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ABSTRACT: Agriculture is a primary activity in many countries, with wheat being a major cereal crop in India.
Accurate pre-harvest forecasts of crop acreage and production are critical for policymakers to address supply-demand
dynamics, pricing, and trade. This study focuses on estimating wheat acreage and yield in Barwala block, Hisar district,
Haryana, for the 2019–2020 Rabi season using remote sensing techniques. Multi-temporal satellite data capturing
phenological stages of wheat (Seedling to Ripening) were processed using supervised classification with a maximum
likelihood classifier in ERDAS Imagine. Wheat crop acreage was determined by overlaying ground truth points on the
classified data. The estimated acreage showed a relative deviation of−1.07% compared to statistics from the Department
of Agriculture (DoA), Haryana. Yield assessment employed a Semi-Physical model based on the Modified Monteith
Model. Key parameters included Photosynthetically Active Radiation (PAR), fraction of PAR absorbed by wheat
(fAPAR), light use efficiency, and water stress derived from the Land Surface Water Index (LSWI) using Sentinel-2 NIR
and SWIR-1 bands. Net Primary Productivity (NPP) was computed for the wheat growth period, and grain yield was
estimated using a harvest index obtained from literature. The estimated yield had a relative deviation of 9.3% from DoA
data. The study demonstrates the potential of multi-temporal satellite imagery for accurate block-level wheat acreage
and yield estimation, providing a valuable tool for agricultural planning and policy-making.

KEYWORDS: Crop acreage production; yield assessment; multi-date; rabi season crops; supervised classification; water
stress; NPP; modified monteith model

1 Introduction
Agriculture is the most important tool or asset that has been regarded by human civilization for their

survival, which has evolved alongside the development of human society [1]. The ongoing changes in human
civilization have led to the advancement of more tools and techniques aimed at adapting to these changes
and increasing crop production yields, such as crop rotation and various other methods [2,3].

Global development has impacted societal changes that have emerged in the context of industrial
development, computerization, and the use of satellite data, leading to a revolution in crop production [4].
The increase in agricultural technology helps utilize agricultural land effectively, ensuring that not a single
inch is wasted through proper management. The implementation of large-scale equipment and heavy
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machinery has not only increased production but also accelerated the use of fertilizers and technology,
resulting in a production boom [5–7]. This high production and crop rotation lead to the gathering of more
crops and different types of crops from the same land within a year. In India, the system for collecting crop
statistics was initiated in 1884 [8]. Crop statistics are required by various agencies, such as the Ministry of
Agriculture and Farmers Welfare and the Ministry of Textiles, for planning purposes. It is necessary to know
the production forecast of crops, which significantly aids planners and policymakers. The Indian economy
is based on agriculture, with about 70% of the total population dependent on this sector. India is the second-
largest producer of wheat, with Haryana, Punjab, Uttar Pradesh, Uttarakhand, Madhya Pradesh, Delhi, Bihar,
Rajasthan, and Chhattisgarh being the leading contributing states. The production, yield, and total area of
crops inform policy decisions regarding storage, transportation, marketing, distribution, and several other
subjects [9].

Despite recent industrial development, Haryana remains primarily an agrarian state. Almost 70%–80%
of the workforce is employed in agriculture. Haryana is self-sufficient in food products and is the second-
largest contributor to India’s central pool of grains, producing wheat and rice as the main crops, along with
cotton, mustard, oilseeds, sugarcane, gram, barley, corn, and millets as other crops. Wheat (Triticum spp.) is
one of the most important and strategic food crops for many countries and populations worldwide, serving as
the staple food for about 35% of the global population and accounting for 20% of the food calories consumed
globally [10]. Wheat is sown from November to December and harvested from March to April. Haryana has
a wide irrigation infrastructure and a main system supported by proper canal systems and tube wells, which
play an important role in wheat production.

