellulose,
and lignin make up the majority of the cell wall (Zeng et al.,
2017). Plant cells must face the engineered nanomaterials
before they may enter the cell. Plant cell walls are made up
of a cross-linked network of pectins and proteins (Shomer
et al., 2003). Also, the cross-linked network determines the

size of the wall pores of dicotyledonous cells (Fleischer
et al., 1999). The size of the cell wall prevents NMs from
migrating further (Wu and Li, 2022). Therefore, it is crucial
to comprehend the size of the cell wall pores (Carpita et al.,
1979; Lew et al., 2018). For different plants, the porosity
tends to differ (Chesson et al., 1997; Fujino and Itoh, 1998).
The radius of the wheat (Triticum aestivum L.) cell wall
pores is 1.5–3 nm (Chesson et al., 1997). The pore size of
maize (Z. mays L.) stover cell walls is between 10 and
1000 nm, although it varies depending on where it is located
(Chundawat et al., 2011). In one experiment, 11 nm NPs
were discovered on the leaves of the maize (Hu et al., 2020).
The epidermal cells of the pea (Pisum sativum) feature
pores that are typically 5.5 ± 1.4 nm in size for
their elongating cell wall and 13.4 ± 4.3 nm for their

FIGURE 2. Illustration of the variables that affect plant metabolism, nanoparticle translocation, and nanoparticle transformation.

FIGURE 3. Illustration of possible barriers to the entry of NPs into plant cells.
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non-elongating cell wall (Fujino and Itoh, 1998). The STEM
examination of NPs isolated from leaves revealed a
10 nm-diameter of Zr/CeOx NPs (Schwabe et al., 2015).
When the particle size was more than 20 nm, no root-to-
shoot translocation was seen. The same outcomes of a second
experiment demonstrated that 18 nm size Fe2O3 NPs could
not be transported from roots to shoots of maize (Li et al., 2016).

In general, NPs smaller than 13 nm in size are able to
enter plant cells directly through cell wall pores, while those
with larger sizes, such as 40–60 nm, can enter plant cells
through intercellular filaments.

The interaction between nanomaterials and the cell wall
The ability of NMs to pass through the cell wall may be
influenced by elements other than the size of the cell wall
pores. There may be more complex interactions between the
NMs and the cell wall.

Transmission electron microscopy studies suggest that
the root cell wall of Brassica (Brassica napus) treated with
ZnO NPs at a concentration of 25 mg/L was bound to Zn2+

(Molnár et al., 2020). This demonstrates the capacity of
ZnO NPs to modify cell membranes. Because plant cell
walls are active, they can easily redesign themselves in
response to environmental changes (Houston et al., 2016).
After being exposed to Y2O3 NPs, the form and
composition of cell wall of tobacco (Nicotiana tabacum L.)
were also altered. The cell wall thickness of tobacco
increased significantly by 7–12 times, the pectin content
increased by 58%, and the hemicellulose content decreased
by 29% (Chen et al., 2021). In the presence of ROS, Ag+

produced by Ag NPs can bind to hydroxy cellulose
structures, breaking hydrogen bonds to promote changes in
cell wall structure (Pinheiro et al., 2021). Pea (Pisum
sativum L.) growth exposed to TiO2 NPs exhibited altered
polysaccharide content of the cell wall (Fan et al., 2014).
Similar to this, Fourier transform infrared spectroscopy
studies revealed that TiO2 NPs altered the composition of
the leaf cell walls of tomatoes (Solanum lycopersicum L.).
The alterations in the amounts of xyloglucan and
hypergalacturonic acid were validated by microarray
polymer analysis (Line et al., 2021). Another intriguing
study looked at nZVI’s potential to encourage root growth
in Arabidopsis (Arabidopsis thaliana). The concentration of
0.5 g/L nZVI increased root elongation by 150%–200% via
inducing OH radical-induced cell wall loosening and the
beginning of H2O2 release (Kim et al., 2014).

