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ABSTRACT: Green space plays an important role in the sustainable urban development. This study proposes the
Green Lighting Index (GLI), integrating nighttime light data from SDGSAT-1 and the Normalized Difference Vegetation
Index (NDVI) from Sentinel-2, to explore the nighttime human activity in green spaces across three major urban
agglomerations in China: Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Greater Bay Area
(GBA). The findings reveal that, for most green spaces, the relationship between nighttime lighting and green spaces is
predominantly exclusionary. However, a synergistic relationship is observed in some vibrant green spaces characterized
by abundant nighttime lighting. This synergy is evident in high GLI levels, which are strongly positively correlated
with per capita Gross Domestic Product (GDP). This research underscores the importance of integrating nighttime
perspectives into green space studies. We believe GLI could be used in the assessment of green space quality and
contribute to the development of sustainable cities.
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1 Introduction
Green spaces as defined by the World Health Organization are urban land covered with any form of

vegetation, encompassing open spaces in cities used as parks or other green areas [1]. These spaces play a
crucial role in promoting social and individual health and well-being. Research on green spaces focuses on
the natural, semi-natural, and man-made ecological networks at various spatial scales within, around, and
between urban areas [2], which help mitigate the urban heat island effect [3,4], reduce air pollution [5],
and regulate the climate [6]. Promoting the development of green infrastructure is one of the key goals
for achieving sustainable urban development. The Sustainable Development Goals (SDGs) were proposed
by the United Nations in 2015 as a shared blueprint for peace and prosperity for people and the planet,
both now and in the future [7]. Through the 17 SDGs, calls are made to end poverty and other forms
of deprivation while implementing strategies that improve health and education, reduce inequality, and
promote economic growth [7]. Specifically, SDG 11.7 emphasizes the need to provide universal access to
safe, inclusive, and accessible green and public spaces by 2030. Many researchers have assessed green space
quality through availability [8], biodiversity [9], and cooling effects [10]. The significance of green space
lies in its ability to serve residents and enhance their health and well-being. An in-depth exploration of
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the relationship between green space and human activities is of great value [11,12] based on green space
and population mapping have shown a reduction in global green space exposure inequality between 2000
and 2018 [13] further investigated the associations between green space and indicators such as residents’
income, education, language isolation, race/ethnicity, and age. Nighttime light data is highly correlated
with the intensity of human activities [14]; however, the integration of nighttime perspectives into green
space research remains underexplored. Incorporating a nighttime perspective can provide new insights into
assessing the accessibility and equity of green spaces, as well as the sustainability of cities.

Remote sensing imagery allows for continuous and large-scale nighttime light data collection. Following
the United States Defense Meteorological Satellite Program (DMSP) [15] and Suomi National Polar-orbiting
Partnership (NPP) [16,17], the Sustainable Development Scientific Satellite-1 (SDGSAT-1) has further
enhanced the spatial resolution of publicly available nighttime light data. Equipped with the Glimmer
Imager sensor, SDGSAT-1 is capable of capturing panchromatic imagery with a spatial resolution of 10 m,
as well as RGB bands with a spatial resolution of 40 m [18], and has already been effectively applied in
studies on poverty evaluation [19], built-up area extraction [20,21], and other research areas. And sentinel-2
imagery provides red and near-infrared bands with a spatial resolution of 10 m. Them could perform detailed
assessments of green spaces, which are increasingly fragmented and complex in nature [22].

Contrary to studies based on the individual exposure levels of surveyed residents, which suggest a
mutually exclusive relationship (R2 = 0.76, p < 0.001) between abundant nighttime lighting and lush green
spaces, where one diminishes as the other increases [23–25], our research hypothesizes that, at the scale
of Chinese urban agglomerations, green spaces with good accessibility during the day, serving densely
populated areas, should also experience high levels of human activity at night, implying the presence of strong
nighttime lighting. These vibrant green spaces with abundant nighttime lighting are essential components of
sustainable urban development.

