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Abstract: Denervation-induced skeletal muscle atrophy can potentially cause the decline in the quality of life of patients

and an increased risk of mortality. Complex pathophysiological mechanisms with dynamic alterations have been

documented in skeletal muscle atrophy resulting from innervation loss. Hence, an in-depth comprehension of the key

mechanisms and molecules governing skeletal muscle atrophy at varying stages, along with targeted treatment and

protection, becomes essential for effective atrophy management. Our preliminary research categorizes the skeletal

muscle atrophy process into four stages using microarray analysis. This review extensively discusses the pathways and

molecules potentially implicated in regulating the four stages of denervation and muscle atrophy. Notably, drugs

targeting the reactivare oxygen species stage and the inflammation stage assume critical roles. Timely intervention

during the initial atrophy stages can expedite protection against skeletal muscle atrophy. Additionally, pharmaceutical

intervention in the ubiquitin-proteasome pathway associated with atrophy and autophagy lysosomes can effectively

slow down skeletal muscle atrophy. Key molecules within this stage encompass MuRF1, MAFbx, LC3II, p62/SQSTM1,

etc. This review also compiles a profile of drugs with protective effects against skeletal muscle atrophy at distinct post-

denervation stages, thereby augmenting the evidence base for denervation-induced skeletal muscle atrophy treatment.

Introduction

As a pivotal effector organ within the peripheral nervous
system, the structural integrity and functional preservation
of skeletal muscle are subject to control and regulation by
the nervous system. Peripheral nerve injury arising from
acute trauma results in the loss of innervation from skeletal
muscle. This initiates a sequence of pathological changes,
including reduced muscle fiber cross-sectional area,
myofibril degradation with destruction of sarcomeres,
diminished contraction speed, and fibrosis, ultimately
culminating atrophy (Dumitru et al., 2018). The

regeneration rate of peripheral nerves is slow after injury. As
a result, the target muscles of severe patients become
irreversibly atrophied before being re-innervated by the
nerves. This can even lead to disabling in the patients,
bringing a heavy burden to the family and society (Gu et al.,
2011). Therefore, a series of problems in target muscle
repair and functional reconstruction after peripheral nerve
injury could be resolved by exploring novel and effective
methods for the treatment of skeletal muscle atrophy.

Skeletal muscle atrophies upon innervation loss due to
perturbations in the balance between protein synthesis and
degradation. Notably, protein degradation pathways become
activated, while protein synthesis pathways are repressed,
constituting the underlying cause of skeletal muscle atrophy.
Effective alleviation of skeletal muscle atrophy is promoted
by inhibition of protein degradation and stimulation of
protein synthesis (Lang et al., 2017; Li et al., 2017; Cui et al.,
2019). Several molecules are involved in the process of
denervated muscular atrophy, and the mechanism of
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regulating denervated muscular atrophy is also extremely
complicated. Recent years have witnessed many studies on
denervated muscular atrophy at home and abroad, but most
of these studies have focused on a single event, a single gene
or protein (Castets et al., 2019; Janice Sanchez et al., 2019).
A more comprehensive understanding of the denervated
skeletal muscle atrophy process is attainable by elucidating
pivotal regulators and therapeutic targets. Shen et al. (2019)
employed microarray analysis to scrutinize target muscles at
varying post-denervation time points, revealing that the 28-
day period following a neural injury can be segmented into
four distinct transcriptional phases, demarcated by three
nodal transitions (Shen et al., 2019). These phases
encompass the oxidative stress stage, inflammation stage,
atrophy stage, and atrophic fibrosis stage. Consistent with
previous research, the phenotype of skeletal muscle atrophy
manifests between 36 h and 3 days, aligning with the
aforementioned atrophy period (Shen et al., 2019; Qiu et al.,
2021). Consequently, these research findings facilitate more
optimal utilization of diverse methods for denervated
skeletal muscle atrophy treatment. Several treatment
modalities are currently proposed, encompassing electrical
stimulation (Dow et al., 2005; Tamaki et al., 2017) and
noncoding RNA (He et al., 2016; Li et al., 2017; Hitachi et
al., 2019). Furthermore, extensive utilization of various food
and drug extracts is evident in the treatment of denervated
skeletal muscle atrophy.

The enhanced medical application of traditional Chinese
medicine (TCM) is attributed to its multifaceted
functionalities and its facile interaction with substances
within the human body. Substantial strides have been made
in studying the prevention and treatment of skeletal muscle
atrophy using various drugs. Noteworthy achievements
include effective myotube atrophy management through
triptolide, an ingredient isolated from ancient Chinese herbal
medicine. This agent triggers IRS-1 degradation and activates
the FOXO3 pathway activation (Wang et al., 2020).
Furthermore, withaferin A (WFA), a natural protein-specific
binding waveform, mitigates nuclear factor kappa B (NF-κB)-
mediated pro-inflammatory signaling, thereby alleviating
cancer cachexia-induced skeletal muscle atrophy (Straughn
and Kakar, 2019). This article highlights distinct stages of
skeletal muscle atrophy, protein synthesis pathways, and
other pathways. It systematically summarizes the role of food
and drug extracts and other effects on the treatment of
skeletal muscle atrophy, which can provide a reference for the
clinical management of denervated skeletal muscle atrophy.

Drugs that Play a Protective Role by Inhibiting Protein
Degradation

Inhibition of reactive oxygen species
An earlier study involving rats subjected to neural exchange
suggested that heightened mitochondrial permeability
transitions and increased apoptosis result in elevated
mitochondrial ROS production, signifying mitochondrial
dysfunction following denervation (Adhihetty et al., 2007).
Reactive oxygen species (ROS) are accountable for
maintaining the homeostasis of various physiological

processes. A mounting body of evidence posits oxidative
stress as a crucial regulator of muscle wasting (Jackman and
Kandarian, 2004; Powers et al., 2005). Meanwhile, an initial
stage in denervated skeletal muscle exposes aberrant ROS
production. Thus, curbing excessive ROS production can
ameliorate skeletal muscle atrophy. Compared to a control
group, a delay in muscle atrophy mediated by ROS inhibition
was reported by Kim et al. (2018). On injecting Oenothera
odorata root extract (EVP) in both H2O2-treated C2C12

myoblasts and sciatic-denervated mice (Kim et al., 2018).
They probed deeper into the mechanistic underpinnings of
how reactive oxygen species oversee skeletal muscle atrophy.
EVP suppressed superoxide dismutase 1 (SOD1) expression
and augmented HSP70 expression in H2O2-treated C2C12

myoblasts and sciatic-neutralized mice. In addition, EVP
regulates apoptotic signals, including caspase-3, B-cell
lymphoma protein 2 (Bcl-2), Bcl-2-associated X (Bax), and
ceramides. Administration of recombinant heat shock protein
70 delays peripheral muscle denervation in the SOD1 (G93A)
mouse model of amyotrophic lateral sclerosis (Gifondorwa et
al., 2012). O’Leary and Hood have previously shown that
seven days of muscle disuse increases the expression of
Beclin-1, as well as LC3-II, a known component of
autophagy (O’Leary and Hood, 2009). These studies provide
evidence for EVP’s protective effect and regulatory
mechanism on denervation muscle atrophy. The glutathione
content and malondialdehyde (MDA) levels are considered
indicators of oxidative stress and were assayed in the
denervated gastrocnemius muscle. As a free radical scavenger,
adding vitamin E can restore glutathione levels and reduce
MDA levels, further confirming the conclusion that oxidative
stress accelerates muscle atrophy (Demiryurek and Babul,
2004). Indeed, increased oxidative damage after denervation
resulted in increased ROS production, decreased surface
hydrophobicity, and decreased enzymatic activities of
glyceraldehyde-3-phosphate dehydrogenase and creatine
kinase, while increased mitochondrial ROS may also play a
signaling role (Pierce et al., 2006). Another compelling
candidate for ROS-mediated signaling is NF-κB. The
involvement of NF-κB in muscle atrophy is recognized. The
inhibitor of apoptosis 1 (cIAP1) protein, a positive regulator
of NF-κB signaling, exhibited upregulation in denervated
muscles compared to non-denervated controls 14 days post-
denervation. Genetic or pharmacological inhibition of cIAP1
curtailed canonical NF-κB signaling, thus attenuating
denervation-induced muscle atrophy (Lala-Tabbert et al.,
2019). Furthermore, mitochondrial ROS has been
demonstrated to upregulate the expression of ubiquitin ligase,
atrogin-1/MAFbx, potentially contributing to atrophy
through enhanced protein degradation by the 26S
proteasome system (Li et al., 2005). We found that
pyrroloquinoline quinone (PQQ)-mediated reduction in the
expression of reactive oxygen species and inflammatory
factors results in a decrease in the expression of MuRF1 and
MAFbx, ultimately improving denervated skeletal muscle
atrophy (Qiu et al., 2018; Ma et al., 2019). Kuo from Taiwan
revealed PQQ impairs denervation-induced skeletal muscle
atrophy by activating PGC-1α and integrating mitochondrial
electron transport chain complexes (Kuo et al., 2015).
Previous research by our team reported a reduction of
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denervation-induced oxidative stress and inflammation
mediated by salidroside, inhibiting muscle proteolysis and
ultimately alleviating muscle atrophy caused by denervation
(Huang et al., 2019).

Inhibition of pro-inflammatory factors
Apigenin is a natural plant flavonoid acclaimed for its anti-
obesity, anti-inflammatory, antioxidant, and anti-cancer
attributes. Apigenin was attributed to dose-dependent
inhibition of collagenase activity implicated in rheumatoid
arthritis (RA) and the suppression of lipopolysaccharide
(LPS)-induced nitric oxide (NO) production in RAW 264.7
macrophage cells (Lee et al., 2007). In denervated
gastrocnemius and soleus muscles, apigenin treatment
impeded the upregulation of tumor necrosis factor alpha
(TNF-α) and interleukin (IL)-6 expression (Choi et al.,
2018). Furthermore, Shiota et al. (2015) reported that
apigenin exerted inhibitory effects on atrogin-1/MAFbx
expression and curbed the reduction in myotube diameter
induced by LPS stimulation in the C2C12 murine cell line
(Shiota et al., 2015).

Ficus carica L. (FCL.), a flowering plant, contains
flavonoids, psoralen, and bergapten, renowned for their
antioxidant, anti-inflammatory, and anti-apoptotic
characteristics. They are also implicated in quelling IL-1β
and IL-6 production in atrophic muscles, attenuating muscle
inflammation by inhibiting nuclear factor NF-κB activation
(Dai et al., 2020). A study by Aarti Yadav et al. identified
quercetin as a dietary antioxidant flavonoid that curbed
inflammation in myotubes, fully reinstating TNF and an a-
induced reduction of myotube diameter (Kim et al., 2018).
This reflects muscle morphology at the cellular level.
Quercetin improves motor function and muscle mass in
aged people (Yadav et al., 2022). These reported effects of
flavonoids are in other skeletal muscle atrophy models
rather than in denervation-induced skeletal muscle atrophy.
However, apigenin, functioning as a bioactive flavone,
augmented the fiber-cross sectional area by 0.1% in the
gastrocnemius muscle of sciatic denervated mice over 2
weeks. The enhanced cross-sectional area was substantiated
by diminished levels of TNF-α in the gastrocnemius and
IL-6 in the soleus muscle (Choi et al., 2018). Buyang
Huangwu Tang (BYHWT), a classic Chinese medicine
formula, ameliorated the inflammatory response in
denervation-dependent skeletal muscle atrophy rat models
(Zhou et al., 2020). Wu et al. (2019) found that negative
regulation of pro-inflammatory cytokine mediated by
salidroside attenuates denervation-induced skeletal muscle
atrophy. The discernible pathway involves the inflammation
caused by denervation in skeletal muscle, leading to the
generation of inflammatory cytokines, particularly IL-6.
This, in turn, augments the phosphorylation of STAT3 and
the expression of SOCS3, which consequently triggers the
activation of the proteolytic pathway in the muscle.
Salidroside curbed muscle proteolysis and muscle atrophy
by tempering the inflammatory response triggered by
innervation. This likely transpired through the inactivation
of the STAT3/SOCS3 pathway (Wu et al., 2019).

