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ABSTRACT: Vegetation is crucial to ecosystems, thus, detecting and assessing changes in vegetation cover are receiving
increasing attention. In this study, we combine remote sensing data and geographic information systems to assess
vegetation cover changes in Da Nang city, Vietnam, between 1988 and 2022. Remote sensing images for the years 1988,
2000, and 2010 were obtained from Landsat 5-TM satellite data, and imagery for 2022 was obtained from Landsat
9-OLI/TIRS satellite data. In each satellite scene, we used supervised classification and spectral indices (NDWI—
Normalized Difference Water Index, NDVI—Normalized Difference Vegetation Index, and SAVI—Soil Adjusted
Vegetation Index) to classify land cover and assess vegetation cover. The land cover analysis revealed a significant
decrease in vegetation cover and a significant increase in built-up land. The built-up land area increase of 120.12 km2

(12.25%) negatively impacted the area of vegetation, causing this land cover class to decrease by 97.69 km2 (9.96%) in
2022 compared to 1988. Overall, NDVI provides better estimates of vegetation cover variation than SAVI. The findings
of this study can support planners in developing appropriate strategies to maintain ecological balance and prevent
vegetation loss.
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1 Introduction
The distribution and structure of vegetation are key components in the function of terrestrial ecosystems

throughout the world and play an important role in climate regulation, water exchange for carbon energy, and
soil and water conservation [1–4]. Changes in vegetation will thus have a significant impact on the ecological
environment. Vegetation changes can be driven by a variety of factors including climate change, natural
disasters, and other natural processes, as well as anthropogenic factors such as land use change [3–5].

Land cover is often used to refer to the physical features of the Earth’s surface, including the distribution
of vegetation, water, soil, and other surface features, including features created only by human activity such as
settlements [6]. Land cover changes are also a major contributor to biodiversity loss; these changes are often
associated with anthropogenic activities such as deforestation, population growth, industrialization, and
urbanization [7]. Although land use-driven changes in land cover do not necessarily lead to land degradation,
they are nonetheless one of the most important drivers of global change and widely affect both geographical
and natural ecosystems [8–11]. Therefore, information about land cover, vegetation, and their changes is
crucial for natural resource management, urban planning, and assessing and mitigating natural hazards.
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Currently, remote sensing data in the form of satellite images, combined with geographic information
systems (GIS), have been widely applied and recognized as a powerful tool for detecting changes in land
cover [12–14]. Remote sensing data can be used to analyze changes in land cover to monitor urban areas,
soil quality, environments, and ecology at different spatial scales [15–19]. Therefore, in this study, we detect
and monitor changes in vegetation cover and other cover classes using freely available remote sensing tools
and techniques and apply different indicators to create vegetation cover maps. The Normalized Disparity
Water Index (NDWI) is commonly used to explain water availability, using the green and near-infrared bands
of multispectral satellite images [18]. Similarly, the Normalized Difference Vegetation Index (NDVI) and
the Soil Adjusted Vegetation Index (SAVI) are also useful for monitoring and assessing vegetation and are
calculated using red and near-infrared bands—higher NDVI values generally represent healthier vegetation
with a higher photosynthetic capacity [20].

Land use and land cover (LULC) changes, particularly those affecting vegetation dynamics, have been
extensively studied worldwide, offering valuable insights into their ecological and socio-economic impacts.
For instance, restoration efforts in the Loess Plateau, China, have demonstrated how ecological engineering
measures can reverse land degradation by promoting vegetation recovery [2]. Similarly, in the Upper
White Nile River Basin, the combined effects of climate change and human activities have significantly
influenced vegetation patterns [4]. In tropical and subtropical regions, such as the Haihe River Basin in
China and the East African Highlands, vegetation dynamics are shaped by a mix of climate variability,
agricultural practices, and urbanization [5]. Agricultural land use changes, in particular, play a crucial role
in altering vegetation cover. For example, in Dhaka, Bangladesh, rapid urban expansion has transformed
agricultural lands into built-up areas, leading to notable vegetation loss [7]. These global examples provide a
broader context for understanding regional challenges, such as in Vietnam, where shifts in farming systems,
deforestation, and urbanization have resulted in significant transformations of land cover. Highlighting these
cases underscores the need to study LULC changes comprehensively to inform sustainable land management
and conservation strategies.