Currently, the relationship between nighttime light and green spaces, particularly through satellite
remote sensing imagery, remains an underexplored area. To fill this gap and test our hypothesis, we proposed
the Green Lighting Index (GLI) to integrate nighttime lighting conditions and vegetation conditions.
Our study is based on the three major urban agglomerations in China: the Beijing–Tianjin–Hebei urban
agglomeration (BTH), the Yangtze River Delta urban agglomeration (YRD), and the Greater Bay Area urban
agglomeration (GBA) (Fig. 1). These regions have experienced large-scale urbanization and feature various
types of green spaces [26], including natural forests, farmland, and artificially created green landscapes, all of
which cover substantial areas. This paper focuses on these three regions to examine the impact of nighttime
light on green spaces.

The contribution of this study lies in two main aspects related to evaluating the nighttime human activity
in green spaces. First, we constructed GLI for the three urban agglomerations in China, to evaluate the
relationship between nighttime light and green spaces and analyze the similarities and differences among
the urban agglomerations. Second, we demonstrated a strong positive correlation between GLI and per
capita Gross Domestic Product (GDP), which is typically used as an indicator of residents’ well-being [27],
highlighting the potential of GLI as a tool to assess urban sustainability in terms of accessible green and
public spaces.
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Figure 1: Spatial location of three urban agglomerations: (a) BTH, (b) YRD, (c) GBA

2 Study Area and Data

2.1 Study Area
The BTH is located in North China Plain (36–42○N, 113–120○ E). The region extends from the northwest

mountain ranges (Yanshan-Taihang Mountains) to the southeast plain, presenting a terrain feature of higher
northwest and lower southeast. It has a warm-temperate continental monsoon climate, covering an area of
approximately 218,000 km2 and a permanent population of about 110 million. As the “Capital Economic
Circle” centered around Beijing, the BTH includes Beijing and Tianjin, along with cities in Hebei Province,
such as Baoding, Tangshan, Langfang, Shijiazhuang, Qinhuangdao, Zhangjiakou, Chengde, Cangzhou,
Hengshui, Xingtai, Handan, and Anyang city in Henan Province. In 2023, the BTH region’s GDP was 10.44
trillion RMB [28], accounting for 8.5% of the total national economic of China.
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The YRD is located in the alluvial plain before the Yangtze River flows into the sea (27–34○ N, 116–122○
E), with a subtropical monsoon climate. Covering an area of approximately 211,700 km2, it has a permanent
population of about 225 million. The region includes Shanghai, as well as cities in Jiangsu Province (Nan-
jing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, Taizhou), Zhejiang Province
(Hangzhou, Ningbo, Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua, Zhoushan, Taizhou), and Anhui Province
(Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Chuzhou, Chizhou, Xuancheng). Despite accounting for only
2.1% of China’s total land area, the YRD holds a quarter of China’s economic output. In 2023, its GDP reached
30.5 trillion RMB [29], making it the most economically developed and urbanized region in China.

The GBA is located south of the Tropic of Cancer, on China’s largest alluvial plain in the South Asian
subtropical zone (21–24○ N, 111–115○ E). It has a long coastline, a rich port cluster, and vast sea areas, with
a subtropical monsoon climate. The GBA covers an area of approximately 55,900 km2, with a permanent
population of around 86.44 million. The region includes Hong Kong and Macau Special Administrative
Regions, as well as nine cities in Guangdong Province: Guangzhou, Shenzhen, Zhuhai, Foshan, Huizhou,
Dongguan, Zhongshan, Jiangmen, and Zhaoqing. In 2023, the GDP of the GBA reached 14 trillion RMB [28],
making it one of the world’s leading bay areas and urban agglomerations.

2.2 Data
2.2.1 Nighttime Light Data

The SDGSAT-1 satellite was launched by the Chinese Academy of Sciences (CAS) in November 2021
and is managed under the Big Earth Data Science Engineering Program of CAS. It operates in a sun-
synchronous orbit with an inclination angle of 97.5○, a swath width of 300 km, and a revisit cycle of 11 days.
SDGSAT-1 is equipped with three key payloads: the High-Resolution Thermal Infrared Spectrometer, the
Glimmer Imager, and the Multispectral Imager. Designed to accurately capture human activity footprints, the
Glimmer Imager operates at 9:30 PM local time, which is almost coincident with the period of high-intensity
human activity. And it includes a single panchromatic band (ranging from 450 to 900 nm) with a 10-m
resolution and three color bands—red (615–690 nm), green (520–615 nm), and blue (430–520 nm)—each
with a 40-m resolution [30].

