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Abstract: Recently, image representations derived by convolutional neural networks 
(CNN) have achieved promising performance for instance retrieval, and they outperform 
the traditional hand-crafted image features. However, most of existing CNN-based features 
are proposed to describe the entire images, and thus they are less robust to background 
clutter. This paper proposes a region of interest (RoI)-based deep convolutional 
representation for instance retrieval. It first detects the region of interests (RoIs) from an 
image, and then extracts a set of RoI-based CNN features from the fully-connected layer 
of CNN. The proposed RoI-based CNN feature describes the patterns of the detected RoIs, 
so that the visual matching can be implemented at image region-level to effectively identify 
target objects from cluttered backgrounds. Moreover, we test the performance of the 
proposed RoI-based CNN feature, when it is extracted from different convolutional layers 
or fully-connected layers. Also, we compare the performance of RoI-based CNN feature 
with those of the state-of-the-art CNN features on two instance retrieval benchmarks. 
Experimental results show that the proposed RoI-based CNN feature provides superior 
performance than the state-of-the-art CNN features for in-stance retrieval. 
 
Keywords: Image retrieval, instance retrieval, RoI, CNN, convolutional layer, 
convolutional feature maps. 

1 Introduction 
In past decades, many instance retrieval systems [Jégou, Douze and Schmid (2010); 
Mikulik, Perdoch, Ondřej et al. (2013); Philbin, Chum, Isard et al. (2007); Arandjelovic 
and Zisserman (2012); Tao, Gavves, Snoek et al. (2014); Lew (2006)] are based on the 
Bag-of-Word (BoW) model with hand-crafted local features (e.g., SIFT [Lowe (2004)], 
SURF [Bay, Ess, Tuytelaars et al. (2008)]). The local features are quantized to the nearest 
visual word of a well-trained visual codebook, and the inverted index is built for efficient 
feature matching. The BOW-based retrieval framework has shown to be suitable for large-
scale instance search tasks. 
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Figure 1: The toy examples of query images(left) and the database images (right) which 
contain the same target objects 
However, due to the limited discriminative power of hand-crafted local features and BOW 
quantization error, there are many mismatches between images, which will decrease the 
retrieval accuracy significantly. To alleviate this issue, some post-processing methods are 
proposed to explore spatial information among visual words, or to adopt query expansion 
[Arandjelovic and Zisserman (2012); Mohedano, Salvador, Mcguinness et al. (2016); 
Razavian, Azizpour, Sullivan et al. (2014); Chum, Philbin, Sivic et al. (2007); Yuan and 
Sun (2018)] to improve the retrieval accuracy. 
Recently, Convolutional Neural Networks (CNN) are well known for their out-standing 
performance in many computer vision tasks, such as image classification, target detection, 
and instance segmentation. Recent work Babenko et al. [Babenko and Lempitsky (2015)] has 
shown that features directly extracted from pre-trained CNNs outperform the hand-crafted 
features for instance retrieval on several public retrieval benchmarks. The existing instance 
retrieval frameworks using CNN-based image representations can be roughly divided into 
three categories. 1) The first one directly extracts a global CNN feature from an entire image 
[Wan, Wang, Hoi et al. (2014)]; 2) The second one extracts the CNN features at the local 
regions detected from an image, and then employs some aggregation techniques originally 
designed for aggregating hand-crafted local features, such as VLAD [Jégou, Douze, Schmid 
et al. (2010)], Fisher vector [Perronnin, Liu, Jorge et al. (2010)], and Triangulation 
embedding [Jegou and Zisserman (2014)], to further aggregate these features into a global 
feature, e.g., Gong et al. [Gong, Wang, Guo et al. (2014); Tolias, Sicre and Jégou (2015); 
Mohedano, Salvador, Mcguinness et al. (2016); Yuan, Sun and Wu (2018)]. 3) The last one 
builds a new network model to con-duct end-to-end learning process to learn image 
representation, such as Liu et al. [Liu, Tian, Wang et al. (2016); Jimenez, Alvarez and Giro-
I-Nieto (2017); Liu, Luo, Qiu et al. (2016); Arandjelovic, Gronat, Torii et al. (2017)]. 
The task of instance retrieval is to search for the images containing a same target object of 
a given query image in a large-scale database. However, the target objects are usually 
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contaminated by many irrelevant patterns and background clutter, as shown by the toy 
examples in Fig. 1. The existence of the irrelevant patterns and background clutter make 
the task of instance retrieval quite challenging. Unfortunately, most of the existing CNN 
features for instance retrieval are global features, which describe the patterns of the entire 
images, leading to inferior performance for retrieving target objects. 
In order to effectively identify the target objects from the irrelevant image patterns and 
background clutter, it is more reasonable to extract CNN features at image region-level and 
cross-match these region-level CNN features between images. Therefore, we attempt to 
propose a RoI-based CNN feature for instance retrieval. First, it detects region-of-interests 
(RoIs) based on the properties of convolutional layer activations of a pre-trained CNN, and 
then extracts the CNN features of ROIs from the fully-connected layer.   
Finally, the RoI-based CNN features are cross-matched between images by an efficient 
feature matching strategy. We test the performances of the proposed approach, when 
using different fully-connected or convolutional layers of the famous pre-trained 
network model, i.e., Alexnet [Krizhevsky, Sutskever and Hinton (2012)], VGG16 
[Simonyan and Zisserman (2014)], for RoI-based CNN feature extraction. The 
experimental results tested on several instance retrieval benchmarks validate the 
effectiveness of our proposed approach. 
The contributions of this paper are given as follows. 1) The extraction of the RoI-based 
features, which can support region-level visual matching and achieve superior performance 
than the existing global CNN-based features for instance retrieval. 2) The proposed method 
has great flexibility for region generation in that potential RoIs of any size and aspect ratio 
can be obtained anywhere in the image. 3) An efficient region-level feature matching 
strategy is proposed. It can efficiently cross-match the RoI-based features between images. 
The rest of this paper is organized as follows. Section 2 describes the related work. Section 
3 presents the RoI-based CNN feature extraction method, and the efficient region-level 
feature matching strategy. Section 4 provides the experimental results of the proposed 
approach and makes comparison with the state-of-the-arts. The conclusion is given in 
Section 5. 