Given the current research in the area of interest, the present work aims to use remote sensing data
to perform a detailed analysis of land cover and assess vegetation changes in Da Nang city, Vietnam, in
the period from 1988 to 2022. To date, no previous studies have performed a detailed analysis of vegetation
changes in this area. Thus, in this work, we aim to (1) detect and classify different types of LULC in the study
area from 1988 to 2022, (2) determine vegetation cover from 1988 to 2022 using vegetation indices, and (3)
analyze temporal and spatial changes in vegetation cover.

2 Materials and Methods

2.1 Study Area
Da Nang is a centrally governed city situated in the South Central Coast region of Vietnam. It holds a

strategic role within the Central Key Economic Region due to its central geographical location in Vietnam
and its significance in socio-economic development and national defense/security in both the Central
Highlands and the country as a whole. As a coastal city, Da Nang serves as a major transportation hub,
integrating road, rail, sea, and air networks. With continuous investments in infrastructure, environmental
improvements, and social security initiatives, Da Nang has earned the reputation of being “the most livable
city in Vietnam”.

The total area of Da Nang spans 1285.4 km2, comprising seven mainland districts and one island district
(Hoang Sa). This study focuses on the seven mainland districts, covering an area of 980.4 km2, located
between 15○15′ and 16○40′ North latitude and 107○17′ and 108○20′ East longitude (Fig. 1). The study area
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features diverse natural landscapes, including seas, peninsulas, bays, hills, rivers, streams, and plains, which
are centrally distributed within the city, fostering its economic growth and tourism development. Da Nang
experiences a typical tropical monsoon climate characterized by high temperatures and limited variation.
The climate features two distinct seasons: a rainy season from September to December and a dry season from
January to August. Occasional mild and brief winter cold spells may occur. The annual average temperature
is approximately 25.8○C, with the hottest months being June, July, and August (average 28○C–30○C) and the
coolest months being December, January, and February (average 18○C–23○C). The city receives an average
annual rainfall of 2153 mm and approximately 2182 h of sunshine annually. Da Nang is also subject to one to
two storms or tropical depressions each year, often causing significant damage to the city.

Figure 1: Map of the study area with elevation profile of Da Nang city, Vietnam

2.2 Satellite Image Data Acquisition
Satellite images were used to map the LULC in Da Nang city from 1988 to 2022 and assess vegetation

health. The Landsat image data were downloaded from USGS EarthExplorer (https://earthexplorer.usgs.gov)
(accessed on 23 February 2025) and USGS GloVis (https://glovis.usgs.gov) (accessed on 23 February 2025).
Landsat 5-TM images were used for the years 1988, 2000, and 2010, and Landsat 9-OLI/TIRS images were
used for 2022 in this study. The selected imagery, with a 30-meter spatial resolution, covered Worldwide
Reference System (WRS) path/row combinations 124/049 and 125/049, ensuring comprehensive spatial
coverage of the study area. These datasets were chosen for their temporal consistency and suitability for land
use and land cover change analysis over a 34-year period. These years were selected based on the availability

https://earthexplorer.usgs.gov
https://glovis.usgs.gov
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of high-quality imagery and their alignment with significant milestones in urbanization and policy changes
in Da Nang. Specifically, 1988 represents the pre-urbanization baseline, as this period marked minimal
anthropogenic impacts on land cover. The year 2000 reflects the influence of Vietnam’s Doi Moi economic
reforms, which led to significant industrialization and urban expansion. The year 2010 captures a decade of
rapid infrastructure development, reflecting the impacts of increasing investment and modernization in Da
Nang. Finally, 2022 provides the most recent data, showcasing the cumulative changes and current state of
vegetation and land use. A detailed summary of the data is described in Table 1.