The production of crops relies on soil quality, and in this context, the alluvial soils along riverbanks are
particularly suitable, yielding a high quantity of food grains. India is a vast country with numerous rivers
and plains conducive to agriculture. In the central part of the country, the Haryana region stands out as flat
and has extensive agricultural areas, allowing for significant production using heavy machinery. Therefore,
this paper will examine the agricultural products and various techniques employed across different seasons,
as well as calculate the production of these agricultural products in the region.

Yield assessment is a crucial aspect of agricultural production aimed at maximizing crop yield while
minimizing costs at both national and regional levels [11]. Several methods exist for yield estimation,
including empirical models, crop-cutting methods, and crop growth models [12–14]. These conventional
models tend to be time-consuming and costly [15]. Estimates are derived post-harvest through crop-cutting
experiments, which are applicable for determining yield across an area. The crop-cutting experiment is
designed using stratified multi-random sampling: 1) district or tehsil, 2) revenue, 3) survey number, 4)
fields, and 5) experimental plots of specified size and shape. With the advent of satellite imagery, researchers
have gained significant insights into crops, as remote sensing and GIS are effective for crop classification,
acreage estimation, monitoring crop health, and yield estimation due to their accuracy and reduced time
requirements [16–18]. Crop discrimination and classification using time series satellite data can also yield
valuable information regarding crop rotation records, crop management, food security, and causes of
crop stress, all of which are vital for formulating agricultural policies. While early estimation of acreage,
production, and yield is essential, remote sensing and GIS facilitate crop assessment and discrimination, as
explored by space applications in India [19].

During the national-level project titled “Crop Acreage and Production Estimate (CAPE)” in 1988,
the proposal for crop acreage and production forecasting using satellite data aimed to generate extensive
spatial and non-spatial databases. Previous studies focused on creating statistical data for crop acreage [20–
23] and developing yield models through the integration of agro-climatic and spectral data [24]. This
innovation and its application benefited crops such as wheat, rice, mustard, groundnut, and sorghum by
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facilitating large-area crop inventory and yield modeling. The project’s user feedback and limitations led
to a new initiative called Forecasting Agricultural Output Using Space, Agro-meteorology, and Land-based
Observations (FASAL) [25]. The wheat crop yield at the district level is estimated using various models
and procedures: 1) Semi-Physical Model, 2) Empirical Model, 3) Agro-meteorological Model, and 4) Crop
Simulation Model (e.g., CERES-Wheat model [26], WOFOST model). The agro-meteorological regression
model and crop simulation model have been piloted by IMD in collaboration with several agricultural
universities [27].

Agriculture can be regarded as the science, art, and practice of cultivating the soil, growing crops, and
raising livestock. Human civilization, most customs, and cultures in the world revolve around agriculture.
The monitoring of agriculture has greater importance in the global challenges concerning climate variations,
increased demand for food, and increase in population rise [28].

In the present study, yield estimation at block level is proposed using multi-temporal satellite data. The
discrimination and classification of wheat crops from other associated Rabi season crops were performed
through a supervised classification approach in which the Maximum Likelihood Method (MLM) classifier
was selected followed by ground truth points. The Modified Monteith Model was used at the block level for
the yield estimation as the modified model is based on the concept of biomass, which is a function of the
total photo-synthetically active radiation and the ability of the plant to absorb and to convert this radiation
to dry matter [29].