Regulation of ubiquitin-proteasome and autophagy-lysosome
pathway
Activation of proteolytic metabolism and inhibition of protein
synthesis pathway are the primary causes of skeletal muscle
atrophy following denervation. The proteolytic pathway
chiefly encompasses the ubiquitin-proteasome system and
the autophagy-lysosome system. Clenbuterol (CLE) is a
beta-adrenergic receptor stimulant employed in treating
muscle spasms and asthma (Bohorov et al., 1987; Pairet et
al., 1997). In vivo and in vitro treatment with CLE was
found to prohibit the transcriptional upregulation of
atrophy-related Ub ligases (i.e., MAFbx and MuRF1) in
denervated soleus muscles (Goncalves et al., 2012). MAFbx
overexpression led to a reduction in cultured muscle cell
line size, indicating accelerated protein catabolism.
Conversely, MAFbx gene depletion impeded nerve
transection-induced muscle loss (Bodine et al., 2001).
Nandrolone decelerates denervation atrophy by repressing
MAFbx and MuRF1 (Zhao et al., 2008). The results showed
that Nandrolone inhibited the expression of MAFbx and
MuRF1 in subacutely denervated muscles. Reduced MAFbx
and MuRF1 expression 35 and 56 days after denervation,
suggesting that protection against denervation atrophy is
time-related. Furthermore, no decrease in MAFbx or
MuRF1 expression was observed at 3, 7, 14, or 31 days
when nandrolone failed to prevent denervation atrophy at
these time points. This underscores a mechanistic
association between lowered MAFbx or MuRF1 levels and
attenuated atrophy. Irisin is a 112 amino acid glycosylated
protein hormone formed by the proteolysis of FNDC5
(Schumacher et al., 2013). The pivotal role of irisin in
rescuing skeletal muscle atrophy was substantiated by the
significant increase in the denervated muscle mass following
irisin injection. Estimating the protein levels of both MAFbx
and MuRF1, it was observed that injection of irisin resulted
in a marked reduction in MAFbx and MuRF1 protein levels
in denervated muscle. These findings advocate that irisin
treatment curbed the expression of key indicators of skeletal
muscle wasting during denervation-induced muscle atrophy
(Reza et al., 2017).

Phenolic compounds derived from plants deliver diverse
health benefits, mitigating the risk of cardiovascular disease
and cancer (Kris-Etherton et al., 2002). Moreover, the
protective impact of phenolic compounds from olive oil on
muscle atrophy has been validated. These compounds can
also alleviate the insulin resistance of skeletal muscle
induced by a high-fat diet (Fujiwara et al., 2017; Szychlinska
et al., 2019). In terms of alkylresorcinols (ARs) in
denervated muscle atrophy, dietary alkylresorcinol
supplementation was reported to thwart muscle atrophy by
restraining the expression of the related genes of the
ubiquitin-proteasome and autophagy-lysosomal pathway
(Hiramoto et al., 2018). This study demonstrated that AR
ingestion prevented denervation-induced hindlimb muscle
weight and muscle fiber size reductions. However, ubiquitin
ligase and autophagy-related gene expression related to
muscle proteolysis were somewhat higher in denervated
mice on an ARs-supplemented diet (D-AR) compared to
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those on a normal diet (D-ND). Furthermore, the abundance
of autophagy marker p62 was significantly higher in D-AR
than in D-ND. Fish oil rich in n-3 polyunsaturated fatty
acids, including eicosapentaenoic acid and docosahexaenoic
acid, is known for maintaining muscle mass. However,
numerous studies have underscored fish oil’s positive role in
various skeletal muscle atrophy models, such as cancer
cachexia (Whitehouse et al., 2001), acute starvation
(Whitehouse and Tisdale, 2001), sepsis (Khal and Tisdale,
2008), arthritis (Castillero et al., 2009), hind-limb
immobilization (You et al., 2010). Komiya et al. (2019)
documented that fish oil regulates ubiquitin ligase
transcriptional levels through the TNF-α signaling pathway
but not the FOXO1 pathway. Nevertheless, dietary fish oil
intake has demonstrated no significant effect on skeletal
muscle mass loss induced by sciatic nerve denervation
(Komiya et al., 2019). Furthermore, BYHWT treatment is
also associated with decreased levels of skeletal muscle
atrophy-specific molecules MAFbx and MuRF1. This finding
aligns with the outcomes of inflammatory response and
motor endplate alterations following BYHWT treatment
(Zhou et al., 2020). NeuroHeal, a new neuroprotective drug
for peripheral nerve injury, discovered using artificial
intelligence is based on a combination of two approved
drugs, acamprosate and ribavirin, which facilitate its
preparation for clinical application. Decreased levels of
MAFbX and MuRF1 proteins were evident in the
NeuroHeal group in denervated muscles. Denervation-
induced autophagy activation characterized by LC3II and
p62/SQSTM1 levels was diminished by NeuroHeal,
indicating blocked autophagy flux (Marmolejo-Martinez-
Artesero et al., 2020).

Resveratrol, a natural phytochemical, is widely found in
plants, fruits, and red wine (Zhu et al., 2017). Studies reveal
that treatment with 0.5% of the food intake of resveratrol
can alleviate muscle atrophy caused by innervation in mice.
The reduction of the MAFbx-dependent system and the
improvement of autophagy defects are responsible for this
attenuation (Asami et al., 2018). Geranylgeraniol (GGOH),
as a C20-type isoprene found in fruits, vegetables, and
grains, serves as an intermediate product of the Mevalonate
pathway and a precursor of Geranylgeranyl pyrophosphate
(Muraguchi et al., 2011). Miyawaki et al. (2020) reported
that GGOH administration increased muscle fiber size in
denervation-induced skeletal muscle atrophy in vivo and
curtailed denervation-induced MAFbx expression (Miyawaki
et al., 2020). The inhibitory impact of GGOH on skeletal

muscle atrophy could potentially be attributed to its
androgen-inhibiting effects, subsequently curbing MAFbx
and MuRF1 (Pires-Oliveira et al., 2010). In a hind limb
unloading model, administration of quercetin to the
gastrocnemius muscle curtailed MAFbx and MuRF1
expression, thereby suppressing skeletal muscle mass loss
(Mukai et al., 2010). Isoflavones, natural organic
compounds, inhibit denervation-induced apoptosis and
muscle atrophy. Studies suggest that isoflavones can
suppress MuRF1 transcriptional activity and myotube
atrophy (Tabata et al., 2019).

In addition to the aforementioned roles of vitamin E in
regulating reactive oxygen species during skeletal muscle
atrophy, different vitamins also play significant roles in
various stages of denervation-induced skeletal muscle
atrophy. Vitamin C deficiency was reported to reduce
muscle weight, elevate FOXO-1, MAFbx, and MuRF1
expression. Re-administration of vitamin C could restore
muscle weight and lower gene expression in skeletal muscle
atrophy (Takisawa et al., 2019). Vitamin D, another
member of the vitamin family, participates in calcium
absorption, utilization, and bone calcification. However,
recent findings suggest its involvement in skeletal muscle
functions in different situations. In mice, vitamin D receptor
deletion resulted in reduced muscle fiber size. In
experiments using C2C12 cells, vitamin D suppressed the
expression of cathepsin L and MAFbx (Endo et al., 2003;
Hirose et al., 2018). We have summarized the protective
effects of drugs in the process of catabolism during
denervated muscle atrophy in Fig. 1.

The Effect of Drugs on the Protein Synthesis Pathway

Possibly through activation of the adenosine monophosphate-
activated protein kinase pathway, Royal jelly, comprising
water, protein, sugar, and lipids, can avert the reduction in
skeletal muscle fiber diameter following denervation.
Treatment of C2C12 myoblasts with Royal jelly promoted
differentiation and proliferation (Shirakawa et al., 2020). In
the process of denervated skeletal muscle atrophy, the Notch
signaling pathway is activated early after denervation and
subsequently declined. Meanwhile, the effect of nandrolone
on the Notch signaling ensues following nerve transection,
which occurs earlier than the protective effect that prevents
continued muscle loss (Liu et al., 2011). In denervated
mouse models, dietary intake of 8-prenylnaringenin triggers

FIGURE 1. Overview of the
effects of drugs at different
stages of denervated skeletal
muscle atrophy.
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Akt phosphorylation, thereby potentially alleviating skeletal
muscle atrophy (Mukai et al., 2012).

The Effect of Drugs on Other Pathways

Due to its binding affinity to estrogen receptors (ERs), several
physiological functions of genistein are attributed to its
estrogenic activity (Kuiper et al., 1998). ERs are present in
the skeletal muscle, and ER subtypes ER-α and ER-β have a
vital role in the differentiation and inflammation of
myoblasts (Ogawa et al., 2011; Velders et al., 2012). The
intake of genistein exhibits a protective effect on muscle loss

caused by innervation. ER-α is activated during soleus
muscle atrophy. Therefore, it may be presumed that
genistein targets ER-α, thereby exerting a protective effect
against muscle atrophy (Aoyama et al., 2016). Nandrolone
enhances strength and functional recovery in re-innervated
muscles post-establishment of denervation atrophy (Isaacs et
al., 2013). Studies have confirmed the efficacy of growth
hormone in treating denervated skeletal muscle atrophy. In
cases of peripheral nerve injury, Tuffaha et al. (2016)
unveiled that growth hormone therapy could expedite axon
regeneration in male rats, foster axon myelination, diminish
muscle atrophy, and amplify muscle innervation.

TABLE 1

Some important studies for the function of natural drugs or compounds on skeletal muscle metabolism

Different periods of
denervated muscle atrophy

Drugs Description

Reactive oxygen species Oenothera odorata
root extract (EVP)

EVP repressed SOD1 expression and increased HSP70 expression in H2O2-
treated C2C12 myoblasts and sciatic-neutralized mice. In addition, EVP regulates
apoptotic signals, including caspase-3, Bax, Bcl-2, and ceramides

Vitamin E Vitamin E was able to restore glutathione levels and decrease MDA levels, which
further substantiated the conclusion that oxidative stress accelerated muscle
atrophy

Pyrroloquinoline
quinone (PQQ)

PQQ-mediated reduction in the expression of reactive oxygen species and
inflammatory factors results in a decrease in the expression of MuRF1 and
MAFbx, ultimately improving denervated skeletal muscle atrophy and impairs
denervation-induced skeletal muscle atrophy by activating PGC-1α and
integrating mitochondrial electron transport chain complexes

Salidroside Salidroside reduced denervation-induced oxidative stress and inflammation,
inhibiting muscle proteolysis and ultimately alleviating muscle atrophy

Pro-inflammatory factors Apigenin In the denervated gastrocnemius and soleus muscle, the upregulation of TNF-α
and IL-6 expression was impeded by apigenin treatment. Apigenin has inhibitory
effects on atrogin-1/MAFbx expression and prevents reduction in myotube
diameter induced by lipopolysaccharide (LPS) stimulation in the C2C12 murine
cell line

Ficus carica L. (FCL.) FCL is involved in hindering IL-1β and IL-6 production in atrophic muscles and
suppresses inflammation in atrophic muscle by inhibiting nuclear factor NF-κB
activation

Quercetin Quercetin limited inflammation in myotubes, whereas completely restored TNF
a-induced reduction of myotube diameter

Buyang Huangwu
Tang (BYHWT)

BYHWT improved inflammatory response when administered in denervated-
dependent skeletal muscle atrophy rat models

Salidroside Inhibition of muscle proteolysis and muscle atrophy results from salidroside by
reducing the inflammatory response caused by innervation, which may be
carried out by inactivating the STAT3/SOCS3 pathway

Ubiquitin proteasome and
autophagy lysosome pathway

Clenbuterol (CLE) In vivo and in vitro treatment with CLE was found to prohibited the
transcriptional upregulation of atrophy-related Ub ligases in denervated soleus
muscles

Nandrolone Administration of Nandrolone decelerates denervation atrophy by repressing
MAFbx and MuRF1

Irisin Injection of irisin resulted in a marked reduction in MAFbx and MuRF1 protein
levels in denervated muscle

Alkylresorcinols
(ARs)

The expression of ubiquitin ligase and autophagy-related genes related to muscle
proteolysis was slightly higher in denervated mice fed a diet supplemented with
ARs than in denervated mice fed a normal diet

(Continued)
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Nonetheless, further research is crucial to unveil the precise
molecular mechanism (Tuffaha et al., 2016). Bortezomib
retards the atrophy of rat thyroid muscle and posterior
circular ganglion muscles caused by innervation, though the
specific mechanism has not been clarified (Sei et al., 2015).
Finally, we summarized the pharmacological protective
effects mentioned in the review on denervated skeletal
muscle atrophy and present them in Table 1.

Conclusion

Comprehending the intricate pathophysiological course of
denervated skeletal muscle atrophy is significant in
uncovering more drugs or methodologies to combat this
condition. In this review, we introduced the proposition
from the previous phase: denervated skeletal muscle atrophy
can be categorized into four stages as a foundation and
summarized various drugs reported as effective for
addressing denervated skeletal muscle atrophy across
different stages. Our prior investigations also highlighted the

pivotal roles of salidroside, isoquercitrin, and PQQ in
alleviating denervated skeletal muscle atrophy by
modulating distinct signaling pathways or molecules.
However, comprehensive research is imperative to ascertain
the ongoing efficacy of these drugs.
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TABLE 1 (continued)

Different periods of
denervated muscle atrophy

Drugs Description

Fish oil Fish oil regulates the transcript level of ubiquitin ligases via TNF-α signaling
rather than the FOXO1 pathway

Buyang Huangwu
Tang (BYHWT)

Compared to the model group, reduced levels of skeletal muscle atrophy-specific
molecules MAFbx and MuRF1 were also documented after BYHWT treatment

NeuroHeal Decreased levels of MAFbx and MuRF1 proteins were evident in the NeuroHeal
group in denervated muscles. Denervation-mediated activation of autophagy is
characterized by LC3II and p62/SQSTM1 levels, while the reduction promoted
by NeuroHeal signifies that autophagy flux is blocked

Resveratrol Treatment with 0.5% of the food intake of resveratrol can alleviate muscle
atrophy in mice caused by innervation. The reduction of the MAFbx-dependent
system and the improvement of autophagy defects are responsible for this
attenuation

GGOH GGOH administration increased the muscle fiber size in denervation-induced
skeletal muscle atrophy in vivo, and it also suppresses the denervation-induced
MAFbx expression

Isoflavones Isoflavones can suppress the transcriptional activity of MuRF1 and myotube
atrophy

Vitamin C Vitamin C deficiency reduces muscle weight and increases the expression of
FOXO-1, MAFbx, and MuRF1

Vitamin D Deletion of vitamin D receptor reduces muscle fiber size and vitamin D
suppressed the expression of cathepsin L and MAFbx

Protein synthesis pathway Royal jelly (RJ) The RJ can prevent the decrease in skeletal muscle fiber diameter following
denervation and promote C2C12 myoblasts differentiation and proliferation

Nandrolone The Notch signaling pathway is activated early after denervation and
subsequently declined, meanwhile, the effect of nandrolone on Notch signaling
ensues following nerve transection, which occurs earlier than the protective effect
that prevents continued muscle loss

8-Prenylnaringenin In denervated mouse models, dietary ingestion of 8-Prenylnaringenin activates
Akt phosphorylation and thus, can relieve skeletal muscle atrophy

The other pathways Genistein The intake of genistein exhibits a protective effect on muscle loss caused by
innervation, which may be targeted ER-α, exerting a protective effect against
muscle atrophy

2356 JIAYING QIU et al.



ZHU; analysis and interpretation of results: JIAYING QIU,
WENPENG LIANG, MENGSI LIN; draft manuscript
preparation: JIAYING QIU, ZHENYU ZHANG; All authors
reviewed the results and approved the final version of the
manuscript.

Availability of Data and Materials: The research results
highlighted in this review are from publicly available papers.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare that they have no
conflicts of interest to report regarding the present review.

References

Adhihetty PJ, O’Leary MF, Chabi B, Wicks KL, Hood DA (2007).
Effect of denervation on mitochondrially mediated
apoptosis in skeletal muscle. Journal of Applied Physiology
102: 1143–1151.

Aoyama S, Jia H, Nakazawa K, Yamamura J, Saito K, Kato H (2016).
Dietary genistein prevents denervation-induced muscle
atrophy in male rodents via effects on estrogen receptor-α.
The Journal of Nutrition 146: 1147–1154.

Asami Y, Aizawa M, Kinoshita M, Ishikawa J, Sakuma K (2018).
Resveratrol attenuates denervation-induced muscle atrophy
due to the blockade of atrogin-1 and p62 accumulation.
International Journal of Medical Sciences 15: 628–637.

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L et al. (2001).
Identification of ubiquitin ligases required for skeletal
muscle atrophy. Science 294: 1704–1708.

Bohorov O, Buttery PJ, Correia JH, Soar JB (1987). The effect of the
beta-2-adrenergic agonist clenbuterol or implantation with
oestradiol plus trenbolone acetate on protein metabolism in
wether lambs. The British Journal of Nutrition 57: 99–107.

Castets P, Rion N, Theodore M, Falcetta D, Lin S et al. (2019).
mTORC1 and PKB/Akt control the muscle response to
denervation by regulating autophagy and HDAC4. Nature
Communications 10: 3187.

Castillero E, Martin AI, Lopez-Menduina M, Villanua MA, Lopez-
Calderon A (2009). Eicosapentaenoic acid attenuates
arthritis-induced muscle wasting acting on atrogin-1 and
on myogenic regulatory factors. American Journal of
Physiology Regulatory, Integrative and Comparative
Physiology 297: R1322–R1331.