Table 1: Detailed data summary of satellite imagery used in the study

Date acquired Spacecraft ID Sensor ID WRS Path/Row Grid cell size
reflective (m)

Source

23/01/1988 Landsat 5 TM 124/049 30 USGS GloVis
22/06/1988 Landsat 5 TM 125/049 30 USGS GloVis
29/04/2000 Landsat 5 TM 124/049 30 USGS GloVis
20/04/2000 Landsat 5 TM 125/049 30 USGS GloVis
12/06/2010 Landsat 5 TM 124/049 30 USGS GloVis
11/02/2010 Landsat 5 TM 125/049 30 USGS GloVis
05/06/2022 Landsat 9 OLI/TIRS 124/049 30 USGS EarthExplorer
09/04/2022 Landsat 9 OLI/TIRS 125/049 30 USGS EarthExplorer

2.3 Image Pre-Processing and Classification
Image pre-processing was carried out to enhance the interpretability of satellite data by extracting

relevant information [21]. The satellite imagery was analyzed by assigning spectral signatures to each pixel
and delineating watersheds. The data were categorized into four LULC classes following the modified
Anderson Level I classification scheme [22], Vietnam’s land use regulations, the existing environmental
conditions of the study area, and the distinct spectral characteristics of various landscape features. The
resulting classes included water, vegetation, built-up areas, and bare soil/rock, as outlined in Table 2.

Table 2: Identified classes by supervised classification

Class Description
Water Rivers, canals, lakes, artificial ponds

Vegetation Forestry, natural forests, individual trees, agriculture land, cultivated gardens and
lawns, roadside weed patches

Built-up Residential buildings, industrial use, roads, villages, other impervious surfaces
Bare soil/rock Fallow land, sands, earth dumps

Before performing change detection, the satellite images underwent pre-processing using the ArcGIS
10.8 software. The images listed in Table 1 were geometrically corrected to the WGS84 datum with the
Universal Transverse Mercator (UTM) projection, specifically in zone 48N. As the Landsat images contained
11 bands, layer stacking was conducted to combine the bands into a single composite image. Subsetting
was performed within ArcGIS 10.8 using the “Extract by Mask” tool to clip the images to the study area
boundary [23]. For LULC classification, the study employed a rule-based supervised classification method
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using the Maximum Likelihood Classifier (MLC) algorithm for the datasets acquired in 1988, 2000, 2010, and
2022. Training samples representing known land cover types were collected based on ground truth data and
compared against the spectral signatures of image pixels using defined decision rules [24]. This approach,
primarily guided by the analyst, involved selecting representative pixels for each LULC class [25,26].
Post-classification refinement was applied to enhance accuracy and reduce classification errors, ensuring
simplicity and effectiveness [27]. To generate LULC maps, supervised classification incorporated both the
study area of interest and field survey data for training and validation purposes. The classified LULC images
were subsequently reclassified in ArcGIS 10.8 to enable comparative analysis of changes across the study
years. The detailed classification methodology is illustrated in Fig. 2.

Figure 2: Overall process of forest cover change technique

2.4 Classification Accuracy Assessment
The accuracy assessment of the thematic maps produced in this study was conducted to evaluate the

reliability of the information derived from the data [28,29]. The evaluation utilized a confusion matrix, overall
accuracy, user accuracy, producer accuracy, and kappa coefficient metrics to measure the classification
performance of the images. Validation was carried out using 250 points, derived from ground truth data,
reference data obtained from Google Earth, and visual interpretation. The comparison between point data
and classification results was performed through a confusion matrix. The equations for calculating the
kappa coefficient, overall accuracy, user accuracy, and producer accuracy are among the most effective
quantitative methods for evaluating the classification of satellite imagery and are presented in Eqs. (1)–(4),
respectively [29].

Kappa Coefficient = ∑
k
i=1 nii −∑

k
i=1 nii(GiCi)

n2 −∑
k
i=1 nii(GiCi)

(1)
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where i is the class number, n is the total number of classified pixels that are being compared to the actual
data, nii is the number of pixels belonging to actual data class i that were classified as class i, Ci is the total
number of classified pixels belonging to class i, and Gi is the total number of actual data pixels belonging to
class i.

Overall Accuracy = Total number of corrected classified pixels (diagonal)
Total number of reference pixels

× 100 (2)

User Accuracy = Number of correctly classified pixels in each category
Total number of reference pixels in each category (row total)

× 100 (3)

Producer Accuracy = Number of correctly classified pixels in each category
Total number of reference pixels in each category (column total)

× 100 (4)

2.5 NDVI, SAVI, and NDWI Analysis
The NDVI and SAVI methods are effective for assessing vegetation cover in the study area [30–32].

NDVI is a satellite-derived index used to measure vegetation greenness, providing insights into plant density
and health. On the other hand, SAVI was designed as an enhancement of NDVI, incorporating a correction
for soil brightness to improve accuracy in areas with sparse vegetation. NDVI values range from −1 to +1,
reflecting the photosynthetic activity of green vegetation, with higher values indicating denser and healthier
vegetation. The formulas for calculating NDVI and SAVI are provided in Eqs. (5) and (6), respectively [30,31].

NDVI = NIR − RED
NIR + RED

(5)

where NIR is the reflectance radiated in the near-infrared wave band, and RED is the reflectance radiated in
the visible red wave band of the satellite radiometer.

SAVI = NIR − RED
NIR + RED + L

× 1 + L (6)

where L is 0.5, the default value.
Similarly, the NDWI is an index designed to assess open water features and the moisture content of

vegetation [18]. This index serves as a crucial tool for monitoring drought conditions, water stress, and
land degradation. NDWI is a dimensionless index with values ranging from −1 to +1. Higher NDWI values
indicate greater water content in vegetation and open water bodies, while lower values signify reduced water
content. The formula for calculating NDWI is provided in Eq. (7) [18].

NDWI = GREEN −NIR
GREEN +NIR

(7)

where NIR is the reflection in the near-infrared spectrum, GREEN is the reflection in the green range spec-
trum.

3 Results and Discussion

3.1 LULC Classification and Accuracy Assessment
The results of Landsat satellite image classification using the maximum likelihood algorithm are shown

for the years 1988 (Fig. 3a), 2000 (Fig. 3b), 2010 (Fig. 3c), and 2022 (Fig. 3d). The accuracy values of the
LULC classification map, as assessed by the kappa coefficient, overall accuracy, user accuracy, and producer
accuracy metrics, are shown in Table 3. The overall classification accuracy of the maps was 86.80%, 89.20%,
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87.60%, and 93.20% for the years 1988, 2000, 2010, and 2022, respectively. These results confirm that the
accuracy values for all years are considerably above 80%, indicating a high degree of LULC classification
accuracy [28,29].

Figure 3: Land use and land cover classifications of Da Nang city in 1988 (a); 2000 (b); 2010 (c) and 2022 (d)

The data obtained from the LULC classification for the period 1988 to 2022 are presented in Table 4 to
provide further insights into the land class changes. The results show that significant changes occurred in the
coverage of each class. Vegetation covered an area of 864.96 km2 in 1988, which decreased to 767.27 km2 in
2022, representing a decrease of 9.96%. During this period, the built-up land class significantly increased in
total area from 57.19 km2 (1988) to 177.31 km2 (2022) representing a total increase of 120.12 km2, equivalent to
12.25% of the total area. The smallest change was recorded in the area covered by the water class, increasing
by 0.83 km2 (0.08%) in the period 1988–2022. In 1988, the area of bare soil/rock was 43.33 km2 (4.42%) and
decreased by 20.07 km2 (2.05%) in 2022, a net decrease of 2.37% (Table 4).
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Table 3: Land use and land cover classification and accuracy assessment analysis

Year Producer accuracy (%) User accuracy (%) Overall
accuracy (%)