2 Study Area and Method

2.1 Study Area
Barwala block is the study area located in the Hisar district of Haryana. The location map of the

study area is shown in Fig. 1. The Barwala block has a latitudinal and longitudinal extent of 25.3642○ N to
75.0957○ E, covering a total area of 476.82 km2. Hisar is one of the important districts in Haryana and is
recognized as the highest producer of steel due to the presence of Jindal Stainless Steel Factories. Hisar has
a total population of 1,742,815 and ranks second in terms of population within the state of Haryana [30]. It
is a landlocked district that shares its boundaries with Fatehabad to the north, Jind and Rohtak to the east,
Bhiwani to the south, and Rajasthan to the west. The district’s agriculture is supported by two major canal
systems: the Bhakra Canal System and the Western Yamuna Canal System. It features a plain topography
with a gentle slope and an elevation of 234 m above mean sea level. Haryana is the fourth-largest producer
of wheat, contributing 12% of the total wheat production. The state has 86% of its area classified as arable, of
which 96% is cultivated. It also ranks second in fish productivity per hectare and has been declared a Fish
Disease Free State by the Indian Council of Agricultural Research. The climate of Haryana is subtropical,
semi-arid to sub-humid, continental, and monsoon type, with mean annual rainfall ranging from 500 to
1000 mm, over 75% of which occurs between June and September [31,32]. Maximum temperatures in the
area exceed 40○C in May and June, and hot dry winds are commonly observed. The major parts of the region
are covered with Sierozem soil, which has low organic content, less humus, and characteristics typical of
desert-type soil.

2.2 Data Collection and Methodology
This study was conducted in the Barwala block of Hisar district in the Haryana state of India to

differentiate the wheat crop from other associated Rabi crops and to estimate the acreage and forecast the
yield of wheat using satellite images. High-resolution Sentinel 2 satellite images were downloaded from
the Copernicus data hub (https://scihub.copernicus.eu/) (accessed on 09 January 2025), and pre-processing

https://scihub.copernicus.eu/
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was carried out for the datasets (Table 1). The pre-processing steps included resampling, layer stacking,
and subsetting of satellite images. Subsequently, supervised classification was performed using a maximum
likelihood algorithm to identify the respective crops. The Maximum Likelihood Classifier is a well-known
parametric statistical classifier used for pattern classification [33,34]. The supervised classification was
executed using Erdas Imagine version 11 software, and five classes—wheat, mustard, other crops; settlement,
and waterbody—were established. Additionally, recoding was conducted for the misclassified areas in the
images using field visit data and Google Earth images, resulting in the generation of a wheat mask to calculate
the area of wheat.

Figure 1: The map representing location of Hisar district (a) and, Barwala block (b)

Table 1: The details of datasets including satellite images and auxiliary data

Sl. No. Satellite data Date of acquisition Sensor bands Temporal
resolution

Provider

1 Sentinel-2A 09 November 2019 13 spectral bands 2–3 days Systematic European
Commission (SEC) and

ESA
2 Sentinel-2A 19 November 2019 13 spectral bands 2–3 days SEC and ESA
3 Sentinel-2A 04 December 2019 13 spectral bands 2–3 days SEC and ESA
4 Sentinel-2A 03 January 2020 13 spectral bands 2–3 days SEC and ESA
5 Sentinel-2A 23 January 2020 13 spectral bands 2–3 days SEC and ESA
6 Sentinel-2A 12 February 2020 13 spectral bands 2–3 days SEC and ESA
7 Sentinel-2A 22 February 2020 13 spectral bands 2–3 days SEC and ESA
8 Sentinel-2A 03 March 2020 13 spectral bands 2–3 days SEC and ESA
9 Sentinel-2A 13 March 2020 13 spectral bands 2–3 days SEC and ESA
10 Administrative block boundary was provided by HARSAC, Hisar, Haryana

(Continued)
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Table 1 (continued)

Sl. No. Satellite data Date of acquisition Sensor bands Temporal
resolution

Provider

11 Ground truth points collected through GPS (Global Positioning System) are provided in
the form of latitudes and longitudes are arranged by HARSAC.

12 PAR (Photosynthetically Active Radiation) data are provided by HARSAC through
MOSDAC portal.

13 MODIS-derived LAI (Leaf Area Index)/FAPAR (Fraction of Absorbed Photosynthetically
Active Radiation) V6(MOD15A2H) was downloaded through LPDAAC@usgs.gov

For calculating the yield Modified Monteith model was applied for which different indices of crop like
NDVI (Normalized Difference Index), LSWI (Land Surface Water Index), and Water Stress were generated
through the specific models in the wheat mask for estimation of wheat yield. The harvest index and light
use efficiency are taken by a literature review of the crops Fig. 2. As agriculture plays an important role in
the economy so there is a need for crop area estimation or crop production forecast before pre-harvest and
estimation of yield per hectare at local as well as regional levels are important for various policy makers for
exporting, importing, pricing and government agencies, etc. With the help of ground truth points and using
Erdas Imagine by running certain classification algorithms we have discriminated wheat from other crops
and made a mask of it and the area is calculated Fig. 3.

