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Abstract: Colorectal cancer (CRC) is the third most common cancer and the leading cause of cancer death globally.

Resistance to therapy is a challenge for CRC treatment. Mesenchymal stem cells (MSCs) have become one of the

furthermost effective approaches for tumor treatment due to their specific feature; however, their therapeutic function

is controversial. Recently, extracellular vesicles (EVs) derived from MSCs (MSCs-EVs) have attracted extensive

research attention due to their promising role in CRC treatment. EVs are cell-derived vesicles that transfer different

biomolecules between cells, contributing to intracellular communication. MSCs-EVs can suppress CRC by delivering

therapeutic agents to tumor cells. Several studies indicate that MSCs-EVs can serve as a drug delivery system for the

treatment of different cancers. Various methods are used to modify (engineer) MSCs-EVs for loading therapeutic

agents. Modified MSCs-EVs have improved specificity, targeting ability, and immunogenicity compared to synthetic

carriers. Furthermore, CRC-EVs participate in regulating different cells, such as immune cells, fibroblasts, and

endothelial cells, promoting tumorigenesis. MSCs-EVs-based therapy indicates a high potential in the treatment of

cancer; however, the majority of studies have been conducted in the pre-clinical, and their clinical applications need

further scrutiny. In this review, we describe the biogenesis of EVs, focusing on the effect of MSCs-EVs on CRC cells

and CRC-derived EVs on other cells. Furthermore, MSCs-EVs as a drug delivery system for cancers is also reviewed,

and perspectives regarding the therapeutic application of MSCs-EVs are discussed.

Introduction

Colorectal cancer (CRC), a heterogeneous disease, develops
malignant tumors in the inner walls of the colon and
rectum in the form of polyps (Fanelli et al., 2020). It is the
third most prevalent malignant tumor and the third most
lethal cancer worldwide. In 2018, 1.8 million new cases of
CRC and 881,000 deaths were reported, accounting for
approximately 10% of new cancer cases and deaths
worldwide (Bray et al., 2018). The number of new cases is
estimated to increase to 2.5 million in 2035 (Xie et al.,
2020). For benign stage CRC, no treatment is needed, and
in case of metastatic invasion, surgery can be used to
eliminate lymph nodes and malignant tumors (Hashiguchi
et al., 2020). Chemotherapy is another treatment for CRC as
a targeted therapy through the use of ramucirumab and
bevacizumab to prevent some specific protein functions
involved in CRC development (Bennouna et al., 2019;