Kappa
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1988 84.09 88.42 90.28 79.49 82.22 90.32 86.67 83.78 86.80 0.816
2000 85.71 90.82 93.06 82.22 81.08 91.75 93.06 84.09 89.20 0.848
2010 80.49 89.36 90.28 86.05 80.49 87.50 94.20 84.09 87.60 0.828
2022 92.31 94.12 96.00 85.29 87.80 96.00 93.51 90.63 93.20 0.903

Table 4: Land use and land cover classification results and change scenario from 1988 to 2022

Classes Area in km2 Area change
1988–2022 (km2)

Change (%) Remarks

1988 2000 2010 2022
Water 14.92 17.94 17.95 15.75 0.83 0.08 Increase

Vegetation 864.96 885.58 791.24 767.27 97.69 9.96 Decrease
Built-up 57.19 55.39 154.93 177.31 120.12 12.25 Increase

Bare soil/rock 43.33 21.49 16.28 20.07 23.26 2.37 Decrease
Total 980.40 980.40 980.40 980.40

3.2 Spatial Distribution of NDVI, SAVI, and NDWI from 1988 to 2022
The study area was analyzed using three widely used indices (NDVI, SAVI, and NDWI). Of these,

NDVI and SAVI are suitable for detecting vegetation cover in the study area [33,34]. Fig. 4 shows the spatial
distribution of NDVI values for the four studied years and ranges from−0.70 to 0.90. The water class is shown
in dark purple, and its value is below 0. The built-up land and bare soil/rock classes are represented by white
and light purple, with index values slightly above 0. Vegetation areas are shown in dark green and light green,
with values of around 0.30 or more. Fig. 5 shows the spatial distribution of SAVI values for the four studied
years, with values from −1.03 to 1.35. Dark blue represents the water class, and its value is below 0. Built-up
land and bare soil/rock are shown in lighter blue, with values slightly above 0. Vegetation cover areas are
dark green and light-yellow green, and their SAVI values are around 0.35 or more. Figs. 4 and 5 show that
the extent of built-up land has expanded rapidly over the past three decades. The NDVI and SAVI results
also show that the vegetation area decreased significantly during this period. This underscores the need for
sustainable urban planning policies that integrate green infrastructure, such as urban forests and ecological
corridors, to mitigate the negative effects of urbanization on vegetation cover [34]. Adopting stricter land-use
policies, coupled with incentives for afforestation and reforestation, can help address vegetation loss while
ensuring ecological balance.
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Figure 4: Spatial distribution of NDVI for 1988, 2000, 2010 and 2022

The NDWI method is commonly used to monitor the water stress of crops and wetland organisms. This
indicator has been verified and used in studies of wetlands, rivers, lakes, and oceans [35,36]. The NDWI
results for the study area are similar to the NDVI results. Fig. 6 shows the spatial distribution of the NDWI
values for the four studied years, with values ranging from −0.71 to 0.66. The large area of vegetation cover
is shown in dark green and light green, with values from approximately −0.71 to −0.30. Water areas are
shown in dark purple, and their values are above zero. The areas shown in light brown and light purple color,
corresponding to values between −0.30 and 0 (i.e., between vegetation and surface water classes), are built-
up and vacant land classes. The NDWI analysis also shows a significant decrease in vegetation cover between
1988 and 2022; in addition, these results show a significant expansion of the built-up land class, indicating
an increased demand for housing and services in the study area.
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Figure 5: Spatial distribution of SAVI for 1988, 2000, 2010 and 2022
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Figure 6: Spatial distribution of NDWI for 1988, 2000, 2010 and 2022

3.3 LULC Change Analysis
Fig. 7 shows notable changes in land cover during the studied period from 1988 to 2022. The most

striking changes include a slight increase in vegetation cover from 88.23% in 1988 to 90.33% in 2000; however,
this value gradually decreased to 80.71% in 2010 and 78.26% in 2022. Another notable change is the increase in
built-up areas; this LULC class covered only 5.83% in 1988 but increased to 18.09% by 2022. In addition, Fig. 7
shows that the water and soil/bare rock classes also vary but represent a very small proportion of the total
study area.

