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Abstract: With the development of multimedia presentation technology, image 
acquisition technology and the Internet industry, long-distance communication methods 
have changed from the previous letter, the audio to the current audio/video. And the 
proportion of video in work, study and entertainment keeps increasing, high-definition 
video is getting more and more attention. Due to the limits of the network environment 
and storage capacity, the original video must be encoded to be efficiently transmitted and 
stored. High Efficient Video Coding (HEVC) requires a large amount of time to 
recursively traverse all possible quantization parameter values of the coding unit in the 
adaptive quantization process. The optimal quantization parameter is calculated by 
comparing the rate distortion cost. In this paper, we propose a fast decision method for 
HEVC quantization parameters selection based on convolutional neural network, which 
saves video’s encoding time. 
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1 Introduction 
With the development of multimedia imaging technology, image acquisition technology 
and the Internet industry, the methods of people’s long-distance communication have 
changed from the previous letters to audio-video combination. Video plays an increasingly 
high proportion in work, learning and entertainment. In addition, high-definition video can 
provide a clearer and more realistic image, which plays a vital role in the development of 
various industries such as conference format, monitoring accuracy and so on Sullivan et al. 
[Sullivan, Ohm, Han et al. (2012)]. However, as video clarity and resolution increase, video 
content requires more bits for storage [Pourazad, Doutre, Azimi et al. (2012); Zhu, Li and 
Chen (2013)]. Efficient compression is the key for ultra-high definition video to be widely 
used in the market. In response to cope with the constantly changing Video Coding 
requirements, the International Joint Video Team released HEVC (High Efficiency Video 
Coding) [Sector ITU-T S (2013)]. 
The new generation of standards has been deeply updated in technology, such as using 
quadtree algorithm to improve the partitioning level of coding tree units in the coding 
structure, using larger resolution and asymmetric prediction units, multi-reference frame 
motion estimation and so on. In addition, block-based motion compensation is used in 
HEVC inter-frame prediction. HEVC can calculate the offset distance of the best 
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matching blocks in the spatial and temporal domains between continuous frames. That is 
the motion vector MV. Predicting the current MV by choosing neighboring MVs in the 
airspace or time domain .Then the prediction residual of MV is encoded which can save a 
large amount of MV encoded bits .HEVC proposes two new technologies in MV 
prediction, including AMVP and Merge .Both new techniques establish a candidate MV 
list and then select the MV with the lowest rate distortion cost as the predicted MV of the 
current PU. The difference between the two is primary that the Merge mode mainly 
transmits the index of the candidate PU block and does not need to transmit the MV 
information. The AMVP mode needs to transmit the MV information of the current 
encoded PU for inter-frame prediction. Secondly, the candidate list lengths are different. 
The candidate list length of the Merge mode is 5, while the candidate list length of the 
AMVP mode is only 2. The video compression efficiency of H.265/HEVC has been 
significantly improved after ensuring that the quality of video compression is not 
different from that of the HD video coded by the advanced video coding standard H.264 
[Shen, Li and Zhu (2013)]. 
The transform and quantization module in HEVC are mainly used to calculate the 
correlation coefficient according to image content, so as to reduce the redundancy of the 
image content and compress the video data more efficiently. For the video coding 
quantization process, the coding unit needs to spend a lot of time on the optimal adaptive 
quantization parameter selection. This process is modeled as the classification of 
quantization parameter of coding units, and the pre-trained network model directly 
predicts different types of coding blocks. Optimal adaptive quantization parameters. 
Finally, it can be realized that the video coding complexity is optimized under the 
condition that the video quality and the code rate after video compression are not 
significantly different from the original coding. 
The purpose of this paper is to solve the problem of high computational complexity of 
optimal quantization parameter decision in video coding process. A fast quantization 
parameter decision-making method based on convolutional neural network is studied. 
Firstly, the basic quantization parameters of the original high-efficiency video coding 
standard code are specified. According to the method provided by the code, the optimal 
quantization parameter offset is obtained by recursively calculating the rate-distortion 
cost of all CUs contained in each frame of video. The CU image is in one-to-one 
correspondence with the corresponding offset as the training set of the convolutional 
neural network to participate in the classification training of the convolutional neural 
network. The original optimal quantization parameter calculation process is replaced by 
the trained model and related codes. The experimental results show that compared with 
the method of selecting the optimal quantization parameter in HEVC, the coding time of 
the proposed method is reduced by 34% on average, and the loss of code rate and PSNR 
is basically negligible. 
The reminder of this paper is organized as follows. Section 2 introduces the related works. 
The details of the proposed work are presented in Section 3. Experimental results are 
given in Section 4. Finally, Section 5 concludes this paper. 
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2 Related works 
Currently, video coding is attracting increasing interest from academia, research 
institutions and large companies. In the progress of video coding complexity optimization, 
according to different optimization modules, it can be divided into parts: HEVC intra 
module complexity optimization and HEVC inter module complexity optimization, 
which is used to eliminate redundant information between single frames or multiple 
frames in a video. There are two important directions which need people to optimize, one 
is to optimize the size of different prediction unit, and the other is to reduce the intra 
prediction direction. According to the spatiotemporal information of adjacent coding 
units, Tang et al. [Tang, Jing, Chen et al. (2017)] reduced the traversal range of the CU, 
and optimize the prediction mode selection of other CUs by judging whether the current 
best prediction mode is the planar mode. Tian et al. [Tian and Goto (2012)] proposed a 
high efficiency intra PU selection algorithm, which calculates the content information of 
the coding tree unit and its sub-coding units according to the algorithm. And then they 
determined whether to directly proceed to the next round of PU mode selection process. 
Belghith et al. [Belghith, Kibeya and Ayed (2016)] used the Sobel operator to detect the 
edge of the CU and analyze the texture content of the CU. If the content of the CU is 
simple, the encoding is performed directly at the current depth. Otherwise, if the content 
of the current CU is complex, the division will be continued. Yao et al. [Yao, Li and Lu 
(2016)] used the pixel arrangement information of the texture to select different coding 
modes for different PUs. Min et al. [Min and Cheung (2015)] split CUs of different sizes 
by analyzing the texture features of video frames. Qi et al. [Qi, Zhu and Yang (2014)] 
used the Soble operator to calculate the texture direction information according to the 
value of the image pixel and the spatial correlation, and select the intra mode to predict. 
Shen et al. [Shen, Zhang and Liu (2014)] proposed a fast intra selection algorithm based 
on the spatiotemporal relationship between texture information and video images, and 
obtained texture information by calculating the mean absolute error. The optimization of 
inter prediction is to better select CU and PU. In Kim et al. [Kim, Yang, Won et al. 
(2012)], motion vector, relationship of PU under skip mode and corresponding residual 
are treated together as a model. In this way, the complexity of the PU decision process 
can be reduced. Shen et al. [Shen, Liu and Zhang (2013)] utilized the space-time domain 
information to determine the CU depth range of the coding tree unit. They dynamically 
adjust CTU levels by skipping or prematurely terminating infrequently used CU depths. 
By counting the rate distortion cost of CU encoded by skip mode, Kim et al. [Kim, Jeong 
and Cho (2012)] established a model to predict the current CU. Feng et al. [Feng, Dai, 
Zhao et al. (2017)] used the motion information of CU at the current depth to judge the 
CU division of the same area in adjacent frames. This approach can reduce the number of 
decision schemes of prediction mode by calculating the depth of different CU.  
At present, the methods of video coding optimization can be divided into two categories: 
statistical based methods and machine learning based methods. Statistical based methods 
are to prematurely terminate or skip unnecessary patterns based on statistical information. 
Lee et al. [Lee, Shim, Park et al. (2015)] proposed to use the distortion characteristics of 
the merge mode to determine the use of skip mode to skip unnecessary mode. Zupancic et 
al. [Zupancic, Blasi, Peixoto et al. (2016)] proposed an adaptive method of reverse 
checking CU from the bottom up according to the coding information of higher CU depth. 
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Jung and Park adopted an adaptive method to accelerate the HEVC coding process by 
utilizing data of RD cost and bit rate. Jung et al. [Jung and Park (2016); Choi and Jang 
(2016)] used a fast TU decision algorithm based on non-zero discrete cosine transform 
coefficients, which reduces complexity by trimming quadtrees. Lee et al. [Lee, Kim, Lim 
et al. (2015)] proposed a fast CU decision algorithm, which referred to skip mode 
decision, CU skip estimation and early CU termination algorithms, and used Bayesian 
decision theory to determine the CU termination threshold. Xiong et al. [Xiong, Li, Meng 
et al. (2015)] proposed a rapid decision-making algorithm based on absolute difference 
estimation. Ahn et al. [Ahn, Lee and Kim (2015)] proposed a fast and efficient CU 
coding method, which uses texture parameters such as sample adaptive offset, MV and 
TU size to estimate texture complexity and time complexity. All of the above approaches 
are based on statistical analysis that prematurely terminates or overpasses unrelated 
checks of CUs/PUs/Tus. This may limit its applicability to other sequences. 
From the perspective of machine learning, mode decision of video coding process can be 
regarded as a classification problem. For example, CU partitioning in HEVC can be 
considered as a binary classification task. Existing machine learning algorithm are used 
to predict the size of CU, PU, or TU in HEVC. Shen et al. [Shen, Zhang and Zhang 
(2015)] used Bayesian decision theory to map the variance of residual coefficient to TU 
size. Kim et al. [Kim and Park (2016)] proposed a CU premature termination algorithm 
based on Bayesian decision theory. In Correa et al. [Correa, Assuncao, Agostini et al. 
(2015)], Correa et al. used decision tree to predict CU size. Zhang et al. [Zhang, Kwong, 
Wang et al. (2015)] designed a triple output joint classifier and a flexible CU depth 
decision structure. Alencar et al. [Alencar and De Oliveira (2016)] proposed a fast CU 
decision method based on Pegasos algorithm, which terminated the CU division process 
through online learning. Zhu et al. [Zhu, Zhang, Li et al. (2016)] designed a decision 
function based on machine learning to control prediction accuracy. Peixoto et al. [Peixoto, 
Shanableh and Izquierdo (2014)] constructed a new H.264 /AVC to HEVC conversion 
architecture. They used H.264/AVC coding parameters to determine the CU partition 
mode of HEVC coding standard. In detail, they mapped the H.264/AVC coding 
parameters to the CU partition of HEVC coding standard by using linear discriminant 
function. These approaches predicted CU, PU, and TU by using machine learning 
algorithms. However, these algorithms only use weak classifiers to implement mode 
decision. Too many wrong classifications may result in poor RD performance and no 
reduction in complexity. 
Most of the complexity optimization algorithms mentioned above concentrated on the 
complexity optimization technologies of CUs/PUs in the intra/inter prediction module of 
HEVC. Researchers often rely on subjective inference to address complex computer 
vision problems. This behavior tends to ignore implicit but useful features. For the 
quantization module, the above method still uses the recursive search method to select the 
optimal quantization parameter in the quantization process. The process of calculating the 
optimal quantization parameter occupies a large proportion in the whole coding period. 
Since video coding efficiency is affected, there is a need to optimize the process of 
optimal quantization parameter selection. 
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3 Proposed method 
In this section, we describe a fast decision method for the selection of H.265/HEVC 
quantization parameters based on convolutional neural network.  

3.1 Problem formulation of QP selection 
HEVC standard reference software-HM uses two ways to calculate quantitative parameters 
in the process of quantitative. One is to use traditional calculation method. Firstly, specify a 
basic QP based quantitative parameters, then calculate the offset value according to the 
complexity of different CUs. In final, quantization parameter is obtained by adding the basic 
QP and quantization parameter offset. This method is fast to calculate, but the subjective 
quality of encoded video is poor, the quantization parameters corresponding to the coding 
unit are not the best. The other one is to use the adaptive method calculating optimal 
quantization parameters. Modify the HM encoding configuration file, specify the range of 
the quantitative parameters of the offset value between -7~7. Each CU from 64×64 to 8×8 
recursive traversal of all possible quantitative parameters, calculate the rate-distortion cost. 
The optimal quantitative parameters are calculated by comparing the fifteen quantitative 
parameters of different rate-distortion cost. Not only the quality of the video encoded using 
this method is better than the former, but the bit rate reduced. However, this method needs 
much more time in calculate QPs. 

3.2 Our method 
This paper proposes to simplify the recursive traversal method of the optimal quantization 
parameter in HM to the image classification problem using convolutional neural network. 
The training model directly derives the quantization parameter value. So the final 
quantization parameter is obtained, and the original Quantization Parameter Calculation 
Module of HM is replaced, as shown in Fig. 1. Since most of the time of HEVC encoded 
video is concentrated on quantization parameters calculation, the final coding time in an 
ideal state can be saved by about 14/15. 
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Figure 1: Improved method in this paper 
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3.3 The structure of our network 
We consider that if we use complex network structures, it may bring new complexity 
problems to the quantization module. The training model uses a simple convolutional 
neural network, as shown in Fig. 2. Convolution layer 1 uses 64 convolution kernels 
(3×3×3), the stride is set to 1, padding is set to SAME, the activation function uses ReLU. 
Pooling layer 1 selects the max pooling, 3×3 filter, the stride is set to 2, and performs 
local response normalization after pooling. Convolution layer 2 uses 16 convolution 
kernels (3×3×64), padding is also set to SAME, and the activation function uses ReLU. 
The pooling layer 2 also selects the max pooling, using 3×3 filter, the stride is set to 1, 
and the local response normalization operation is performed after the pooling is 
completed. The fully connected layer 1 converts the data output by the pooled layer into a 
one-dimensional list by a reshape operation, the number of nodes is set to 128, and the 
activation function uses ReLU. The fully connected layer 2 is also 128 nodes, and the 
activation function uses ReLU. The softmax regression layer outputs the previous fully 
connected layer and performs linear regression, then calculates the score for each class. 
Loss uses cross entropy loss, and the learning rate is set to 0.0001. 