Electrical characteristics based on pore size are the
second most crucial component to take into account. In a
previous study, maize leaves were exposed to positively and
negatively charged NPs on their surface, but their size was
larger than 11 nm, which possibly limited their access to the
interior of the plant (Hu et al., 2020). The electrical
potential of the cell wall is another factor that must be
considered. The electrical charge in the cell wall is typically
between −50 and −110 mV (Shomer et al., 2003). The NPs
with a charge opposite to that of the cell wall may be
retained by the cell wall (Bao et al., 2016; Juarez-Maldonado
et al., 2019). Negatively charged Au NPs were found in the
roots of Arabidopsis (Arabidopsis thaliana), and positively
charged Au NPs were not detected in the roots cell (Avellan

et al., 2017). Negative polarity Se NPs were more abundant
in the Bok Choy (Brassica chinensis L.) shoots (Wang et al.,
2022b). This also shows that negatively charged cell walls
may play a role in the retention of positively charged NPs in
roots, thus giving us ideas for the creation of nanopesticides
or nanofertilizers in the future. Positively charged NPs, on
the other hand, appear to be better at moving within plants,
according to some studies. Indeed, the positively charged
ZnO NPs allowed their adsorption on the leaf surface and
cell walls and were more uniformly distributed within the
leaf than the negatively charged ones (Zhu et al., 2021).

NMs have also been shown to alter the composition of
cell walls. As mentioned previously, Y2O3 NPs can alter the
pectin and hemicellulose content of plant cell walls (Chen
et al., 2021). CuO NPs also reduced the amount of cellulose,
hemicellulose, pectin, and other monosaccharides in the
tomato (Solanum lycopersicum L.) root cell wall (Jia et al.,
2022). Molnár et al. (2020) discovered that NP
concentrations must exceed a specific threshold to modify
the structure of the cell wall.

The role of cell wall potential in the uptake of NPs by
plants and whether or not interactions between NPs and
plant cell walls are connected with different cell types are
both poorly understood. As a result, we must consider factors
including the electrical gradient across the cell wall, NP size,
interactions with cell wall components, and NP concentration
that also influence NP movement inside the plant.

The interaction between nanomaterials and the membrane
NPs must overcome the membrane barrier after passing
through the cell wall (Wu and Li, 2022). The plasma
membrane, a border membrane that encloses the contents
of the cell, is normally 5–10 nm thick. Some of the methods
of cellular internalization include endocytosis, penetration
through transporters or channels in the cell membrane, and
lipid exchange envelopes (Lv et al., 2021; Perozo et al., 2002;
Schwab et al., 2016; Sosan et al., 2016; Wong et al., 2016;
Wu et al., 2017).

Similar to plant cell walls, the membrane potential plays a
crucial role in controlling the flow of NPs through the
membrane (Wu and Li, 2022). The plasma membrane
potential is greater than that of the cell wall, at roughly
−120 mV (Wu et al., 2013). High-zeta potential NPs are
capable of entering protoplasts (Lew et al., 2018). However, it
has been found that Au NPs crossing the plasma membrane
are not affected by their electrical properties (Milewska-
Hendel et al., 2019). The usage of 5 nm Au NPs, which are
within the range of passing size for the channels on the
plasma membrane, may be the cause of this. NPs are also
able to infiltrate organelles other than protoplasts by
traversing organelle membranes (Liu et al., 2021; Milewska-
Hendel et al., 2019; Wu et al., 2017; Zhou et al., 2021a). The
interaction of NPs with membranes has received little
attention, although it might be one of the most intriguing
areas for future study.

The Transformation of Nanomaterials in Plant

In the plant, the NPs may undergo transformation (Table 1),
producing a number of elemental species (Lv et al., 2019). This
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process is mainly due to (1) root secretions or (2) the
interaction of biofilms around the root system, and (3)
redox species in the plant.