Kanat and Ertas, 2019; Modest et al., 2019). In addition,
radiation therapy is another common treatment method for
the treatment of CRC by applying high-energy radiation
beams (Klement et al., 2019). However, efficient therapy
remains a challenge for clinicians. The evidence indicates that
MSCs have a wide range of applications in the treatment of
many diseases, including cancer (Fayazi et al., 2021; You
et al., 2022). They are present within bone marrows and other
tissues like dental pulp, umbilical cord blood, and adipose
and help in homeostasis in healthy tissues in the regeneration
and wound healing (Bernardo and Fibbe, 2013; Abdyazdani
et al., 2017; Mirershadi et al., 2020). MSCs, as non-
hematopoietic precursor cells, have several characteristics,
such as their capability to differentiate to produce cells like
osteocytes, adipocytes, neurocytes, and fibroblasts
(Abdyazdani et al., 2017; Wang et al., 2018). Evidence
indicates that MSCs can inhibit tumor cells through both
direct contact and paracrine (François et al., 2019; Li et al.,
2021). In recent years, nanomedicine has developed to
improve the pharmacokinetics and pharmacological patterns
of unstable anti-cancer drugs (Patra et al., 2018). The
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nanocarrier-based approach has various properties, including
enhancement of drug delivery efficacy to cancer cells and
reduction of the side-effects and non-targeting effects (Hou
et al., 2022). In this regard, various studies indicate that
extracellular vesicles (EVs) have numerous advantages over
conventional synthetic carriers, making them suitable for
drug delivery systems (Herrmann et al., 2021). EVs are
heterogeneous vesicles released from cells; they contain
various biomolecules such as DNAs, proteins, and RNAs that
contribute to intracellular communication. They are classified
depending on the mechanism of generation and their size,
into apoptotic bodies (2–5 μm), exosomes (30–150 nm), and
microvesicles (100–1000 nm) (Basso and Bonetto, 2016;
Gurung et al., 2021). Among them, microvesicles and
exosomes are released from living cells and are involved in
many processes, including angiogenesis, proliferation,
differentiation, and intercellular communication (Burrello
et al., 2016; Todorova et al., 2017; Phan et al., 2018). The
therapeutic effects of EVs have increasingly been indicated in
various diseases (Ahmadi et al., 2018; Akbari et al., 2020,
Hassanpour et al. 2020b). MSCs-derived EVs (MSCs-EVs) have
unique advantages as carriers for anti-cancer therapy (Weng
et al., 2021). Naseri et al. (2018) reported that MSCs-EVs could
migrate to the tumor sites, just like the MSCs. MSCs-EVs are
therapeutic tools in regenerative medicine (van Niel et al., 2018)
and advance an emerging strategy for CRC therapy due to their
roles in metastasis and growth of cancer cells (Xing et al., 2020).
For example, in one study, these vesicles could be loaded with
doxorubicin, where they could target CRC cells (Bagheri et al.,
2020). Therefore, MSCs-EVs can transfer therapeutic agents to
tumor cells. The present study discussed EVs biogenesis, the
effect of MSCs-EVs on CRC, and the effect of CRC-EVs on
other cells, and reviewed targeted cancer therapy by modified
MSCs-EVs, and perspectives regarding the application of MSCs-
EVs in cancer therapy.

Extracellular vesicles
Many types of cells produce EVs to transfer biomolecules,
communicating with other cells (Hessvik and Llorente,
2018). EVs are phospholipid membrane vesicles that contain
bioactive molecules such as RNAs, DNA strands, proteins,
signaling molecules, and lipids, therefore, can regulate the
fate and behavior of target cells located near or away (Abels
and Breakefield, 2016; Latifkar et al., 2019). A growing body
of evidence indicates that EVs can be found in various body
fluids, including blood, milk, bile, saliva, cerebrospinal fluid
(CSF), bronchoalveolar lavage fluid (BALF), and urine
(Abels and Breakefield, 2016; Latifkar et al., 2019). EVs are

classically divided into three types such as exosomes,
microvesicles, and apoptotic bodies, based on their size and
origin (Raposo and Stahl, 2019) (Table 1, Fig. 1). Exosomes
refer to 30–150 nm vesicles that are originated from
endosomal compartments namely multivesicular bodies
(MVBs) located in the cell cytoplasm, while microvesicles
are 100–1000 nm vesicles originating from the plasma
membrane a process resembling virus outward from
infected cells (Abels and Breakefield, 2016; Latifkar et al.,
2019). Finally, apoptotic bodies are the largest EVs (200–
5000 nm) generated when a cell goes through apoptosis
(Abels and Breakefield, 2016; Latifkar et al., 2019) (Fig. 1).
Exosomes are initially generated from the inward budding
of MVBs membrane where different molecules contribute to
the sorting, loading, abscission, and formation of exosomes
(Zhang et al., 2019; Jafari et al., 2020). If MVBs fuse with
the plasma membrane, exosomes are released into the
extracellular space; alternatively, MVBs may fuse with the
lysosomes, and exosomes are degraded (Zhang et al., 2019;
Babaie, 2020) (Fig. 1). Some common molecules such as
CD63, CD81, CD82, and Alix are present on the exosomal
membrane and are known as exosomal markers (Kowal et al.,
2014; Zhang et al., 2019; Feghhi et al., 2021). Once released
into the extracellular matrix, EVs can interact with target cells
and participate in different cellular events. According to
previous studies, three proposed mechanisms through which
EVs reach target cells include receptor-ligand, endocytosis,
and direct fusion with the cellular membrane (Mulcahy et al.,
2014; Gurung et al., 2021). Thus, they are involved in several
physiological and pathological processes (Hassanpour et al.
2020a, Soraya et al., 2021). Regardless of the development in
the field of EVs, additional research, considering the
International Society for Extracellular Vesicles (ISEV)
guidelines, is a necessary requirement for the progress of EVs
terms, methodology, and study and also proposes more
appropriate determination of the cargo and role of EVs.
Different cell types release EVs containing numerous
biomolecules with varying functions. In recent years, some
databases were established to organize and present
components of EVs from various sources such as
Vesiclepedia (http://www.microvesicles.org), Exocarta (http://
www.exocarta.org), and a Bioinformatics lab from China
(http://bioinfo.life.hust.edu.cn).

Effect of mesenchymal stem cells derived extracellular vesicles
on colorectal cancer
In the case of cancer, MSCs have been shown to act as a
double-edged sword where they may promote and/or

TABLE 1

Type of extracellular vesicles (EVs)

Type of EVs Origin Size Marker Contents

Exosomes MVB 30–150 nm CD63, CD81, CD9, TSG101 Proteins, lipids, and nucleic acids

Microvesicles Plasma membrane 100–1000 nm Integrins, selectins, CD40 Proteins, lipids, and nucleic acids

Apoptotic bodies Apoptotic cells 200–5000 nm Annexin V, phosphatidylserine Cell organelles,
Nuclear fractions
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suppress cancer progress (Tian et al., 2020; Zhang et al., 2022).
EVs released by MSCs play a significant role in tumor
development, proliferation, invasion, angiogenesis, and drug
resistance. Nevertheless, contradictory findings have shown
that MSCs-EVs can also inhibit tumors through different
mechanisms, including intercellular signaling, and immune
responses. Therefore, the association between MSCs-EVs
and tumors is controversial. In this section, we discuss the
distinct role of MSCs-EVs in CRC (Fig. 2). Luetzkendorf
et al. (2010) produced tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL-MSCs) by third-
generation lentiviral vector system and then co-cultured
them with TRAIL-sensitive CRC-cell lines (HCT-15 and
DLD-1) and resistant CRC-cell lines (SW480 and HCT-8).
They found that these cells promoted apoptosis in CRC cells
in vitro. In xenograft models, TRAIL-MSCs suppressed
CRC-tumor growth by increasing apoptosis. When TRAIL-
MSCs were administrated systemically, the growth of CRC
was not affected, which may be due to pulmonary
entrapment and a low rate of tumor absorption (Luetzkendorf
et al., 2010). Another study demonstrated that C-X-C motif
chemokine receptor 4 overexpression-MSCs improved the
homing ability of cells in the intestine. These cells recovered
colitis-related tumors in the mice model through decreasing
tumor load, pro-inflammatory cytokines, and signal transducer
and activator of transcription 3 (STAT3) phosphorylation level
(Zheng et al., 2018). Conversely, Nishikawa et al. (2019)
reported that MSCs can communicate with CRC cells through
chemokine (C-C motif) ligand 3/4/5-CC chemokine receptor 5
signaling and increase the growth of CRC tumors in vivo
(Nishikawa et al., 2019). Similarly, de Boeck et al. (2013)
showed that MSCs from bone marrow induced the survival,
invasion, and growth of CRC cells by producing soluble NRG1
and activating human epidermal growth factor receptor 2
(HER2)/HER3-dependent phosphatidylinositol-3-kinase/protein
kinase B (Akt) signaling pathway in CRC cells. Besides
MSCs, EVs from MSCs have been shown to transfer
miRNAs to CRC cells, inhibiting tumor growth. For
instance, EVs derived from miR-16-5p-overexpression
MSCs could deliver miR-16-5p to CRC cells and inhibit
proliferation, migration, and invasion of cells and induce
apoptosis through downregulating integrin subunit alpha 2
(ITGA2) expression (Xu et al., 2019) (Fig. 2). Moreover, in
vivo experiments showed that the MSCs-overexpressing
miR-16-5p suppresses CRC growth. MSCs-EVs containing
miR-4461 could decrease proliferation, migration, and
invasion of CRC cells in vitro by inhibiting coat complex
subunit beta 2 (COPB2) expression, proposing that miR-
4461 may be a possible target for the diagnosis and
treatment of CRC (Chen et al., 2020). Li et al. (2021)
showed that miR-3940-5p cargo of MSCs-EVs inhibited the
invasion of cells and repressed the tumor growth and

FIGURE 1. Biogenesis of extracellular vesicles (EVs).
The release of EVs from cells occurs either through
the inward budding of the membrane of
multivesicular bodies (exosomes) or through the
outward budding of the plasma membrane
(microvesicles, MVs). When MVBs fuse with the
plasma membrane, exosomes are released into the
extracellular matrix. Once EVs are released, they can
affect/reach target cells in three possible ways,
including endocytosis, direct fusion, and receptor-
ligand interaction. MVB: multivesicular body; L:
lysosome; EE: early endosome.

FIGURE 2. Therapeutic effect of mesenchymal stem cells derived
extracellular vesicles (MSCs-EVs) on colorectal cancer (CRC) cells.
Micro RNAs transferred by MSCs-EVs can target genes in CRC
cells, inducing apoptosis and arrest in CRC cells, and suppressing
tumorigenesis. (ITGA2: Integrin alpha 2; COPB2: COPI coat
complex subunit beta 2; ITGA6: integrin alpha 6; ATF3: activating
transcription factor 3; KDM4B: lysine demethylase 4B).
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metastasis in vivo. MiR-3940-5p can directly target ITGA6
and suppress tumor cells. Recently, in an in vivo
tumorigenesis experiment, researchers showed that MSCs-
EVs overexpressing miR-15a could suppress the
proliferation, migration, and invasion of cells. Further
scrutiny indicated that these EVs increased the apoptosis of
CRC cells through the down-regulation of lysine
demethylase 4B (KDM4B) (Liu et al., 2021). On the
contrary, Li et al. (2021) found that EVs from MSCs contain
miR-222 that could reach CRC cells and target activating
transcription factor 3 (ATF3) binding and inhibits the
activity of AKT1, increasing tumor invasion and
immunosuppression of CRC cells. These results indicate that
MSCs-EVs can inhibit tumorigenesis; however, some
findings show that MSCs and their EVs may promote
tumorigenesis. Therefore, the clinical application of MSCs-
EVs in CRC treatment remains controversial. Despite the
controversial results of MSCs-EVs therapy, MSCs-EVs can
serve as a drug delivery system by delivering therapeutic
agents to CRC cells.

Effect of CRC-EVs on other cells
Popēna et al. (2018) reported that CRC cell line-derived EVs
regulate the immunophenotype and secretory profile in
monocytes and inactive macrophages, inducing mixed M1
and M2 cytokine responses. THP-1 monocytes and M0
macrophages efficiently take up SW480 and SW620-derived
EVs, and dynamin-dependent endocytic pathways may be
involved. Interestingly, SW480 and SW620-derived EVs
enhanced CD14 expression in M0 macrophages, while
SW480-derived EVs reduced HLA-DR expression in M1
and M2 polarized macrophages. Furthermore, SW480-
derived EVs significantly enhanced C-X-C motif chemokine
ligand 10 (CXCL10) expression in M0 macrophages and
monocytes. In contrast, SW620-derived EVs result in the
secretion of CXCL10, interleukin (IL)-6, IL-10, and IL-23 in
M0 macrophages. However, the addition of CRC cell line-
derived EVs together with IFN-γ, LPS (M1), and IL-13, IL-4
(M2) stimuli during macrophage polarization had no
additional influence on cytokine expression in M1 and M2
macrophages (Popēna et al., 2018). Profilin-1 (PFN1) is a
direct target of miR-375 and is positively regulated by HLA-
F antisense RNA 1 (HLA-F-AS1) by binding to miR-375.
Overexpression of HLA-F-AS1 suppressed miR-375 and
enhanced the PFN1 expression pattern in CRC cells and
CRC EVs, further increasing the M2 polarization of
macrophages. In addition, macrophages treated with PFN1 in
CRC EVs induced CRC in vivo and in vitro cell migration
and proliferation. Therefore, application of HLA-F-AS1 in
EVs may serve as a promising therapeutic strategy for CRC
(Zhang et al., 2021). Additionally, CRC small EVs can be
specifically targeted to liver tissue and result in liver
macrophage polarization toward an IL-6-secreting pro-
inflammatory phenotype (Shao et al., 2018). Also, EVs from
CRC taken up by macrophages result in M2-like polarization
and programmed death-ligand 1 (PD-L1) expression, then
enhance PD-L1+CD206+ macrophage abundance and reduce
T cell activity in the CRC tumor microenvironment. EVs-
derived miR-21-5p and miR-200a are key signaling molecules
that mediate the regulatory function of CRC on macrophages.

CRC-derived miR-21-5p and miR-200a synergistically make
macrophage M2-like polarization and PD-L1 expression by
regulating the phosphatase and TENsin homolog deleted on
chromosome 10/AKT and the suppressor of cytokine
signaling 1/STAT1 pathways, resulting in reduced CD8+ T
cell activity and enhanced tumor growth. So, inhibiting the
secretion of specific sEV-miRNAs from CRC and targeting
PD-L1 in tumor-associated macrophages may serve as new
means for CRC treatment as well as a sensitization method
for anti-PD-L1 therapy in CRC (Yin et al., 2022). CRC-EVs
can regulate the CD8 T cells; in individuals with low body
mass index (BMI)-CRC EVs, the rate of apoptosis in CD8 T
cells was higher than in those with high BMI-CRC EVs. IL-
10, IL-17A, granulysin, granzyme A, and perforin, for
instance, were increased in the non-CRC EVs-treated CD8T
cells (Abu et al., 2020). On the other hand, Yamada et al.
(2016) reported that EVs can impair T cell function. The
CRC EVs alter the phenotype of the T cells to Treg-like cells
by inactivating the stress-activated protein kinases signaling
and stimulating the transforming growth factor-β/ suppressor
of mothers against decapentaplegic (Smad) signaling. In
addition, the CRC EVs-induced-Treg-like cells had a
remarkable tumor-growth-enhancing function in vivo and in
vitro (Yamada et al., 2016). Fibroblast is one of the cells that
influence by CRC EVs. CRC EVs are uptake by human
fibroblasts that stimulate migration through the Rho-focal
adhesion kinase signaling in co-incubated human fibroblasts.
In addition, HT29 cell-derived EVs are more effective in
activating human fibroblasts than cancer-associated
fibroblasts (Clerici et al., 2021). Suppressor of cytokine
signaling 3 (SOCS3) is a direct target of miR-221-3p and the
secreted miR-221-3p shuttled by CRC EVs has regulatory
function on the STAT3/ vascular endothelial growth factor
receptor-2 signaling axis by targeting SOCS3 in endothelial
cells. CRC EVs increased endothelial cell migration,
proliferation, and the formation of vessel-like structures. The
proangiogenic effect of CRC EVs on the cells was
recapitulated by miR-221-3p overexpression, indicating the
importance of EVs-derived miR-221-3p in enhancing
endothelial cell angiogenesis (Dokhanchi et al., 2021).

Mesenchymal stem cells derived extracellular vesicles as a drug
delivery system for cancer
MSCs-EVs can deliver therapeutic agents to tumor cells like
pancreatic ductal adenocarcinoma (PDAC), CRC,
hepatocellular carcinoma (HCC), breast cancer, and glioma.
Generally, two methods are used to load therapeutic agents
into MSCs-EVs (i) direct method, in which therapeutic
agents are directly sorted into isolated EVs by different
loading methods and (ii) the indirect method, in which
EVs-producing cells (e.g., MSCs) are genetically
manipulated to express distinct biomolecules (miRs,
proteins) or co-cultured with therapeutic agents in which
EVs derived from them would be contained with
therapeutic agents (Tukmechi et al., 2014; Patil et al., 2020;
Vahabi et al., 2022) (Fig. 3). For example, Lou (2015)
transfected MSCs with a miR-122 expression plasmid and
then isolated EVs. After co-culturing with HCC cells in
vitro, MSCs-EVs delivered miR-122 to the HCC cancer cells
and augmented the sensitivity of HCC to sorafenib as the
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chemotherapy drug. Moreover, intra-tumor administration of
these EVs considerably stimulated the antitumor efficiency of
sorafenib on HCC in animal models. They proposed that miR-
122 could target genes coding for insulin-like growth factor1
receptor, A disintegrin and metalloproteinase 10, and cyclin
G1, and therefore, induce cell cycle arrest and cell death,
improving the sensitivity of tumor cells to chemotherapy
(Lou, 2015). In another study, Lou et al. (2020) sorted miR-
199a into EVs using miR-199a lentivirus infection to inhibit
mTOR signaling in HCC cells and found that the sensitivity
of HCC cells was augmented after cultivating with MSCs-
EVs containing miR-199a. The administration of these EVs
significantly increased the effect of doxorubicin on HCC in
vivo. In one study, (Kanat and Ertas, 2019), anti-miR-142-
3p oligonucleotides were incorporated into MSCs-EVs to be
delivered to breast cancer cells to increase the expression of
miR-142-3p and miR-150 in these cells (Naseri, 2018;
Naseri, 2020). Results showed successful delivery of MSCs-
EVs to cancer cells both in vitro and in vivo and up-
regulated target RNA expression, improving the expression
of APC and P2X7R genes. Furthermore, these EVs inhibited
tumor growth and clone-formation abilities of the MCF7
cells. The MSCs-EVs exhibited a great bio-distribution
capacity and successfully repressed tumor mass growth
(Naseri, 2018; Naseri, 2020). Ding (2019) used MSCs-EVs to
deliver miR-145-5p to PDAC cells. They observed that these
EVs were efficiently distributed miR-145-5p to PDAC cells,
suppressed growth and invasion, and increased apoptosis
and cell cycle arrest associated with a low level of Smad3
mRNAs in vitro. Moreover, MSCs-EVs reduced the growth
and invasion of cancer cells in the xerograph model.
Seemingly, miR-145-5p inhibited Smad3 expression levels.
MSCs-EVs can deliver various drugs, such as doxorubicin,
paclitaxel, and magnolol, selectively to tumor cells. For
instance, Gomari et al. (2018) demonstrated that
doxorubicin carried by MSCs-EVs can significantly impede
the growth of tumor cells in an animal breast cancer model.
The surface of MSCs-EVs was modified to increase the

targeting ability of EVs in glioma. Jia and co-workers linked
neuropilin-1-targeted peptide to MSCs-EVs by click
chemistry and then incorporated superparamagnetic iron
oxide nanoparticles and curcumin into them. These MSCs-
EVs successfully delivered the therapeutic agents to the
targeting area and induced anti-cancer effects (Jia, 2018).
Similarly, Zhaung et al. (2020) produced MSCs-EVs with
modified surfaces and loaded them with superparamagnetic
iron oxide nanoparticles. Proteins of cell-penetrating peptides
(CPP) and TNF-α (CTNF-α)-anchored were linked to EVs
containing superparamagnetic iron oxide nanoparticles. These
EVs showed a targeting antitumor role and considerably
suppressed tumor cell growth by inducing apoptosis by the
TNFR I pathway, in both in vitro and in vivo mic melanoma
subcutaneous cancer models. In clinical trials, exosomes
derived from MSCs have been registered to load and deliver
the KrasG12D siRNA to pancreatic adenocarcinoma cancer
cells (gov Identifier: NCT03608631). The findings show that
EVs can deliver therapeutic agents to cancer cells, inhibit
tumor cell proliferation, and sensitize the tumor cells to
chemotherapy. MSC-EV could induce various effects on
cancer cells and tumor stromal cells; thus, it is necessary to
limit the endogenous impact when used for drug delivery. In
this context, one approach seems to inhibit/decrease the
factor/s that support tumor cells. Another approach is to load
EVs with relative inhibitors. For example, MSCs-EVs contain
proangiogenic factors that may induce angiogenesis in tumor
cells (Zhang et al., 2022). So, by using a relative siRNA in
EVs or down-regulating targeted gene/s in EVs-producing
MSCs, it is possible to inhibit/decrease the supportive impact
of MSCs-EVs in cancer.

Platelets-derived extracellular vesicles (p-EVs) for drug delivery
The number of platelets-derived EVs (platelet microparticles)
in the blood rises on activation, shear stress, inflammation,
and during apoptosis (Burnouf et al., 2014; Melki et al.,
2017). These vesicles receive features from their parental
cells: the expression of CD41, CD31, CD42, CD63 CD62,
and CD61 platelet membrane surface antigens, which activate
inherent interactions with the surrounding environment
(Franco et al., 2015; Chimen et al., 2020), and physiological
loading with complex functional components. These p-EVs
bear cytokines, growth factors, chemokines, anticoagulant,
pro-coagulant, anti-inflammatory, pro-inflammatory, and
proangiogenic, antiangiogenic factors, lipids, and nucleic acids
(mRNA and miRNA) (Melki et al., 2017; Boilard, 2018). The
structure and composition of p-EVs, as well as their
implications in some pathologies, support their prospective
therapeutic application in hemostasis, tissue regeneration, and
immunomodulation, and as drug-delivery vehicles (Burnouf
et al., 2018; Kerris et al., 2020; Wu and Zhou, 2020). These
features resemble those of MSCs-EVs. Platelets have
numerous advantages as an EV source. They are anucleated
(opposite to MSCs), thus alleviating safety concerns related to
possible teratogenic risks. Membranes with p-EVs express
integrins that can be used to target recipient cells and tissues
and may simplify the crossing of biological barriers (Burnouf
et al., 2014). Compared to MSCs-EVs, the production of
clinical-grade allogenic platelets is already in place in many
countries, including as a source of human platelet lysates

FIGURE 3. Application of mesenchymal stem cells derived
extracellular vesicles (MSCs-EVs) for drug delivery system. In
general, modified EVs can be produced through two approaches,
including a direct method where EVs derived from MSCs are
directly modified to load therapeutic agents and the indirect
method in which MSCs are genetically or exogenously modified to
load/express therapeutic agents. Therefore, EVs from these cells
contain therapeutic agents.
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(Burnouf et al., 2016), therefore providing a readily accessible
national resource. The collection of platelet concentrates, and
thus the production of EVs, can be done from autologous or
allogeneic sources as reasoned appropriate, thereby creating
greater opportunities for clinical applications in a given
regulatory and clinical trials. Similar to MSCs, platelets have a
high ability to produce EVs through several physiological and
biophysical mechanisms in vivo and in vitro (Sung et al.,
2019; Wu and Zhou, 2020). EVs of platelets can be
abundantly isolated from blood because it has long been
thought to contribute to the majority (up to 70%–90%) of the
pool of EVs (Berckmans et al., 2019). Importantly, these EVs
can be directly produced from collected platelet concentrates,
in contrast to MSCs that require a phase of isolation and ex
vivo incubation and expansion to prepare clinically relevant
EVs doses. Therefore, in comparison to MSCs-EVs, bypassing
the necessity for a GMP cell culture facility saves time
required for facility design, qualification, validation, and
operator training and decreases the capital and operational
costs required to reach clinical phases and the market
(Agrahari et al., 2019; Burnouf et al., 2019). The avoidance of
such ex vivo processing also circumvents the preparation and
regulatory issues in the quality control of growth medium
supplements, including potential ‘contamination’ by the EVs
present in fetal bovine serum or human platelet lysates
(Agrahari et al., 2019; Barro et al., 2020). Major possible
limiting issues in the use of platelets as a source of EVs
include the dependence on blood donors or blood collection
organizations for a robust source of the starting material and
risks of pathogen contamination. Therefore, compared to
producing and using MSCs-EVs, platelet concentrates are an
established, licensed medicine in most countries and are
listed as essential medicines by the World Health
Organization (Johnson et al., 2021). Platelet collection is
under the supervision of national regulatory consultants.
Medical devices for platelet collection are licensed by national
regulatory authorities and can be used to prepare allogeneic
or autologous platelet concentrates (Johnson et al., 2021).
However, there is a risk of contamination by blood-borne
infectious agents resistant to existing pathogen-reduction
processes. Most importantly, possible variability among
platelet donors may affect the features and function of EVs
(Johnson et al., 2021). Also, isolation, purification, and
characterization methods still lack standardization, and no
guidelines for the application of platelets-derived-EVs based
therapeutic exist, as is also the case for MSC-EVs (Lener
et al., 2015).