 
Figure 2: Network model diagram 

Where N represents the size of the CU (64×64, 32×32, 16×16, 8×8), and CUs of different 
sizes are separately trained and predicted.  

3.4 Experimental results and analysis 
This paper uses 15 video test sequence provided by the international video coding group 
to collect training data as shown in Tab. 1, and uses the intra-frame coding structure to 
test the performance of the HM reference software.  
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Table 1: Test sequence 

Sequence Resolution 
Frame 

rate 
(fps) 

Sequence Resolution 
Frame 

rate 
(fps) 

BQTerrace 1920×1080 60 BasketballDrill 832×480 50 
ParkScene 1920×1080 24 BQMall 832×480 60 

BasketballDrive 1920×1080 50 PartyScene 832×480 50 
Cactus 1920×1080 50 RaceHorses 832×480 30 

Kimono1 1920×1080 24 BlowingBubbles 416×240 50 
Johnny 1280×720 60 BasketballPass 416×240 50 

FourPeople 1280×720 60 BQSquare 416×240 60 
KristenAndSara 1280×720 60    

In order to increase the credibility of the results and the feasibility of the network model, 
the basic QP is set to 22, 27, 32, and 37 respectively. The first 200 frames of each video 
sequence are encoded by HM. The index of video frame, the position of each coding unit in 
one frame and the corresponding quantization parameter in the encode process is recorded. 
Since there is little difference in content between adjacent frames, Frames used to train is 
extracted every ten frames. Then the coding unit used to train included in the original image 
is clipped according to the position of the coding unit in the entire original video frame. 
Finally, a total of 16 different convolutional neural network models based on different basic 
QPs, different size of CUs, and different QP offset were trained, corresponding to the four 
different coding unit sizes under the four basic quantization parameters. 
To ensure the authenticity and credibility of the experimental results, we replaced the original 
optimal quantization parameter module of HM16.0 with our proposed method results. The 
value of coding time, bit rate, and PSNR are based on the original HM reference software.  
Video coding requires a trade-off between encoded quality, bit rate and coding time. 
These parameters are the basis of video coding method evaluation. In encoding process, 
the quantization parameters compared with optimal QPs are predicted by the trained 
model. It is judged whether quantization parameters calculated by our method 
corresponding to different coding units are the same as the HM16.0 quantization 
parameters. The average accuracy of optimal QPs trained by ours in this paper is 81.2%. 
In order to verify the impact of our proposed method on the performance of HEVC 
coding, the encoding time, BDBR and BDPSNR are used as indicators for evaluating 
performance. The encoding time measured by considering the prediction time, hard disk 
reading and writing speed and other environmental factors is shown in Tab. 2. 
It can be seen from Tab. 2 that the Johnny video sequence performs best in the whole test 
result compared with the original method. When the basic QP is set to 37, the overall 
time savings is about 34.56%. Our result is limited by the hardware environment, so the 
time only proves the feasibility of the method in this application. Considering the 
experimental environment, the average encoding time can save about 34.29%, which 
greatly improves the coding efficiency. 
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Table 2: Time comparison 

sequence Resolution QP Time(s) Time Savings 
(%) Proposed HM16.0 

BasketballDrill 832×480 

22 381.71 551.01 30.73 
27 328.24 475.48 30.97 
32 284.87 411.79 30.82 
37 256.16 368.84 30.55 

BasketballPass 416×240 

22 102.62 138.98 26.16 
27 90.53 120.91 25.13 
32 80.40 105.70 23.94 
37 71.20 91.63 22.30 

BlowingBubbles 416×240 

22 107.43 142.92 24.83 
27 105.25 142.36 26.07 
32 95.44 128.93 25.97 
37 78.30 102.14 23.34 

BQMall 832×480 

22 466.15 692.50 32.69 
27 419.54 623.07 32.67 
32 372.30 552.62 32.63 
37 339.10 504.21 32.75 

BQSquare 416×240 

22 154.00 220.65 30.21 
27 142.72 204.50 30.21 
32 129.07 183.87 29.80 
37 116.73 164.93 29.23 

Johnny 1280×720 

22 920.69 1404.95 34.47 
27 841.13 1285.18 34.55 
32 772.63 1178.53 34.44 
37 746.15 1140.25 34.56 

PartyScene 832×480 

22 692.16 1049.00 34.02 
27 604.59 914.61 33.90 
32 545.93 828.59 34.11 
37 469.30 710.22 33.92 

RaceHorses 832×480 

22 562.18 852.40 34.05 
27 498.78 756.15 34.04 
32 390.63 583.16 33.02 
37 337.77 502.40 32.77 

Average 34.29 

In order to verify the difference between the proposed method and the original method in 
terms of bit rate and encoded video quality, BDBR and BDPSNR are used as the 
measurement. The results are shown in Tab. 3. 
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Table 3: RD Performance 

Video sequence Resolution 
Proposed vs. HM16.0 

BDBR (%) BDPSNR (dB) 
Johnny 1280×720 1.70 -0.05 
BQMall 832×480 0.86 -0.06 

PartyScene 832×480 0.65 -0.02 
RaceHorses 832×480 1.16 -0.05 

BasketballDrill 832×480 1.01 -0.07 
BasketballPass 416×240 0.94 -0.07 

BlowingBubbles 416×240 0.72 -0.05 
BQSquare 416×240 0.78 -0.07 

Average 0.98 -0.05 

It can be seen from the table that the loss of BDBR and BDPSNR has little to do with the 
video resolution. The average BDBR is increased by 0.98%, that is, the code rate is 
increased by 0.98%. The BDPSNR is reduced by 0.05 dB on average, that is, the video 
quality encoded reduced by 0.05 dB. 
In order to see the difference more intuitively between code rate and video quality, the 
RD curve is given in this paper. As shown in Fig. 3, the blue line represents the effect of 
the HM16.0 optimal adaptive quantization parameter on the coding effect. The red line is 
the effect of the proposed method on the coding effect. It can be seen clearly that 
compared with the original method the loss of bit rate and video quality encoded by our 
proposed method are negligible. 

 

Figure 3: RD curve 
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4 Conclusions 
In order to solve the problem that UHD video cannot be widely used in daily life, the 
international joint coding group JCT-VC brainstormed and launched HEVC. Although 
the coding efficiency and other aspects of performance have exceeded the previous 
generation coding standard H.264. It still takes a lot of time for HEVC to select the 
optimal adaptive quantization parameter. In order to optimize the complexity of HEVC in 
the quantization parameter selection algorithm and improve the coding performance of 
HEVC, the convolution neural network is used in this paper to simplify the complex 
quantization parameter calculation problem into a convolution neural network image 
classification problem. The experimental results show that the fast decision method of 
quantization parameters proposed in this paper can save about 34% of the average video 
coding time compared with the adaptive optimal quantization parameter selection method 
in HEVC reference code, and other losses are basically neglected. 
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