The relationship between vegetation cover and built-up area is shown in Fig. 8. The regression analysis
results show a close relationship between the decrease in vegetation area and the increase in built-up
areas, with a correlation coefficient (R2) value of 0.98. A study by Huong et al. (2022) [37] also showed
that the expansion of built-up land in the study area mainly corresponds to the conversion of extensive
areas of vegetated land for further construction in Da Nang during its transition to a modern, strongly
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industrialized city with high service industry levels. Administrative displacement and urban population
growth in urban areas are strong drivers of the transformation between these two land classes; thus, the
processes of urbanization and socio-economic development have rapidly changed the urban environment of
Da Nang.

Figure 7: Trend of land use and land cover classes in Da Nang city from 1988 to 2022

Figure 8: The trend of land use and land cover classes for 1988, 2000, 2010 and 2022 in the study area
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3.4 Relationship between Vegetation Index and Decadal Vegetation Cover Changes
NDVI and SAVI are two widely used indices for vegetation detection and mapping. Maps showing the

NDVI and SAVI indices in the study area from 1988 to 2022 are shown in Figs. 4 and 5, respectively. In this
process, we extracted all the pixel values of NDVI and SAVI from the classified image in 2022 and assigned
the vegetation class to pixels with NDVI values greater than 0.30 and SAVI values greater than 0.35. Using
these NDVI and SAVI thresholds, we performed a similar binary reclassification of the images for the years
1988, 2000, and 2010 into vegetation and non-vegetation classes. Vegetation cover from 1988 to 2022 was
classified based on these maps and using the vegetation index values presented in Table 5.

Table 5: Area vegetation cover by different classifications from 1988 to 2022

Category Distribution in
1988

Distribution in
2000

Distribution in
2010

Distribution in
2022

Area (km2) (%) Area (km2) (%) Area (km2) (%) Area (km2) (%)

Supervised
Vegetation 864.96 88.23 885.58 90.33 791.24 80.71 767.27 78.26

Other 115.44 11.77 94.82 9.67 189.16 19.29 213.13 21.74
Total 980.40 100.00 980.40 100.00 980.40 100.00 980.40 100.00

NDVI
Vegetation 835.06 85.18 802.28 81.83 789.24 80.50 734.67 74.94

Other 168.85 17.22 210.50 21.47 191.15 19.50 245.73 25.06
Total 980.40 100.00 980.40 100.00 980.40 100.00 980.40 100.00

SAVI
Vegetation 861.50 87.87 756.78 77.19 792.63 80.85 762.50 77.77

Other 118.90 12.13 223.62 22.81 187.77 19.15 217.90 22.23
Total 980.40 100.00 980.40 100.00 980.40 100.00 980.40 100.00

The vegetation area estimated using the NDVI shows a similar downward trend between 1988 and 2022
and a slightly lower estimate than the supervised classification. In contrast, the SAVI results yield an estimate
nearly equal to that of the supervised classification and higher than that from the NDVI in 1988, 2010, and
2022 and much lower in the year 2000 than that of the NDVI index and supervised classification (Fig. 9).
The classification results for the year 2000 may have had apparently less vegetation because SAVI ignored the
soil reflectivity. Overall, we can conclude from this analysis that vegetation indices can be used to detect and
monitor vegetation cover in the study area, especially for rapidly assessing vegetation cover changes [38–41].

Figure 9: Comparison of vegatation cover from 1988 to 2022 through NDVI, SAVI and supervised classification
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3.5 The Influencing Factors of Vegetation Change
Climate change is an important factor influencing vegetation changes in the study area. However,