2 Related work 
In past decades, many hand-crafted local features such as SIFT and SURF have been 
widely adopted in traditional instance retrieval systems. The invariant local features are 
extracted to describe the low-level characteristics of image patches, such as color or texture 
information, and they have shown desirable robustness to a variety of common image 
modifications and distortions, such as rescaling, rotation, illuminance and contrast change. 
To avoid the exhaustive feature matching between images, the BOW model and classic 
inverted index structures are adopted to realize fast feature matching in large-scale image 
databases. The BoW model is usually followed by some post-processing steps, e.g., spatial 
verification [Li, Jiang, Zha et al. (2013)] or query expansion [Arandjelovic and Zisserman 
(2012); Mohedano, Salvador, Mcguinness et al. (2016); Razavian, Azizpour, Sullivan et al. 
(2014); Chum, Philbin, Sivic et al. (2007)]. In the BOW-based frameworks, a large-sized 
vocabulary is used to significantly improve retrieval quality and it also need considerable 
memory. To address this issue, some aggregation methods such as VLAD [Jégou, Douze, 
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Schmid et al. (2010)], Fisher vector [Perronnin, Liu, Jorge et al. (2010)], and Triangulation 
embedding [Jegou and Zisserman (2014)] are proposed to aggregate the local features of 
an image into a compact feature.  
Recently, as CNN has achieved great success in the field of many computer vision tasks, 
it is also possible to use the intermediate layer activations of CNN as image representation 
for instance retrieval. