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ABSTRACT:  The aim of this study is to describe the ultrastructure of the hepatopancreas of P. argentinus
in intermoult. P. argentinus hepatopancreas was studied using standard TEM techniques. Each tubule consists
of four cellular types: E (embryonic), F (fibrillar), R (resorptive) and B (blister like). E-cells have embryonic
features and some of them were found in mitosis. F, R and B cells possess an apical brush border. F-cells have
a central or basal nucleus, a conspicuous RER, and dilated Golgi cisternae. R cells show a polar organization
of organelles in three areas: apical, with numerous mitochondria and sER tubules, a central area with the
nucleus and RER, and a basal area containing a sER-like tubule system and mitochondria. B-cells were
observed at different stages of their life cycle. In an early differentiation stage they comprise an apical
endocytotic complex and Golgi vesicles. The fusion of endocytotic and Golgi vesicles originates subapical
vacuoles. During maturation, a big central vacuole is formed by coalescence of subapical vacuoles. The central
vacuole is eliminated by holocrine secretion. The ultrastructure suggests that F-cells synthesize proteins, R-
cells storage nutrients and B-cells have a secretory or excretory function, and confirms the independent origin
of F, B and R cells from the embryonic cells.
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Introduction

In crustacean, the hepatopancreas is the primary
organ responsible of absorption and storage of ingested
materials (Loizzi, 1971; Storch and Welsch, 1977; Vogt
et al., 1989; Johnston et al., 1998). This organ is also
involved in the synthesis of digestive enzymes and the
detoxification of xenobiotics (Gibson and Barker, 1979;
Icely and Nott, 1992; Vogt, 1994). It consists of one or

more lobules formed by tubules with blind ends at the
distal zone and open ends at the proximal zone. Tubules
converge into a primary duct, which connects the organ
with the pyloric stomach (Icely and Nott, 1992; Sousa
and Petriella, 2000).

Hepatopancreas epithelium is composed of four
main cell types: E (embryonic) cells, confined to the blind
distal ends, and F (fibrilar), R (resorptive) and B (blister-
like) cells, distributed throughout the whole tubule with
some variations according to the species (Icely and Nott,
1992; Petriella and Fonalleras, 1997; Sousa and Petriella,
2000). The organ undergoes histological and
histochemical modifications in response to different
physiological demands (moult, reproduction) (Al-
Mohanna and Nott, 1989; Sousa and Petriella, 2001)
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and environmental changes (physicochemical factors,
pollution). As a result, there is a correlation between
the physiological condition of the organism and the
hepatopancreas structure (Popescu-Marinescu et al.,
1997). In hepatopancreas of Penaeus monodon
exposed to pesticides, Vogt (1987) found disorganization
of tubule morphology, epithelium autolysis, reduction of
endoplasmic reticulum, and swollen mitochondria.

The prawn P. argentinus is widely distributed in
the littoral region of Argentina, Paraguay, Uruguay and
southern Brazil (Boschi, 1981; Morrone and Lopreto,
1995). This species lives in freshwater and brackish
water streams and lagoons and plays an important trophic
role in the environments in which it inhabits (Spivak,
1997; Collins, 1999). Some of these lagoons receive
direct discharges of chemicals from terrestrial
ecosystems, from which P. argentinus accumulates
important amounts of organochlorine pesticides in its
tissues (Gonzalez Sagrario et al., 1998). The present
study is part of a project which aims to use the histological
changes in this organ as indicators of environmental
pollution. This work describes the fine structure and
function of the different cell types (E, F, R and B) of P.
argentinus hepatopancreas.

Materials and Methods

Intermoult adults of both sexes at sexual rest
(Boschi, 1981), 0.100-0.200g in weight and 22.2-29.6
mm in total length, were collected from Sotelo stream,
tributary of Mar Chiquita lagoon (Argentina, 38°S
55°W). This stream is a shallow creek (<1m in the
channel) where pesticide concentrations are below the
toxic levels and are not related to adverse biological
effects (Miglioranza et al., 2003). The moult stage was
determined by microscopic examination of the setae of
the uropod exopodite, following the criteria established
by Díaz et al. (1998).

The animals were placed on ice and the
cephalothorax integument was removed. The
hepatopancreas were dissected and placed in 2.5%
glutaraldehyde in 0.1 M cacodylate buffer (pH= 7.2-
7.4) overnight at 4°C. They were postfixed for 1h in
1% OsO4. Later the material was dehydrated through
an ethanol series and embedded in Spurr resin. Semithin
sections (1µm) were stained with toluidine blue. Ultrathin
sections were mounted on copper grids (400mesh) and
stained with lead citrate and uranyl acetate. TEM
images were obtained with a Hitachi HU 11C-1
transmission electron microscope.

Results

Each hepatopancreatic tubule is lined by a simple
epithelium which consists of four cell types: E
(embryonic), F (fibrillar), R (absorptive) and B cells
(blister-like) (Fig. 1).

E-cells are located at the distal blind end of the
tubules. They are cubical, lack of brush border and have
a high nucleus to cytoplasm volume ratio, typical of
embryonic cells (Fig. 2). The cytoplasm is homogeneous
with few organelles and a poorly developed ER. Slight
concentrations of mitochondria are observed at the apex
and the base. E-cells lack of lipid or glycogen reserves.
They can be observed at different mitotic stages.

F-cells are located at medial and proximal zones of
the tubules among R and B-cells. They are cylindrical
or dome-like bodies with a centrally or basally located
nucleus and apical brush border. Their mitochondria are
uniformly distributed around the nucleus, and the Golgi
bodies have heavily dilated cisternae. The most
conspicuous features of these cells are the dilated Golgi
cisternae, and the great development of the RER that
surrounds the nucleus and occupies most of the
cytoplasm (Fig. 3).

R-cells are most abundant, and are located at medial
and proximal zones of the tubules. They present a polar
organization of organelles in three areas: the apical, with
a brush border and numerous mitochondria, sER tubules
and little vacuoles (Fig. 4); the medial, with the nucleus
surrounded by the RER, and the basal, dominated by
big mitochondria and a sER-like tubular system (Fig. 5).
Glycogen was not observed; however several cells
presented lipid droplets of heterogenous sizes and
homogenous contents (Fig. 6). R-cells exhibit small
primary lysosomes, autophagosomes of different sizes
and electrodense residual bodies (Fig. 7).

B-cells are more frequent at the proximal zone of
the tubules than at the other zones. They were observed
at different stages of their life cycle. At the beginning
of the differentiation, they evidence an apical complex
which comprises numerous endocytotic channels and
vesicles. Endocytotic channels invaginate from the brush
border deep into the cell and give rise to endocytotic
vesicles. The endocytotic vesicles fuse with Golgi
vesicles originating subapical vacuoles (Fig. 8). The
nucleus, surrounded by the RER, elongated Golgi
cisternae, small lysosomes and autophagosomes can be
observed at the medial area of the cell (Fig. 9). At an
early maturation stage the apical complex become more
important: the apical vacuoles are enlarged by the
incorporation of endocytotic vesicles and Golgi vesicles.
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The coalescence of vacuoles originates a large
supranuclear vacuole (Fig. 9), which increases in size
by the incorporation of new vacuoles (Fig. 10). In the
mature cell the nucleus and the rest of the organelles
are displaced towards the cell base by the expansion of
the supranuclear vacuole. The completely mature cell
is like a blister, the large vacuole occupies nearly the
whole cytoplasm (Fig. 11) and the brush border is
reduced in length. At the end of the maturation period,
the large vacuole is eliminated by holocrine secretion.
The complete cell protrudes from the epithelium and
loses contact with the basal lamina.

Discussion

The general epithelial cytology of the
hepatopancreas in P. argentinus is consistent with that
observed in other decapods (Al-Mohanna et al., 1985;
Icely and Nott, 1992; Johnston et al., 1998).

E-cells are undifferentiated, with embryonic
ultrastructural features, and are the only cells showing
mitotic activity. These findings confirm the previous
observations by Sousa and Petriella (2000) in the same
species and are coincident with those observed in other
decapod species (Travis, 1955; Al-Mohanna and Nott,
1989; Petriella and Fonalleras, 1997).

F-cells are located among R and B cells at the

medial zone of the tubules and have basophilic
cytoplasm because of the high RER content (Vogt et
al., 1989; Al-Mohanna and Nott, 1989; Sousa and
Petriella, 2000). Ultrastructurally, they are characterized
by a considerable amount of RER and prominent Golgi
bodies. Both characteristics evidence an active protein
synthesis. These cells are considered as the only site of
digestive enzyme synthesis (Icely and Nott, 1992).
Different enzymes were localized by
immunohistochemistry and immunofluorescence, such
as trypsine, α-amylase, astacin, and chimotrypsin, in the
F-cells of various decapods (Malcoste et al., 1983; Vogt
et al., 1989; Johnston et al., 1998). In the present study,
no reserves were found in this cell type; apparently the
main function of these cells is the synthesis and secretion
of proteins, presumably digestive enzymes.

The absorptive function of P. argentinus R cells is
supported by the presence of lipid droplets in the
cytoplasm, the conspicuous brush border and the apical
tubular system. The apical sER system in association
with the apical mitochodria is also observed in other
decapods and is involved in nutrient absorption (Vogt,
1994; Johnston et al., 1998). The nutrient reserves,
stored during intermoult, are mobilized to provide energy
during starvation periods (late premoult) (Vogt, 1996;
Sousa and Petriella, 2001). Glycogen was not found in
R cells, coincidentally a little amount of this nutrient
was found in a previous study during intermoult in the

FIGURE 1. Cross section of a tubule. Detail of the specialized cellular types. B: B cells, F: F cells, R: R
cells, v: vacuole (From Sousa and Petriella, 2000). H&E. X 1,000. Scale bar: 50 µm.
FIGURE 2. E cells: prominent nucleus and scarce organelles. N: nucleus, R: R cell. MET. X 8,000
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FIGURE 3. F cell. Note the great development of the RER and dilated cisternae of Golgi. G: Golgi, RER:
rough endoplasmic reticulum. MET.  X 10,000
FIGURE 4. R cell apical area. Observe the conspicuous brush border, endocytotic vesicles (arrows) and the
mitochondria concentration. m: mitochondria. MET.  X 8,000
FIGURE 5. R cell infranuclear area with RER, large mitochondria and a branched system of sER like tu-
bules. m: mitochondria, RER: rough endoplasmic reticulum, st: sER like tubules. MET.  X 12,000
FIGURE 6. Details of lipid droplets in the R cell cytoplasm. li: lipid droplets. MET.  X 15,600
FIGURE 7. R cell cytoplasm. Little lysosomes, autophagosomes of different sizes and electrodense re-
sidual bodies. au: autophagosome, r: residual bodies. MET.  X 12,000
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FIGURE 8. B cell. Apical complex at the beginning of the differentiation. Endocytotic channels (arrows), v:
endocytotic vesicles. MET. X 8,000
FIGURE 9. B cell apex. Note the endocytotic vesicles fusion originating a big supranuclear vacuole (arrow). au:
autophagosome, l: lysosome. MET.  X 8,000
FIGURE 10. B cell. Detail of supranuclear vacuole enlargement by coalescence of new vesicles. MET. X 8,000
FIGURE 11. Mature B cell. The central vacuole occupies nearly the whole cytoplasm. V: vacuole. X 13,700
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same species (Sousa and Petriella, 2001). These prawns
feed actively during intermoult so it is possible that the
storage of glycogen is not necessary because of the
constant supply (Chang and O’Connor, 1983; Sousa and
Petriella, 2001). The basal tubule system of sER found
in R cells of P. argentinus closely related to mitochondria
seems to be involved in the delivery of nutrients to other
organs via the hemolymph (Vogt, 1985; 1994; Johnston
et al., 1998). Autophagosomes and residual bodies were
present in various R cells of P. argentinus; supranuclear
autophagosomes are interpreted as sites of intracellular
waste deposition (Vogt, 1994). Residual bodies observed
in P. argentinus R cells are consistent with the metal
storing vacuoles and residual bodies present in Thenus
orientalis and Penaeus semisulcatus, respectively (Al-
Mohana and Nott, 1987; 1989; Johnston et al., 1998).
These cells detoxify heavy metals by their accumulation
in a soluble form in the cytoplasm before excretion (Vogt,
1987; Johnston et al., 1998).

B-cells of P. argentinus, like those in other
decapods (Icely and Nott, 1992; Al-Mohana and Nott,
1989; Johnston et al., 1998; Vogt, 1993) are
characterized by an endocytotic apical complex and a
central vacuole; these ultrastructural features indicate
an absorbing and degrading function (Hopkin and Nott,
1980; Vogt, 1993; 1994). The gradual enlargement of
the central vacuole in P. argentinus indicates the
absorption of materials from the tubular lumen, but no
nutrients were detected in B-cells cytoplasm. Vogt
(1994) proposed that B cells degrade exhausted digestive
enzymes and waste products which remain in the tubules
after absorption of nutrients.

In summary, the ultrastructure of F-cells in P.
argentinus, like in most of decapods, is consistent with
an active synthesis and secretion of proteins. R-cells
are implicated in absorption and storage of nutrients
which are exported to other organs through the basal
sER-like tubule system. B cells ultrastructural features
indicate an absorptive and degrading function; mature
B cells, with the central vacuole replete of wastes, are
discharged by holocrine secretion to the tubular lumen.
The present fine analysis supports a previous conclusion
about the origin of F, R and B cells (Sousa and Petriella,
2000), which considers that these specialized cells
originate independently from embryonic cells.
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