The standard SDGSAT-1 products, processed through relative radiometric correction, band registration,
high dynamic range (HDR) fusion, rational polynomial coefficients (RPC) correction, and orthorectifica-
tion [31], can be accessed from the SDGSAT-1 Open Science Program. The data source is available at: http://
www.sdgsat.ac.cn (accessed on 1 January 2025). We have applied for RGB lighting data from the study area for
the year 2024 (from January to December) as experimental data. Most of the data were acquired in summer
(between June and September), while several images from other months were used to make up data voids
caused by cloud and ice. When cloud cover appears in nighttime lighting images, it causes blurring. In this
experiment, we select images with no cloud cover at all.

2.2.2 Sentinel-2 Multispectral Data
The Sentinel-2 multispectral data is used to calculate the Normalized Difference Vegetation Index

(NDVI) as an indicator of green space coverage. This data comes from a wide-swath, high-resolution
multispectral imaging mission supported by the European Space Agency (ESA) and is integral to Copernicus
Land Monitoring studies. We utilized Sentinel-2 image from June to October 2024, obtained from Google
Earth Engine (GEE, https://earthengine.google.com/ (accessed on 10 January 2025)), which is a platform
designed for petabyte-scale scientific analysis and visualization of geospatial datasets, and it is freely available
for research, education, and nonprofit use. We used Sentinel-2 Level-2A surface reflectance products, which

http://www.sdgsat.ac.cn
https://earthengine.google.com/
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have undergone radiometric calibration, geometric calibration, and atmospheric correction to remove the
interference caused by atmospheric aerosols and water vapor. In the GEE platform, Sentinel-2 images selected
based on date and cloud cover criteria were composited, and the red band (Wavelength: 664.5 nm, Pixel Size:
10 m) and the near-infrared band (Wavelength: 835.1 nm, Pixel Size: 10 m) were used to calculate the NDVI.

2.2.3 Statistical Data
The annual GDP data for the cities within the three urban agglomerations were obtained from China’s

urban statistical yearbooks, which are publicly available through the statistical bureaus of Jiangsu Province,
Zhejiang Province, Anhui Province, Guangdong Province (including data for Hong Kong and Macau), Hebei
Province, Henan Province, Beijing, Tianjin, and Shanghai. Due to the inherent lag in statistical reporting,
the per capita GDP data for each city in the study were based on 2022 statistics (shown in Table 1).

Table 1: The green space and economic indicators for cities in the three major urban agglomerations

Urban
agglomeration

City Land area (km2) GDP (Billion
RMB)

Per Capita GDP
(RMB)

GBA

Guangzhou 7238 28,839 153,625
Shenzhen 1987 32,388 183,274

Zhuhai 1725 4045 163,654
Foshan 3798 12,698 132,517

Jiangmen 9535 3773 78,146
Zhaoqing 14,891 2705 65,513
Huizhou 11,350 5401 89,157

Dongguan 2460 11,200 106,803
Zhongshan 1781 3631 81,620
HongKong2 1114 24,281 330,531

Macao2 33 1479 218,083

BTH

Beijing1 16,411 41,611 190,313
Tianjin1 11,966 16,132 117,925

Shijiazhuang 14,530 7101 63,319
Tangshan 13,829 8901 115,571

Qinhuangdao 7813 1910 61,277
Handan 12,066 4346 46,615
Xingtai 12,143 2547 36,091
Baoding 22,135 4608 40,038

Zhangjiakou 36,258 1775 43,435
Chengde 39,719 1780 53,482

Cangzhou 13,488 4388 60,035
Langfang 6420 3565 64,626
Hengshui 8758 1801 43,108
Anyang 7413 2450 45,210

Shanghai1 6340 44,653 179,900
Nanjing 6587 16,908 178,781

Wuxi 1644 14,851 178,042
Changzhou 2838 9550 178,660

(Continued)
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Table 1 (continued)

Urban
agglomeration

City Land area (km2) GDP (Billion
RMB)

Per Capita GDP
(RMB)

YRD

Suzhou 4653 23,958 165,362
Nantong 3287 11,380 152,529
Yancheng 5601 7080 118,739
Yangzhou 2305 7105 158,606
Zhenjiang 1088 5017 178,527
Taizhou3 1568 6402 157,082