Choi WH, Jang YJ, Son HJ, Ahn J, Jung CH, Ha TY (2018). Apigenin
inhibits sciatic nerve denervation-induced muscle atrophy.
Muscle & Nerve 58: 314–318.

Cui W, Liu CX, Zhang YC, Shen Q, Feng ZH, Wang J, Lu SF, Wu J, Li
JX (2019). A novel oleanolic acid derivative HA-19
ameliorates muscle atrophy via promoting protein synthesis
and preventing protein degradation. Toxicology and Applied
Pharmacology 378: 114625.

Dai J, Xiang Y, Fu D, Xu L, Jiang J, Xu J (2020). Ficus carica L.
attenuates denervated skeletal muscle atrophy via
PPARalpha/NF-kappaB pathway. Frontiers in Physiology
11: 580223.

Demiryurek S, Babul A (2004). Effects of vitamin E and electrical
stimulation on the denervated rat gastrocnemius muscle
malondialdehyde and glutathione levels. The International
Journal of Neuroscience 114: 45–54.

Dow DE, Dennis RG, Faulkner JA (2005). Electrical stimulation
attenuates denervation and age-related atrophy in extensor
digitorum longus muscles of old rats. The Journals of
Gerontology: Series A 60: 416–424.

Dumitru A, Radu BM, Radu M, Cretoiu SM (2018). Muscle changes
during atrophy. Advances in Experimental Medicine and
Biology 1088: 73–92.

Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S,
Matsumoto T (2003). Deletion of vitamin D receptor gene in
mice results in abnormal skeletal muscle development with
deregulated expression of myoregulatory transcription
factors. Endocrinology 144: 5138–5144.

Fujiwara Y, Tsukahara C, Ikeda N, Sone Y, Ishikawa T, Ichi I, Koike
T, Aoki Y (2017). Oleuropein improves insulin resistance in
skeletal muscle by promoting the translocation of GLUT4.
Journal of Clinical Biochemistry and Nutrition 61: 196–202.

Gifondorwa DJ, Jimenz-Moreno R, Hayes CD, Rouhani H, Robinson
MB, Strupe JL, Caress J, Milligan C (2012). Administration of
recombinant heat shock protein 70 delays peripheral muscle
denervation in the SOD1(G93A) mouse model of amyotrophic
lateral sclerosis. Neurology Research International 2012:
170426.

Goncalves DA, Silveira WA, Lira EC, Graca FA, Paula-Gomes S,
Zanon NM, Kettelhut IC, Navegantes LC (2012).
Clenbuterol suppresses proteasomal and lysosomal
proteolysis and atrophy-related genes in denervated rat
soleus muscles independently of Akt. American Journal of
Physiology Endocrinology and Metabolism 302: E123–E133.

Gu X, Ding F, Yang Y, Liu J (2011). Construction of tissue engineered
nerve grafts and their application in peripheral nerve
regeneration. Progress in Neurobiology 93: 204–230.

He Q, Qiu J, Dai M, Fang Q, Sun X, Gong Y, Ding F, Sun H (2016).
MicroRNA-351 inhibits denervation-induced muscle
atrophy by targeting TRAF6. Experimental and Therapeutic
Medicine 12: 4029–4034.

Hiramoto S, Yahata N, Saitoh K, Yoshimura T, Wang Y, Taniyama S,
Nikawa T, Tachibana K, Hirasaka K (2018). Dietary
supplementation with alkylresorcinols prevents muscle
atrophy through a shift of energy supply. The Journal of
Nutritional Biochemistry 61: 147–154.

Hirose Y, Onishi T, Miura S, Hatazawa Y, Kamei Y (2018). Vitamin
D attenuates FOXO1-target atrophy gene expression in
C2C12 muscle cells. Journal of Nutritional Science and
Vitaminology 64: 229–232.

Hitachi K, Nakatani M, Tsuchida K (2019). Long non-coding RNA
myoparr regulates GDF5 expression in denervated mouse
skeletal muscle. Non-coding RNA 5: 33.

Huang Z, Fang Q, Ma W, Zhang Q, Qiu J, Gu X, Yang H, Sun H
(2019). Skeletal muscle atrophy was alleviated by
salidroside through suppressing oxidative stress and
inflammation during denervation. Frontiers in
Pharmacology 10: 997.

Isaacs J, Feher J, Shall M, Vota S, Fox MA, Mallu S, Razavi A, Friebe I,
Shah S, Spita N (2013). Effects of nandrolone on recovery
after neurotization of chronically denervated muscle in a
rat model. Journal of Neurosurgery 119: 914–923.

Jackman RW, Kandarian SC (2004). The molecular basis of skeletal
muscle atrophy. American Journal of Physiology Cell
Physiology 287: C834–C843.

Janice Sanchez B, Tremblay AK, Leduc-Gaudet JP, Hall DT, Kovacs E
et al. (2019). Depletion of HuR in murine skeletal muscle

PHARMACOLOGICAL EFFECTS OF DENERVATED MUSCLE ATROPHY 2357



enhances exercise endurance and prevents cancer-induced
muscle atrophy. Nature Communications 10: 4171.

Khal J, Tisdale MJ (2008). Downregulation of muscle protein
degradation in sepsis by eicosapentaenoic acid (EPA).
Biochemical and Biophysical Research Communications 375:
238–240.

Kim Y, Kim CS, Joe Y, Chung HT, Ha TY, Yu R (2018). Quercetin
reduces tumor necrosis factor alpha-induced muscle
atrophy by upregulation of heme oxygenase-1. Journal of
Medicinal Food 21: 551–559.

Komiya Y, Kobayashi C, Uchida N, Otsu S, Tanio T, Yokoyama I,
Nagasao J, Arihara K (2019). Effect of dietary fish oil intake
on ubiquitin ligase expression during muscle atrophy
induced by sciatic nerve denervation in mice. Animal
Science Journal 90: 1018–1025.

Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski
AE, Hilpert KF, Griel AE, Etherton TD (2002). Bioactive
compounds in foods: Their role in the prevention of
cardiovascular disease and cancer. The American Journal of
Medicine 113: 71S–88S.

Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der
Saag PT, van der Burg B, Gustafsson JA (1998). Interaction
of estrogenic chemicals and phytoestrogens with estrogen
receptor β. Endocrinology 139: 4252–4263.

Kuo YT, Shih PH, Kao SH, Yeh GC, Lee HM (2015).
Pyrroloquinoline quinone resists denervation-induced
skeletal muscle atrophy by activating PGC-1alpha and
integrating mitochondrial electron transport chain
complexes. PLoS One 10: e0143600.

Lala-Tabbert N, Lejmi-Mrad R, Timusk K, Fukano M, Holbrook J,
St-Jean M, LaCasse EC, Korneluk RG (2019). Targeted
ablation of the cellular inhibitor of apoptosis 1 (cIAP1)
attenuates denervation-induced skeletal muscle atrophy.
Skeletal Muscle 9: 13.

Lang F, Aravamudhan S, Nolte H, Turk C, Holper S, Muller S,
Gunther S, Blaauw B, Braun T, Kruger M (2017). Dynamic
changes in the mouse skeletal muscle proteome during
denervation-induced atrophy. Disease Models &
Mechanisms 10: 881–896.

Lee JH, Zhou HY, Cho SY, Kim YS, Lee YS, Jeong CS (2007). Anti-
inflammatory mechanisms of apigenin: Inhibition of
cyclooxygenase-2 expression, adhesion of monocytes to
human umbilical vein endothelial cells, and expression of
cellular adhesion molecules. Archives of Pharmacal
Research 30: 1318–1327.

Li J, ChanMC, Yu Y, Bei Y, Chen P et al. (2017). miR-29b contributes
to multiple types of muscle atrophy. Nature Communications
8: 15201.

Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB (2005).
TNF-alpha acts via p38 MAPK to stimulate expression of
the ubiquitin ligase atrogin1/MAFbx in skeletal muscle.
FASEB Journal 19: 362–370.

Liu XH, Yao S, Qiao RF, Levine AC, Kirschenbaum A, Pan J, Wu Y,
Qin W, Bauman WA, Cardozo CP (2011). Nandrolone
reduces activation of Notch signaling in denervated muscle
associated with increased Numb expression. Biochemical
and Biophysical Research Communications 414: 165–169.

Ma W, Zhang R, Huang Z, Zhang Q, Xie X et al. (2019). PQQ
ameliorates skeletal muscle atrophy, mitophagy and fiber
type transition induced by denervation via inhibition of the
inflammatory signaling pathways. Annals of Translational
Medicine 7: 440.

Marmolejo-Martinez-Artesero S, Romeo-Guitart D, Manas-Garcia L,
Barreiro E, Casas C (2020). NeuroHeal reduces muscle
atrophy and modulates associated autophagy. Cells 9: 1575.

Miyawaki A, Rojasawasthien T, Hitomi S, Aoki Y, Urata M et al.
(2020). Oral administration of geranylgeraniol rescues
denervation-induced muscle atrophy via suppression of
atrogin-1. In Vivo 34: 2345–2351.

Mukai R, Horikawa H, Fujikura Y, Kawamura T, Nemoto H, Nikawa
T, Terao J (2012). Prevention of disuse muscle atrophy by
dietary ingestion of 8-prenylnaringenin in denervated mice.
PLoS One 7: e45048.

Mukai R, Nakao R, Yamamoto H, Nikawa T, Takeda E, Terao J
(2010). Quercetin prevents unloading-derived disused
muscle atrophy by attenuating the induction of ubiquitin
ligases in tail-suspension mice. Journal of Natural Products
73: 1708–1710.

Muraguchi T, Okamoto K, Mitake M, Ogawa H, Shidoji Y (2011).
Polished rice as natural sources of cancer-preventing
geranylgeranoic acid. Journal of Clinical Biochemistry and
Nutrition 49: 8–15.

Ogawa M, Yamaji R, Higashimura Y, Harada N, Ashida H, Nakano
Y, Inui H (2011). 17β-estradiol represses myogenic
differentiation by increasing ubiquitin-specific peptidase 19
through estrogen receptor α. The Journal of Biological
Chemistry 286: 41455–41465.

O’Leary MF, Hood DA (2009). Denervation-induced oxidative stress
and autophagy signaling in muscle. Autophagy 5: 230–231.

Pairet M, Engelmann P, von Nicolai H, Champeroux P, Richard S,
Rauber G, Engelhardt G (1997). Ambroxol improves the
broncho-spasmolytic activity of clenbuterol in the guinea-
pig. The Journal of Pharmacy and Pharmacology 49: 184–186.

Pierce A, deWaal E, Van Remmen H, Richardson A, Chaudhuri A
(2006). A novel approach for screening the proteome for
changes in protein conformation. Biochemistry 45:
3077–3085.

Pires-Oliveira M, Maragno AL, Parreiras-e-Silva LT, Chiavegatti T,
Gomes MD, Godinho RO (2010). Testosterone represses
ubiquitin ligases atrogin-1 and Murf-1 expression in an
androgen-sensitive rat skeletal muscle in vivo. Journal of
Applied Physiology 108: 266–273.

Powers SK, Kavazis AN, DeRuisseau KC (2005). Mechanisms of
disuse muscle atrophy: Role of oxidative stress. American
Journal of Physiology Regulatory, Integrative and
Comparative Physiology 288: R337–R344.

Qiu J, Fang Q, Xu T, Wu C, Xu L et al. (2018). Mechanistic role of
reactive oxygen species and therapeutic potential of
antioxidants in denervation-or fasting-induced skeletal
muscle atrophy. Frontiers in Physiology 9: 215.

Qiu J, Wu L, Chang Y, Sun H, Sun J (2021). Alternative splicing
transitions associate with emerging atrophy phenotype
during denervation-induced skeletal muscle atrophy.
Journal of Cellular Physiology 236: 4496–4514.

Reza MM, Subramaniyam N, Sim CM, Ge X, Sathiakumar D,
McFarlane C, Sharma M, Kambadur R (2017). Irisin is a
pro-myogenic factor that induces skeletal muscle
hypertrophy and rescues denervation-induced atrophy.
Nature Communications 8: 1104.