human activities also represent a key factor relating to spatial changes, quantity, and distribution of
vegetation [42,43]. Human impacts on land use patterns and usage types are reflected in changes in surface
vegetation cover over time. To allow Da Nang to become a modern, highly developed, industrialized, high-
service city, the Vietnamese government has promoted the construction of works such as bridges, ports,
roads, expressways, industrial parks, and public works areas. While such policies aim to modernize Da
Nang, they have often prioritized infrastructure development over environmental conservation. Greening
initiatives, such as urban afforestation programs, struggle to keep pace with the rapid conversion of vegetated
areas into built-up spaces [4]. Furthermore, weak enforcement of zoning laws and land-use regulations has
allowed unauthorized land conversions, particularly in peri-urban regions, intensifying vegetation loss [44].
Therefore, the processes of urbanization and socio-economic development have rapidly changed the urban
space of Da Nang. Active human intervention in vegetation change is associated with urbanization, thus,
changes in vegetation indicate both vegetation degradation in the urban area’s periphery and improvement in
the city’s central area. Economic reforms, such as Vietnam’s Doi Moi policy, significantly accelerated indus-
trialization and infrastructure expansion, leading to large-scale land conversion in peri-urban areas [37].
Moreover, population growth and increased urban migration heightened the demand for housing and
industrial parks, exacerbating vegetation loss in the city’s outskirts. The rising economic value of timber
has fueled illegal deforestation, particularly in areas with high ecological value, further reducing vegetation
cover [44]. Additionally, due to the increased value of precious wood, illegal deforestation activities have
increased, contributing to the observed reduction in the extent of vegetated areas.

3.6 Limitations and Potential Research
This study has several limitations that should be acknowledged. First, the use of Landsat imagery with

a spatial resolution of 30 m imposes constraints on detecting fine-scale vegetation changes, particularly in
heterogeneous landscapes or rapidly urbanizing areas. Higher-resolution imagery could offer more detailed
insights. Second, while accuracy assessments were conducted, spectral similarities among certain land cover
types, such as bare soil and built-up areas, may have introduced misclassifications. Advanced classification
algorithms or the integration of ground-truth data could enhance accuracy. Third, the temporal gaps
between the selected years (1988, 2000, 2010, and 2022) may overlook short-term vegetation dynamics;
more frequent temporal data would provide a continuous understanding of these changes. Additionally,
the study qualitatively highlights urbanization and socio-economic development as primary drivers of
vegetation changes but does not quantitatively distinguish their impacts from those of natural factors
like climate change. Lastly, while climate variability is acknowledged as an influencing factor, detailed
integration of climate data, such as trends in temperature and precipitation, was not conducted. Future
research could address these limitations by utilizing high-resolution satellite imagery, such as Sentinel-2 or
UAV data, and employing advanced machine learning algorithms like Random Forest or Deep Learning
for improved classification accuracy. Furthermore, incorporating detailed climate models, socio-economic
data, and ecosystem service assessments would enhance the understanding of vegetation dynamics and
their implications. Policy-oriented research evaluating the effectiveness of urban development strategies and
afforestation initiatives could provide actionable recommendations for sustainable urban planning in Da
Nang city.
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4 Conclusion
This study utilized multispectral and multitemporal satellite imagery from Landsat 5-TM and Landsat

9-OLI/TIRS to monitor and assess the dynamics of LULC changes in Da Nang city between 1988 and
2022. Four primary LULC classes were identified: water, vegetation, built-up land, and bare soil/rock. The
results reveal that the built-up area expanded by 120.12 km2 (12.25%) during the study period, driven by
urbanization and economic growth, which led to a surge in construction activities. Conversely, vegetation
cover declined by 97.69 km2 (9.96%) over the past three decades, highlighting the environmental impact of
urban expansion. Regression analysis demonstrated a significant positive correlation between the decrease
in vegetation area and the increase in built-up land. The study also underscores that Da Nang has undergone
substantial LULC changes during the analysis period. The NDVI, SAVI, and NDWI indices proved to be
effective tools for identifying and quantifying significant changes in land cover characteristics between
1988 and 2022. The findings emphasize the critical role of vegetation in ensuring ecosystem sustainability,
calling for the implementation of afforestation policies to enhance vegetation cover. This study provides a
valuable foundation for urban planning, policy formulation, and long-term development strategies aimed at
promoting sustainable growth in Da Nang city while preserving its green vegetation resources.
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