Hangzhou 16,850 18,753 152,588
Ningbo 9816 15,704 163,911

Wenzhou 12,103 8030 83,107
Jiaxing 4237 6739 121,794

Huzhou 5820 3850 112,902
Shaoxing 8279 7351 137,522

Jinhua 10,942 5562 78,086
Zhoushan 1459 1951 167,134
Taizhou4 10,050 1831 90,572

Hefei 11,496 12,013 125,798
Wuhu 5987 4502 121,630

Ma’anshan 4042 2521 116,093
Tongling 3008 1210 92,823
Anqing 13,528 2767 66,470

Chuzhou 13,398 3610 89,800
Chizhou 8272 1079 81,124

Xuancheng 12,340 1914 76,853

Note: 1Municipality; 2Special administrative region; 3Taizhou in Jiangsu Province; 4Taizhou in Zhejiang Province.

Table 1 summarizes the statistical data for 11 cities in the GBA, 14 cities in the BTH, and 27 cities in the
YRD. The data include urban land area, GDP, and per capita GDP.

3 Methods
After preprocessing the SDGSAT-1 glimmer image and Sentinel-2 multispectral images for the three

urban agglomerations, nighttime light map was extracted from the glimmer image, and NDVI was calculated
using the red and infrared bands of Sentinel-2. The GLI was then computed by combining the NDVI within
the green space areas with the nighttime light data (Fig. 2).

A fixed threshold for NDVI was used to define the extent of green spaces. For NDVI values standardized
to the range of −1 to 1, values below 0.2 were non-vegetation (including barren areas, built-up areas, and road
networks), values between 0.2 and 0.5 were low vegetation (including shrubland and grasslands), and values
above 0.5 were high vegetation (including temperate and tropical urban forests) [32]. In our study, areas with
NDVI values greater than 0.2 were designated as green spaces.
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Figure 2: The flow of calculating GLI (the GBA as an example)

3.1 Preprocess
The 1% maximum linear stretching is applied to SDGSAT-1 glimmer images to mitigate the impact of

outlier values and enhance the image contrast and visualization. This step is necessary because nighttime
light imagery is inherently sparse, with most pixels exhibiting low values and a small fraction of extremely
high values. Without stretching, these extreme high values dominate the contrast scale, making it difficult to
discern the variations in regions with low to moderate values, which are often the primary areas of interest in
analysis. Then, the pixel values in the raw data product, which represent the digital number (DN) after relative
radiometric calibration, are subjected to absolute radiometric calibration to obtain the radiance Lni ght at the
sensor’s entrance pupil [31]. The calibration formula is as follows:

Lni ght = DN ×Gain + Bias, (1)

where, Gain represents the gain coefficient, and Bias represents the offset value. Both them are provided in
the calibration file of the data product.

This study utilizes the already atmospherically corrected Sentinel-2 Level-2A product. In the GEE
platform, we filtered the images with cloud coverage of less than 3% in the study area, and performed cloud
removal using the scene classification layer band from Sentinel-2 data. The cloud shadows, cloud medium
probability, cloud high probability, thin cirrus and snow pixels were removed, leaving only valid surface
information. Then, NDVI was calculated using the red and near-infrared bands.

Both nighttime light data and NDVI were normalized to a 0 to 1 scale to reduce disparities between
these two datasets. The NDVI was downscaled to 40 m resolution to align with the nighttime light data for
joint analysis. All spatially referenced data used in this experiment were reprojected onto the WGS 1984 Web
Mercator system (World Geodetic System 1984) to ensure geographical consistency.
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3.2 GLI
We proposed the Green Lighting Index (GLI) to integrate nighttime lighting conditions and vegetation

conditions, inspired by the Vegetation Health Index (VHI). VHI, widely used in remote sensing for
drought monitoring, integrats vegetation condition and thermal condition to assess vegetation health under
thermal environmental stress [33,34]. We found that the distribution of nighttime light in the three urban
agglomerations follows a strong positive skew and it agrees well with a power law (Fig. 3). The R2 values of
the nighttime light fitting for YRD, BTH, and GBA are 1, 1, and 0.98, respectively. To maintain the linear
relationship between nighttime light and green space, and to achieve an accurate assessment of the effect of
nighttime light on green spaces, we use a logarithmic transformation of nighttime light brightness during
the construction of the GLI (Eq. (2)). GLI is normalized to a scale of 0 to 1, with values closer to 1 indicating
high nighttime light intensity coupled with high NDVI, while values closer to 0 signify the lack of either or
both conditions.