Future perspectives
Altogether, regardless of the discrepancies in the function of
natural MSCs-EVs in CRC studies, their modification or
loading and application as carriers for the delivery of
therapeutic agents are promising in cancer therapy. MSCs
are harmless and advantageous source cells for the
production of EVs, and modification of their content may
be a promising tool for cancer treatment (Rezaie et al.,
2022) (Fig. 3). Modified MSCs-EVs can deliver therapeutic
agents to cancer cells effectively. MSCs-EVs represent very
low immunogenicity with high biocompatibility, making
them ideal for therapeutic goals. Finally, the content and

surface of MSCs-EVs can be covalently or genetically
modified (Rezaie et al., 2022; Yang and Zhang, 2022).
However, this field faces challenges, such as selecting an
assured and suitable source of MSCs for delivering
therapeutic agents is a serious step; consequently, various
MSCs may yield different EVs with variations in size, cargo,
and roles (Zhang et al., 2022). EVs are heterogeneous
regarding sizes or contents; therefore, the modifying process
must not create more heterogeneity and membrane
modification, which may negatively impact EVs loading and
targeting potential. The side and unwanted effects of
modifying EVs remain to be revealed in further studies
(Théry et al., 2018; Rezaie et al., 2021). This field is
proceeding and requests a deep understanding of the EVs
kinetics and developments about modifying and loading
methods of EBs to acquire better cancer treatment. The
majority of studies were performed in a pre-clinical setting,
and the results of clinical application of modified EVs
remain a problem, as this field faces some challenges
essential to be considered in clinical translation studies. The
biology and role of EVs are not yet fully discovered. Several
questions are associated with the biogenesis pathway and
uptake, nomenclature, characterizations, and purification of
EVs, which affect methods and programs that deal with their
modifications and loading methods (Théry et al., 2018).
Large-scale production of EVs is another challenge and needs
standardization for their isolation, purification, loading, and
modification. Large-scale production of EVs, especially from
MSCs, is very problematic because purification and
incubation of human autologous MSCs are laborious and
challenging in vitro in a short time. Similar to other EVs,
MSCs-EVs may be cleaned by the liver, spleen, and lungs
when intravenously injected; consequently, these are not
effectively concentrated in the target tissue (Rani et al., 2015).

Conclusion

CRC is the third most common cancer and the leading cause
of death due to cancer worldwide. MSCs have become one of
the furthermost effective tools for tumor treatment own to
their unique properties; however, their therapeutic effects
are controversial. MSCs-EVs are a promising tool for the
treatment of CRC and other cancers. These vesicles also
transfer certain RNAs and biomolecules that contribute to
the inhibition of growth and development of CRC through
different signaling pathways. On the other hand, CRC-EVs
can target other cells and induce tumorigenesis. Modified
MSCS-EVs offer a novel therapeutic avenue for the delivery
of numerous synthetic and biological molecules to cancer
cells. These vesicles represent very low immunogenicity with
high biocompatibility, which makes them ideal for
therapeutic objectives. However, this field of study is novel
and has not yet reached adequate maturity to translate into
clinical application, and more studies are desirable to
recognize all therapeutic features of MSCs-EVs in CRC.
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