After being adsorbed on the surface of plant roots, NPs
undergo oxidative solubilization to pass the cell membrane,
and after internalization, NPs can move within and across
plant tissues. X-ray spectro-microscopy revealed that Ag
NPs were oxidized within the root tissue of Lolium
multiflorum (Yin et al., 2011). Ag NPs are oxidized directly
inside the root tissue or are oxidized, and the Ag+ is
absorbed by the roots. Alfalfa sprouts can absorb Ag+ from
the culture medium and reduce it to Ag NPs in their bodies.
Alfalfa plant tissues contain the accumulated Ag atoms that
undergo processes related to nucleation and NPs production
(Gardea-Torresdey et al., 2003). Similarly, Au underwent a
reduction reaction in alfalfa plants to produce Au NPs
(Gardea-Torresdey et al., 2002). At that time, these findings
were very interesting and may provide some new inspiration
for the development of green synthetic NPs (Jiang et al.,
2022). The metal oxides can vary in a way that affects plant
accumulation and species creation. When treated with ZnO
NPs, the roots and shoots of the maize plant absorb Zn
predominantly in ionic form. The biotransformation of ZnO
NPs into ZnO phosphate in the plant limits their long-
distance transport since there is relatively little upward
migration of Zn in the shoots (Lv et al., 2015). CuO and Cu
(I)-sulfur complexes are the main forms of bioaccumulated
copper in wheat (Triticum aestivum L.), whereas the
phosphate form is the main form of bioaccumulated Zn
(Dimkpa et al., 2012). This is principally brought upon by
an increase in the solubilization of ZnO NP between the
roots as well as plant uptake and translocation of Zn ions
(Lv et al., 2015). Zn was discovered in soybean (Glycine
max) root tissue as Zn-nitrate and Zn-acetate (Lopez-
Moreno et al., 2010). In subsequent experiments, Zn-citrate
was detected by the mu-XANES technique (Hernandez-
Viezcas et al., 2013). Similarly, different forms of Zn were
also found in other plants (Hernandez-Viezcas et al., 2011;
Wang et al., 2013). Despite the presence of numerous Zn
species in the plants under study, it is clear that Zn uptake,
transport, and accumulation in plants primarily take place
in the form of Zn2+ produced by ZnO NPs (Lv et al., 2019).
The CuO NPs and ZnO NPs are the NPs with more
applications in agriculture (Wang et al., 2022c). Zn uptake,
transport, and accumulation in plants happen largely in the
form of Zn2+ released by ZnO NPs, although many Zn
species were found in the plants under study (Dimkpa et al.,

2012). In maize, CuO NPs move from the branches back to

the roots through the bast, where they can be converted to

Cu(I) (Wang et al., 2012). While a portion of the dissolved

Cu(II) was also reduced to Cu2O, it was mostly coupled
with ligands like cysteine, citrate, and phosphate.
Additionally, rice roots were found to transfer 40 nm CuO
NPs to the shoots (Peng et al., 2015). In cucumbers exposed
to CeO2 NPs, Ce occurs as CeO2 and CePO4 in the roots
and as CeO2 and Ce-carboxylic acid in the branches,
according to XANES spectra (Zhang et al., 2012). The
primary causes could be (1) the function of ascorbic acid as
a reducing agent and (2) the organic acids-mediated
dissolution of CeO2 NPs. Other tests have shown similar
outcomes (Cui et al., 2014; Hernandez-Viezcas et al., 2013).
Plants cultivated hydroponically had NPs on their root
surfaces (Martinez-Fernandez and Komarek, 2016). CeO2

NPs must physically come in contact with root secretions at
the nanobeneficial interface for them to convert into ionic
form in plants (Ma et al., 2015). The shape of NPs may also
have an impact on conversion; NPs and nanocubes have
higher surface reactivity than nanowires, leading to
increased Ag+ release and toxicity (Gorka and Liu, 2016).
Rod-shaped CeO2 NPs converted Ce3+ to a higher extent
than other CeO2 NPs, demonstrating that rod-shaped NPs
are the most chemically reactive (Zhang et al., 2017).

The transformation of NPs by plants has been extensively
studied. Redox compounds are the main cause of NP
transformation in plants. Accordingly, our examination of
the biological concepts underpinning the impacts of NPs on
plants will thus have a framework to work on. Additionally,
this framework promotes the use and development of
nanotechnology in agriculture, which could provide
direction for further study.