GLI = NDV I − NDV Imin

NDV Imax − NDV Imin
×

ln (Lni ght) − ln (Lni ght)min

ln (Lni ght)max − ln (Lni ght)min

, (2)

where, NDV I represents the value for a given pixel, with NDV Imin and NDV Imax being the minimum
and maximum NDVI values across all pixels, and ln (Lni ght) is the logarithmic value for a given pixel,
with ln (Lni ght)min and ln (Lni ght)max representing the minimum and maximum ln (Lni ght) values across
all pixels.

Figure 3: Light intensity distribution of the three major urban agglomerations and the power-law fitting results, with
the R2 value representing the goodness of fit for the relationship between light intensity and the power-law function

In this study, we applied the GLI to green space cover to mitigate interference from extreme high-
intensity lighting, which could otherwise lead to artificially high GLI values. This approach enables the GLI
to more accurately characterize areas with both lush vegetation and abundant lighting.

4 Results
In the GBA, the higher GLI values are primarily contributed by the coastal areas along the Pearl

River Estuary and Shiziyang (Fig. 4a), including Macau, Zhuhai, Foshan, Southern Guangzhou, Dongguan,
Shenzhen, and Hong Kong Island. These areas correspond to the top 8 cities in the GBA based on per capita
GDP in 2022. In contrast, the western regions, such as Zhongshan, Jiangmen, Zhaoqing, and the eastern
region of Huizhou, contribute more to the lower GLI values of the GBA, with their per capita GDP below
10,000 RMB, ranking in the bottom 3 cities of the GBA.
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Figure 4: The impact of nighttime light on green spaces in the GBA, (a) Overview of GLI spatial distribution in
the GBA; (b) Regional Composition of GLI in the GBA; (c–e) detailed GLI and Sentinel-2 true color views of GLI
spatial distribution by varying degrees, with samples outlined with green lines and selected from Panyu District,
Guangzhou, corresponding to the area marked in (a): (c) Chimelong Safari Park, (d) Dafu Mountain Forest Park, (e)
Shiba Luohanshan Forest Park

In the Regional Composition of GLI in the GBA (Fig. 4b), Guangzhou, Zhuhai, Hong Kong, and Macau
follow a leftward arrow structure, with their GLI share gradually increasing from low to high values, reaching
the highest share at GLI = 1. These four cities contribute over 60% of the extremely high GLI values (0.9–1) in
the GBA. Shenzhen, Foshan, Dongguan, and Zhongshan display a spindle-shaped structure, characterized by
sharp ends and a broader middle, indicating that their GLI values are more evenly distributed in the middle
range, with minimal shares in both the extreme high and low values. Jiangmen, Zhaoqing, and Huizhou
exhibit a rightward arrow structure, where the share of GLI values decreases from low to high, suggesting
that these areas have more pristine, unlit green spaces, and very little green space with adequate lighting for
human activities at night.

In the BTH, GLI values are generally low across vast areas, with a large region of high GLI values
concentrated primarily in Beijing, which is centrally located. Apart from Beijing, some other cities such as
Tianjin, Tangshan, and Qinhuangdao near the Bohai Bay, as well as Langfang, which is close to Beijing, and
Shijiazhuang, the capital of Hebei Province, also show certain ranges of high GLI values, while other cities
generally exhibit very low GLI values, suggesting less intense urbanization and economic activity (Fig. 5a).
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The data corresponding to this situation is that in the BTH, the cities with a per capita GDP over 10,000 RMB
in 2022 are Beijing, Tianjin, and Tangshan.