Satellite Data

Layer Stack

Over GT points for crop identification

Classification of wheat crops

Overlay block boundary and Acreage Estimation

Wheat Mask

Wheat NDVI Wheat LSWI PAR Data

Water Stress

Wheat Yield Estimation using Modified Monteith Model

Block Level Yield Estimation

Figure 2: Representing the flow chart of Methodology adopted yield estimation
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Figure 3: Representing the flow chart of Methodology adopted for acreage estimation

Further, the Modified Monteith model has been used for forecasting wheat yield, this model is based
on the idea that biomass composed by a crop is a function of the amount of PAR absorbed depending upon
the incoming radiation and the crop PAR interception [35]. The mechanism based on the incident PAR is
transformed into dry matter can be represented as

NPP = PAR ∗ f APAR ∗ ε

where,
NPP = Net Primary Productivity or dry matter accumulation in the plant over some time (gm −2 d −1)
PAR = photosynthetically active radiation (MJm−2d −1)
fAPAR = Fraction of incident PAR which is intercepted and absorbed by the canopy
ε = Light use efficiency of absorbed photosynthetically active radiation (gMJ−1)
PAR, fAPAR, and the stress factors were computed over the wheat season from December to April and

then integrated. The Monteith efficiency equation has been extended to include water stress (W stress) in
photosynthesis and the equation becomes

TNPP = PAR ∗ f APAR ∗ ε ∗Wstress

The final economic yield of wheat is the product of harvest index HI and Net Primary Productivity
(NPP) is shown below:

Grain Yield = ∑
Harv est ing
Sow ing NPP ∗HI

The various procedures considered for the processes included the Land Surface Water Index (LSWI),
which is derived from the NIR and SWIR portions of the electromagnetic spectrum for water stress
assessment [36]. LSWI is effective for delineating vegetation and is positively correlated with leaf water
content [37]. LSWI measures the liquid water molecules that interact with solar radiation. Water stress is
assessed using the Land Surface Water Index. PAR is a crucial element in plant physiology applications,
biomass production, and natural illumination in greenhouse gases. The PAR value defines the total amount of
radiation available for photosynthesis, assuming leaves intercept all radiation. A fraction of PAR is absorbed
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by plants, referred to as APAR. PAR varies seasonally and changes with latitude and time of day; at night, the
PAR value is zero. The fraction of PAR absorbed (FAPAR) is an important tool for estimating crop yield and
biomass production, useful for crop cultivation, and depends on factors such as the crop’s canopy structure,
atmospheric conditions, and angular configuration. Plant traits and environmental factors are responsible for
the efficient conversion of radiation into dry matter. RUE was computed through grain yield and cumulative
intercepted radiation [38].

The harvest index in agriculture quantifies the yield of crop species with the total amount of biomass
produced [39]. Whereas NDVI is generated from Sentinel satellite images using band 8 (NIR) and band 4
(RED). The fAPAR (Fraction absorbed by photo synthetically active radiation) was computed through the
NDVI (Normalized Difference Water Index) value and Factor. Further, the Land Surface Water Index (LSWI)
has been calculated using band 8 (NIR) and band 1 (SWIR) to evaluate from the sowing to harvesting stage
of the wheat crop. NPP has been calculated for a period of sowing to harvesting stage (December to April)
with an intervalof10 days or more due non-availability of satellite images. After the calculation of the NPP
of each month, summation of the NPP was done by multiplying with the harvest index (0.4 for wheat crop),
and the average yield was calculated for the block given in Table 1. The methodology flow chart adopted for
Net Primary Productivity Fig. 4.

Figure 4: Flow chart representing the computation NPP of wheat

3 Results and Discussions
This study analyzes the understanding of wheat production, which is sown during the winter months

of November and December and harvested in March and April [40]. Additionally, it focuses on crop
discrimination, area estimation, and yield assessment, along with an accuracy evaluation for the Barwala
block of Hisar district, Haryana, India.

3.1 Crop Discrimination and Classification
The crop discrimination and identification of each crop depends upon its unique reflectance pattern of

the electromagnetic spectrum known as the spectral signature. The varying reflectance of the crop is affected
by factors like the structure and composition of leaves, canopy structure, stage of the crop, health condition
of the crop, ground coverage, etc.
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Various crops exhibit different phenological stages, which facilitates the classification and identification
of plants through remotely sensed data. Some crops share the same spectral signature in specific data
collected at a given time; for these crops, multi-date or temporal satellite images are necessary. Generally,
healthy crops or plants with higher chlorophyll content and denser canopy structures reflect more radiation
in the Near-Infrared region of the electromagnetic spectrum. In the electromagnetic spectrum, the visible
portion, specifically the red (0.6 μm) and blue (0.45 μm) wavelength regions, is absorbed by green plants,
while reflectivity is greater in the green regions due to the presence of chlorophyll. Increased photosynthetic
activity leads to greater reflectance in the infrared portion and reduced reflectance in the red regions [41].

Through the analysis of time series satellite data for the Barwala block of Hisar, it was observed that
wheat and mustard are the major crops cultivated during the Rabi season, identified using multi-date Sentinel
2 satellite data (Fig. 5). The wheat crop was evenly distributed throughout the block. Wheat is sown in the
last week of November and harvested in April. The peak vegetative stage of the wheat crop is reached in the
first fortnight of March. Therefore, to distinguish the wheat crop from other associated Rabi season crops,
the satellite image from March was utilized.

Figure 5: Map showing satellite image (3rd March 2020) and classified wheat mask

Fig. 6 illustrates the spectral profile of wheat, mustard, fallow land, water bodies, and built-up areas
for imagery captured on 03 March 2020, coinciding with the peak vegetative stage of the wheat crop. In the
graph, the x-axis represents the different wavelength bands (red, green, blue, NIR, SWIR), while the y-axis
depicts the mean reflectance. The wheat crop exhibits higher reflectance in the NIR band due to its peak
vegetative stage. In contrast, the mustard crop shows lower reflectance in NIR due to a lack of chlorophyll
content, as it is in the harvesting stage. Water bodies display lower reflectance across the bands. Both fallow
land and built-up areas exhibit reduced reflectance in most bands.
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Figure 6: Graph showing spectral profile of 03 March 2020

The graph illustrates the mean value of the Normalized Difference Vegetation Index (NDVI) Fig. 7.
The x-axis represents the date of the satellite image, while the y-axis displays the mean value of NDVI. The
mean value of NDVI reaches its peak on 3rd March (0.271), because NDVI correlates positively with the
chlorophyll content in plants. Notably, 3rd March 2020 marks the peak vegetative stage of wheat, resulting
in greater reflectance.

Figure 7: Graph depicting the mean value Normalized Difference Vegetation Index (NDVI)

3.2 Production Forecast for Wheat crop in Barwala Block of Hisar district
Crop area estimation and yield assessment are the two major components for the production forecast

of the crops. In this study, crop production forecast for the wheat crop has been performed.



80 Revue Internationale de Géomatique. 2025;34

3.2.1 Crop Area Estimation
Crop area estimation is essential for various policymakers and planners involved in agricultural devel-

opment and decision-making regarding exports, imports, procurement, price fixation, storage, buffer stock,
public distribution, agro-based industries, and other related issues. For area estimation, crop classification
was performed using a supervised classification approach, followed by a maximum likelihood classifier
utilizing ground truth points. After generating the wheat crop mask, the area of the wheat was calculated
by multiplying the number of pixels in the wheat crop mask by the area of each pixel. The total area of the
wheat crop was 30,803 hectares for the Barwala block. Fig. 8 illustrates the classified wheat mask overlaying
the ground truth (GT) points.

Figure 8: Classified image of Sentinel-2 on 3rd March 2020 representing Wheat Mask

The relative deviation is calculated from the formulae as below:

Rel ative Deviation = (RS − DoA) /RS ∗ 100

where,
RS = Remote Sensing,
DoA = Department of Agriculture, Government of Haryana (India).
The classified image was utilized to calculate the area, which was then compared with the area statistics

obtained from the DoA, GoH, maintained by the department after the crop harvest. Table 2 illustrates the
area comparison in hectares, revealing a relative deviation of only−1.071%, indicating that the area computed
through remote sensing and GIS-based technology closely aligns with reality. Fig. 9 presents a zoomed-in
view of the classified wheat crop compared with the Sentinel 2 FCC satellite data from 03 March, 2020, of
Barwala. The Ground Truth (GT) point is overlaid on the satellite image, which displays high reflectance,
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indicating the good quality of the agricultural area. From the optical data, it can be visually interpreted that
the bright red patches represent the wheat crops that have been masked. Fig. 10 offers a closer view of the
mustard crop compared with the wheat mask. In Fig. 10, the FCC satellite image depicting the mustard crop
corresponding to the classified wheat mask is absent. Thus, the mustard crop is distinguished from the wheat
area in the present study.

Table 2: The details of wheat crops are represented using satellite datasets and government report sand relative deviation
(%) for area estimation

Type of crop Area in “ha” during 2019–2020
(using satellite data)

Area in “ha” during 2019–2020
(Dept. of Agriculture, Haryana)

Relative
deviation (%)

Wheat 30,809 31,142.666 −1.071%

Figure 9: The close view of the Sentinel 2 FCC image and classified image during 3rd March 2020 representing optical
data and classified wheat mask (a), Mustard crop in a close view and wheat mask (b), Fallow land in a close view and
wheat mask (c)
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Figure 10: Representation of settlement Sentinel 2 FCC image and classified Wheat mask

3.2.2 Yield Assessment
At the national or regional scale, crop yield prediction is essential for making production forecasts,

which are very helpful for decision-makers in rapid decision-making. In the present study, the yield
assessment of the wheat crop was evaluated using multi-date satellite data and PAR. The yield assessment
for wheat in the Barwala block was conducted using the Modified Monteith Model, which leverages several
key parameters to ensure accuracy. The model incorporated photosynthetically active radiation (PAR), the
fraction of absorbed photosynthetically active radiation (fAPAR), light use efficiency, and water stress factors.
These parameters were calculated at 10-day intervals, covering the wheat’s growth cycle from sowing in
December 2019 to harvesting in April 2020. Net Primary Productivity (NPP) was computed by integrating
these factors, serving as the basis for yield estimation. To translate NPP into actual crop yield, the harvest
index (HI), a conversion factor obtained from established literature (0.4 for wheat), was applied. This enabled
a comprehensive yield assessment at the block level. The results revealed that the average wheat yield in the
Barwala block, as derived from the Modified Monteith Model, was 5451.65 quintals per hectare Table 3.

Table 3: Representing the relative deviation (%) of wheat crop in yield assessment

Type of crop Average yield in “ha” during
2019–2020 (using satellite data)

Average yield in “ha” during
2019–2020 (Dept. of Agriculture,
Haryana)

Relative
deviation (%)

Wheat 5451.65 4941.67 9.4%

Fig. 11 displays the wheat yield map of Barwala. The yield was classified into four categories: (1) less than
30 q/ha, (2) 30–40 q/ha, (3) 40–50 q/ha, and (4) more than 50 q/ha. A significant portion of the yield falls
between 40 to 50 q/ha and exceeds 50 q/ha. Most of the yield values are concentrated near the canal system,
indicating a high fertility rate for crops in Barwala. Conversely, the low yield values are located near the
built-up area. The no-crop area in Fig. 12’s wheat yield map includes other crops, water bodies, built-up land,
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and fallow land. The average yield obtained from the model was compared with the DoA, GoH, showing a
deviation of 9.3%.