The Effect of Nanomaterials on Metabolism in Plant

Often, more than one pathway participates in various aspects
of plant metabolism. For example, glycolytic pathways and
pentose phosphate pathways are involved in carbohydrate
degradation; five different pathways participate in electron
transfer in the respiratory chain, and electrons can be
transferred to oxygen through a variety of terminal oxidases.
Different metabolic pathways exist simultaneously in plants,
but they do not operate at equal rates, and the ratio between
rates is not fixed. Which metabolic pathway a plant employs
in a given environment—and how different the pathways

TABLE 1

Transformation process of nanoparticles in plants

Nanoparticles Plant Transformation products Reason Ref.

Ag NPs Wheat (Triticum aestivum L.) Ag+ Dissolution (Larue et al., 2014)

ZnO NPs Desert plant (Prosopis juliflora-velutina) Zn-nitrate, Zn-phosphate,
and Zn-citrate

Redox species (de la Rosa et al., 2011)

CeO2 NPs Cucumber (Cucumis sativus L.) CePO4 Redox species (Zhang et al., 2012)

CeO2 NPs Head lettuce (Lactuca) Ce3+ Redox species (Zhang et al., 2015)
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are—depends on the plant species, the organ, the stage of
growth and development, and the environment.

The oxidative burst can be caused by NPs interfering
with a variety of oxidative processes in plants, but they can
also provide micronutrients, control gene expression, or
perform all of these functions (Hossain et al., 2015; Liu and
Lal, 2015; Nair and Chung, 2014). NPs can affect plant
hormone levels. The increase in cytokinin level in pepper
under Ag NPs stress and the decrease of IAA and ABA in
cotton (Gossypium spp) under CuO NPs stress indicated that
the NPs affect the hormone balance in plants, which in turn
affect the metabolic processes in plants (O’Brien and Benkova,
2013). Following Y2O3 NPs stress, transcriptome analysis
showed that genes involved in cell wall metabolism and
remodeling undergo considerable alterations (Chen et al.,
2021). NPs also influence ROS production, and electron
transport in mitochondria and chloroplasts is affected by
excess ROS. Photosynthesis is the only source of energy for
plants; thus, mitochondria and chloroplasts have an impact
on every aspect of plant metabolism and physiology (Foyer
and Shigeoka, 2011; Kalaji et al., 2014). Based on the
association between ROS and secondary signaling
messengers, which results in transcriptional regulation of
secondary metabolism, it has been determined that ROS
produced during interactions with NPs may interfere with
secondary metabolism in plants (Marslin et al., 2017). The
metabolism of plants is similarly affected by the dosage effect
of NPs. The secondary metabolism of the bean (Phaseolus
vulgaris L.) roots and leaves was severely impacted at
relatively low dosages (0, 25, 50, and 100 mg/L) of CeO2 NPs
treatment (Salehi et al., 2020). In another report, carbon dots
successfully improved soybean photosynthesis during a
drought. The increase in photosynthesis had a big impact on
agricultural yield and quality as well as growth and
development (Wang et al., 2022a).

Generally speaking, NPs change the levels of hormones
and ROS in plants, which affects their metabolic activities
among the key physiological functions of plants. Studying
the effects of NPs on plant metabolism can reveal the
responses made by plants exposed to NPs.

Conclusion and Perspective

In this review, we present the entry, migration, transformation,
and metabolism of NPs in plants. The main factors affecting the
migration transition of NPs are their size and surface charge.
The transformation process of NPs is mainly caused by three
factors, including (i) plant root secretions; (ii) biofilm
interactions; and (iii) redox substances in plants. Current
studies on size have found that nanoscale properties are
predominant for particles below 30 nm. The current research
on the size of NPs is getting more exhaustive. Plant hormone
and ROS production may be impacted by NPs; plant
hormones have an impact on a plant’s metabolism, and too
many ROS prevent photosynthesis, which in turn affects
metabolic processes in a plant.

Future research should consider the following points: (1)
NMs may be modified to undergo surface modifications that
alter the charge on their surface, facilitating the passage
through organelle membranes; (2) Targeted transport of

nanocarriers in plants is an interesting hypothesis
(Miyamoto et al., 2022), which may provide good ideas for
future targeted application of nanopesticides; (3) More
studies need to examine the pathway and the amount of
NPs entering the plant.
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