Figure 5: The impact of nighttime light on green spaces in the BTH, (a) Overview of GLI spatial distribution in the
BTH; (b) Statistics on the extent to GLI, by city

In the Regional Composition of GLI in the BTH (Fig. 5b), the GLI proportion in Beijing exhibits an
unusual and sharp increase within the range of 0.9–1, reaching 40%. And the remaining contributions to
high GLI values primarily come from Tianjin, Shijiazhuang, Qinhuangdao, Baoding, and Hengshui. Due to
the dominant share of GLI values in Beijing and Tianjin, the distribution in other cities is relatively even,
with the exception of Chengde, which has approximately 20% of its GLI in the very low range.

In the YRD, GLI values are generally higher in the eastern areas, including the Yangtze River estuary and
the delta region, covering cities such as Shanghai, Suzhou, Changzhou, Wuxi, Jiaxing, Hangzhou, Shaoxing,
and Ningbo. And larger areas of high GLI values are also found in Nanjing and Hefei, which are located
inland (Fig. 6a). The majority of cities in the YRD have a relatively high per capita GDP. Out of the 27 cities, 8
have a per capita GDP that does not exceed 10,000 RMB. In the Regional Composition of GLI in the YRD, the
highest GLI values are primarily contributed by Shanghai, Suzhou, Yancheng, and Wenzhou. And Nanjing,
Yangzhou, Ningbo, and Hefei show a typical spindle shape, with substantial contributions from the middle
range of GLI values.
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Figure 6: The impact of nighttime light on green spaces in the YRD, (a) Overview of GLI spatial distribution in the
YRD; (b) Regional Composition of GLI in the BTH

5 Discussions

5.1 Exclusionary and Synergistic Relationships between Green Spaces and Night Lighting
In recent studies, there has been no consensus regarding the relationship between green spaces and

nighttime light. On one hand, Refs. [23–25] suggests that there is spatial and exclusive competition between
natural and artificial infrastructure in urban areas, proposing that places with abundant nighttime light are
likely to be areas with sparse green spaces, such as commercial and industrial zones, and contrastly areas with
rich green spaces are often those with insufficient nighttime lighting, such as suburban areas, where lower
population density and fewer economic activities result in relatively lower levels of nighttime illumination.
The negative correlation between green spaces and nighttime light has been confirmed in several studies.
Field investigations in Australian major cities [35] and Hong Kong, China [23] have shown a clear opposition
in the spatial distribution of green spaces and nighttime light, and emphasizing that it is rare to find areas
where both green spaces and nighttime light are either abundant or scarce at the same time.

On the other hand, Ref. [36] reveals that illumination at night alters the perception of the spatial
configuration, meaning that green spaces that provide better lighting at night are perceived as safer,
which in turn leads to higher foot traffic. From this perspective, green spaces with abundant lighting are
better able to serve residents. While both perspectives offer valuable insights, in urban expansion, pristine
green spaces with abundant vegetation and no nighttime lighting are transformed into road networks or
buildings with high nighttime light intensity to accommodate human activities. Meanwhile, due to residents’
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needs for daytime and nighttime activities in green spaces, some of these green spaces are preserved,
renovated, and developed, maintaining high vegetation cover while providing sufficient lighting to better
serve residents’ needs.

We selected 10,000 sample points from each of the three urban agglomerations and performed linear
regression analysis on their light intensity and NDVI values (Fig. 7). In all three urban agglomerations, a
negative correlation was found, with p-values less than 0.001, indicating a statistically significant relationship
between light intensity and NDVI. However, the R2 values were relatively low, with YRD and GBA showing
R2 values of 0.202 and 0.261, respectively, and BTH being the lowest at only 0.074. This suggests that light
intensity and NDVI can only explain about 20% of adverse variation in YRD and GBA, and even less than
1% in the BTH. This could be due to a non-linear relationship between light intensity and NDVI, or the
influence of other factors not included in the model, which affect the distribution of nighttime lights and
green spaces. Our statistical results indicate that deriving the spatial exclusion between nighttime lights and
green spaces solely based on development intensity is an incomplete approach. In the GBA, BTH, and YRD,
regions with high GLI values are observed. These areas exhibit high vegetation cover indicated by elevated
NDVI levels, and substantial human activity indicated by intense nighttime lighting. In these regions, the
relationship between lighting and green spaces is not exclusionary but synergistic. These areas are critical
zones for sustainable urban development, aligning with the need for open and inclusive green spaces that
feature adequate vegetation coverage alongside sufficient lighting to ensure safety and accessibility.