Figure 11: Wheat yield map of Barwala, Hisar, Haryana, India

Figure 12: Zoom in view of the wheat crop yield

The yield of the wheat computed through satellite-based data and the Monteith Model) were compared
with the area statistics obtained from the DoA, and GoH. Generally, crop statistics are generated by the
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agriculture department after crop harvesting. Table 3 depicts the comparison of yield in quintals per hectare
showing a relative deviation of 9.4%, showing that yield computed through remote sensing and GIS-based
technology is close to reality.

3.2.3 Accuracy Assessment
Accuracy assessment is a crucial component of the remote sensing mapping project. This assessment

relies on the formulas for producer accuracy, user accuracy, and overall accuracy, as outlined below [41].
It represents the final analytical step in remote sensing and Geographic Information Systems (GIS),
determining the quality of remotely sensed data (Table 4). The classified wheat mask was validated against
ground truth data using ArcGIS software. The table presents various components of the accuracy assessment,
including User Accuracy (UA), Producer Accuracy (PA), and Overall Accuracy. The producer accuracy for
wheat, mustard, and other crops is 93.32%, 100%, and 100%, respectively. The User Accuracy for wheat,
mustard, and other crops is 100%, 93.75%, and 83.33%, respectively. Table 5 displays the accuracy statistics.

ProducerAccurac y

=
Total number o f correct pixel s in categor y

Total number o f correct pixel s in categor y derived f rom the re f erence data (i .e ., row total )
UserAccurac y

=
Total number o f correct pixel s in categor y

Total number o f correct pixel s in categor y derived f rom the re f erence data (i .e ., column total)

Overal l Accurac y = Sum o f Diagonal el ements
Total number o f accurac y pixel s

Overal l Accurac y = (28 + 30 + 5) /66 = 0.95
Accurac y = 95%

Table 4: Overall accuracy representation for the Wheat, Mustard, and other crops

Crop Wheat Mustard Other crops Row total
Wheat 12.86 26.07 2.1 28

Mustard 13.98 22.32 0.5 32
Other crops 1 0 5 6

Column total 31 30 5 66

Table 5: Accuracy statistics for the producer and user for the different crops

Producer accuracy Percentage (%) User accuracy Percentage (%)
Wheat 93.32 Wheat 100

Mustard 100 Mustard 93.75
Other crops 100 Other crops 83.33
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4 Conclusion
The study highlights the effective use of Sentinel-2 satellite imagery for analyzing wheat yield in the

Barwala block of Hisar district, demonstrating the benefits of high-resolution, multi-temporal data for
accurately classifying crop areas and distinguishing them from other land uses. Multi-temporal satellite
images covering all phenological stages of the wheat crop during the Rabi season 2019–20 enabled precise
classification, which was validated against Department of Agriculture (DoA) statistics, revealing a relative
deviation of −1.07% for crop area estimation. A semi-physical model integrating parameters such as
photosynthetically active radiation (PAR), the fraction of absorbed PAR (fAPAR), water stress scalar, and
maximum radiation use efficiency was used to estimate biomass and yield, resulting in a relative deviation
of 9.3% compared with DoA data. These results illustrate the potential of high-resolution remote sensing
for generating reliable crop yield estimates at finer scales, supporting agricultural planning and decision-
making. However, the approach is not without limitations. The accuracy of yield estimation depends heavily
on the quality and availability of ancillary data, including weather and soil parameters, which can introduce
uncertainties. Additionally, the generalized application of radiation use efficiency and water stress scalar
values across different microclimatic zones may reduce model precision. Future research should explore
dynamic local calibration and incorporate real-time meteorological data to enhance model robustness.
Despite these constraints, the methodology aligns well with initiatives like the FASAL program, offering
valuable insights for improved agricultural monitoring and management in partnership with regional and
national remote sensing agencies.
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