Schumacher MA, Chinnam N, Ohashi T, Shah RS, Erickson HP
(2013). The structure of irisin reveals a novel intersubunit
beta-sheet fibronectin type III (FNIII) dimer: Implications
for receptor activation. The Journal of Biological Chemistry
288: 33738–33744.

2358 JIAYING QIU et al.



Sei H, Taguchi A, Nishida N, Hato N, Gyo K (2015). Preventive
effects of bortezomib on denervation-induced atrophy of
the intrinsic laryngeal muscles: An experimental study in
the rat. Acta Oto-Laryngologica 135: 713–717.

Shen Y, Zhang R, Xu L, Wan Q, Zhu J et al. (2019). Microarray
analysis of gene expression provides new insights into
denervation-induced skeletal muscle atrophy. Frontiers in
Physiology 10: 1298.

Shiota C, Abe T, Kawai N, Ohno A, Teshima-Kondo S, Mori H,
Terao J, Tanaka E, Nikawa T (2015). Flavones inhibit LPS-
induced atrogin-1/MAFbx expression in mouse C2C12
skeletal myotubes. Journal of Nutritional Science and
Vitaminology 61: 188–194.

Shirakawa T, Miyawaki A, Matsubara T, Okumura N, Okamoto H
et al. (2020). Daily oral administration of protease-treated
royal jelly protects against denervation-induced skeletal
muscle atrophy. Nutrients 12: 3089.

Straughn AR, Kakar SS (2019). Withaferin A ameliorates ovarian
cancer-Induced cachexia and proinflammatory signaling.
Journal of Ovarian Research 12: 115.

Szychlinska MA, Castrogiovanni P, Trovato FM, Nsir H, Zarrouk M,
Lo Furno D, di Rosa M, Imbesi R, Musumeci G (2019).
Physical activity and Mediterranean diet based on olive tree
phenolic compounds from two different geographical areas
have protective effects on early osteoarthritis, muscle
atrophy and hepatic steatosis. European Journal of
Nutrition 58: 565–581.

Tabata S, Aizawa M, Kinoshita M, Ito Y, Kawamura Y, Takebe M,
Pan W, Sakuma K (2019). The influence of isoflavone for
denervation-induced muscle atrophy. European Journal of
Nutrition 58: 291–300.

Takisawa S, Funakoshi T, Yatsu T, Nagata K, Aigaki T, Machida S,
Ishigami A (2019). Vitamin C deficiency causes muscle
atrophy and a deterioration in physical performance.
Scientific Reports 9: 4702.

Tamaki H, Yotani K, Ogita F, Hayao K, Nakagawa K, Sugawara K,
Kirimoto H, Onishi H, Kasuga N, Yamamoto N (2017).
Electrical stimulation of denervated rat skeletal muscle
ameliorates bone fragility and muscle loss in early-stage
disuse musculoskeletal atrophy. Calcified Tissue
International 100: 420–430.

Tuffaha SH, Budihardjo JD, Sarhane KA, Khusheim M, Song D et al.
(2016). Growth hormone therapy accelerates axonal

regeneration, promotes motor reinnervation, and reduces
muscle atrophy following peripheral nerve injury. Plastic
and Reconstructive Surgery 137: 1771–1780.

Velders M, Schleipen B, Fritzemeier KH, Zierau O, Diel P (2012).
Selective estrogen receptor-β activation stimulates skeletal
muscle growth and regeneration. FASEB Journal 26:
1909–1920.

Wang J, Gao X, Ren D, Zhang M, Zhang P et al. (2020). Triptolide
induces atrophy of myotubes by triggering IRS-1
degradation and activating the FOXO3 pathway. Toxicology
in Vitro 65: 104793.

Whitehouse AS, Smith HJ, Drake JL, Tisdale MJ (2001). Mechanism
of attenuation of skeletal muscle protein catabolism in cancer
cachexia by eicosapentaenoic acid. Cancer Research 61:
3604–3609.

Whitehouse AS, Tisdale MJ (2001). Downregulation of ubiquitin-
dependent proteolysis by eicosapentaenoic acid in acute
starvation. Biochemical and Biophysical Research
Communications 285: 598–602.

Wu C, Tang L, Ni X, Xu T, Fang Q, Xu L, Ma W, Yang X, Sun H
(2019). Salidroside attenuates denervation-induced skeletal
muscle atrophy through negative regulation of pro-
inflammatory cytokine. Frontiers in Physiology 10: 665.

Yadav A, Yadav SS, Singh S, Dabur R (2022). Natural products:
Potential therapeutic agents to prevent skeletal muscle
atrophy. European Journal of Pharmacology 925: 174995.

You JS, Park MN, Song W, Lee YS (2010). Dietary fish oil alleviates
soleus atrophy during immobilization in association with Akt
signaling to p70s6k and E3 ubiquitin ligases in rats. Applied
physiology, Nutrition, and Metabolism 35: 310–318.

Zhao J, Zhang Y, Zhao W, Wu Y, Pan J, Bauman WA, Cardozo C
(2008). Effects of nandrolone on denervation atrophy
depend upon time after nerve transection. Muscle & Nerve
37: 42–49.

Zhou L, Huang YF, Xie H, Mei XY, Cao J (2020). Herbal complex
‘Buyang Huanwu Tang’ improves motor endplate function
of denervated-dependent skeletal muscle atrophy in rat.
Journal of Integrative Neuroscience 19: 89–99.

Zhu X, Wu C, Qiu S, Yuan X, Li L (2017). Effects of resveratrol on
glucose control and insulin sensitivity in subjects with type
2 diabetes: Systematic review and meta-analysis. Nutrition
& Metabolism 14: 60.

PHARMACOLOGICAL EFFECTS OF DENERVATED MUSCLE ATROPHY 2359


	Pharmacological effects of denervated muscle atrophy due to metabolic imbalance in different periods
	Introduction
	Drugs that Play a Protective Role by Inhibiting Protein Degradation
	The Effect of Drugs on the Protein Synthesis Pathway
	The Effect of Drugs on Other Pathways
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