Figure 7: The negative correlation between the nighttime light and green space. (a) YRD, (b) BTH, (c) GBA

From the distribution of sample points, it is evident that the majority of the negative correlation is
driven by areas with low light intensity and high NDVI, as well as areas with high light intensity and low
NDVI. This has led to the neglect of sample points with high light intensity and high NDVI, which are
actually an important part of evaluating the effect of nighttime light over green spaces. To further clarify
the significance of these points, this study selects samples from Panyu District in Guangzhou, Guangdong
Province (Fig. 4c–e), to investigate the effects of different light intensities on green spaces. According to data
released by the respective management authorities, the daily visitor numbers at Chimelong Safari Park, Dafu
Mountain Forest Park, and Shiba Luohan Mountain Park are approximately 80,000, 10,000, and 1000 people,
respectively, with their GLI values ranging from high to low.

During the development of China’s urban agglomerations, urban greening is a key factor related to
residents’ well-being. SDG 11.7 also emphasizes that one of the indicators for building sustainable cities is to
provide access to safe and inclusive green and public spaces. Urban designers and builders should consciously
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increase and protect green spaces to improve residents’ welfare. Zhou et al. [22] conducted a study on the
green spaces of nine cities in the BTH and YRD, finding that these green spaces are highly dynamic. The
green spaces in urban agglomerations should not be regarded as natural ecological environments but as an
integral part of human-made urban infrastructure.

5.2 Comparison of GLI and Per Capita GDP in the Three Major Urban Agglomerations
From a spatial distribution perspective (see Figs. 4a–6a), the high GLI areas (indicated in yellow and

red) in the three urban agglomerations exhibit different distribution patterns. In the BTH, high GLI areas
are highly concentrated in Beijing, the central city of urban agglomerations, and in Tianjin, located to the
southeast of Beijing. These two cities account for 50% of the high GLI regions in BTH. In contrast, the high
GLI areas in the GBA and the YRD are distributed in multiple centers. In GBA, around one-quarter of the
central and southern regions show high GLI values, with Guangzhou having the largest share, though still
not exceeding 20%. In the YRD, high GLI clusters are found in the eastern Delta region, the southern coastal
areas, and the northern part. Among all cities, Shanghai has the highest proportion of high GLI, yet it remains
below 10%.

The results show that the average GLI is highest in the GBA, followed by YRD, and the lowest in BTH,
with values of 0.0838, 0.0784, and 0.0735, respectively. The vast expanse of original forests within the urban
agglomeration boundaries contributes to the overall low average GLI values. As mentioned in Section 2.1,
the Yan and Taihang mountain ranges in the northwest of the BTH, along with the Tianmu Mountains in the
southwest of the YRD, are regions characterized by dense vegetation and minimal human activity, resulting
in GLI values close to 0 (represented by shades of blue in Figs. 5a and 6a).

As shown in the Fig. 8, there is a positive correlation between GLI and per capita GDP in each city.
To explain this positive correlation, per capita GDP reflects the economic development strength of a given
area. A strong local economy and sound fiscal conditions are conducive to the development of urban
infrastructure, including the provision of ample green spaces that ensure residents’ well-being. Adequate
lighting in these green spaces allows for residents’ use during leisure hours, most of which occur in the
evening or at night, ensuring that these spaces are accessible 24 h a day. A higher GLI can be seen as an
indicator of the local area’s well-developed and sustainable green space infrastructure. Among three major
urban agglomerations in China, the southern urban agglomerations, YRD and GBA, exhibit a higher overall
similarity, while the northern BTH shows an internal imbalance.

Figure 8: The positive correlation between GLI and per capita GDP. (a) in the YRD, (b) in the BTH, (c) in the GBA
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In the YRD, the GLI values of cities range from 0 to 0.3, and per capita GDP ranges from 50,000
to 200,000 RMB, with a relatively even distribution. The linear regression analysis shows p < 0.0001 and
R = 0.7350, indicating a highly statistically significant and strong positive correlation between GLI and per
capita GDP.

In the BTH, while the statistical indicators are similar to those in YRD, the distribution is more uneven.
Most cities have GLI values concentrated less than 0.1, and their per capita GDP values are mainly in the range
of 40,000 to 60,000 RMB. The liner regression model shows a negative intercept, suggesting an imbalance
between the sample cities. Beijing and Tianjin have high GLI and per capita GDP, while Tangshan, which
is heavily reliant on heavy industries as an economic pillar, ranks third in per capita GDP but has relatively
low GLI. This could be attributed to the limited green space and population size in the area. Langfang has
high GLI but lower per capita GDP, which can be explained by the commuter flow between Beijing and
Langfang [37]. A large number of people live in Langfang but contribute to Beijing’s GDP.

For the GBA, the linear regression between GLI and per capita GDP shows p = 0.4056 and R = 0.2158,
and the positive correlation is less pronounced than in the other two urban agglomerations. This is partly due
to the special economic and urban development paths of Hong Kong and Macau, leading to a large disparity
between GLI and per capita GDP in these regions. And cities such as Zhongshan and Dongguan, known as
China’s major lighting production bases, tend to display more nighttime lighting, with its intensity exceeding
the level of human activity. These factors can explain the less significant positive correlation. However, other
cities in the GBA show similarities with those in the YRD, with GLI values concentrated between 0 and 0.3
and per capita GDP values range from 50,000 to 200,000 RMB.

5.3 Merits and Limitations
The GLI offers advantages as an indicator for assessing the nighttime human activity in green space

and the accessibility of urban green areas. By incorporating nighttime light data, the GLI captures nighttime
human activity in relation to green spaces, providing insights into the usage patterns of green space. This
index has shown a positive correlation with per capita GDP, highlighting the potential link between economic
development and green space availability. As a potential indicator for evaluating urban sustainability, the
GLI can contribute to effective urban planning, resource management, and the enhancement of residents’
well-being.

In this study, equal weights were assigned to green space conditions and nighttime light conditions.
Under varying climatic and economic conditions across different regions, the relative contributions of green
space and nighttime lighting to the GLI may differ [38–40], warranting further evaluation of this relationship.

Exposure to green spaces has a positive impact on residents’ health, including reducing the risks
of all-cause mortality and stroke-specific mortality, lowering the incidence of cardiovascular diseases,
and improving cardiometabolic health factors, and promoting mental health, better sleep quality, and a
reduction in urban crime rates [41,42]. While there is a well-established consensus on the positive impacts
of green spaces on human health, future research should delve deeper with the negative effects of nighttime
light on human health. Light exposure in night has been associated with increased risks of breast cancer
and other cancers, disruptions to sleep and circadian rhythms, obesity, cardiovascular and mental health
disorders, metabolic imbalances, and pregnancy-related complications [43,44], with these effects being more
pronounced with prolonged or late-night exposure. Addressing these impacts is crucial for advancing an
integrated evaluation framework that encompasses green spaces, nighttime light, and human health.
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6 Conclusions
This study investigates the nighttime human activity in green spaces across three major urban agglom-

erations in China: BTH, YRD and GBA, using GLI, which integrates nighttime light data from SDGSAT-1
and the NDVI from Sentinel-2.

In addition to the primarily exclusionary relationship between nighttime lighting and green spaces, for
certain vibrant green spaces with abundant nighttime lighting, a synergistic relationship is observed. This
synergy is reflected in high GLI levels, which are strongly positively correlated with per capita GDP, a key
indicator of residents’ well-being. In the three urban agglomerations, the distribution pattern of GLI differs.
In BTH, high GLI is concentrated in Beijing and Tianjin, with other cities showing low values. And the YRD
and GBA demonstrate a more even distribution of GLI across cities. These patterns highlight how economic
factors, regional development models, and geographic contexts influence the utilization of green spaces.

By leveraging high-resolution nighttime light and vegetation data, the GLI not only captures the
interplay between human activity and green spaces but also underscores regional distinctions in green space
utilization. The strong positive correlation between GLI and per capita GDP reveals that well-lit green spaces
are associated with higher levels of economic development. By aligning with SDG 11.7—‘provide universal
access to safe, inclusive and accessible, green and public spaces, in particular for women and children,
older persons and persons with disabilities’, the findings underscore the potential of GLI as an indicator for
supporting inclusive, accessible, and well-managed green spaces in urban planning efforts.
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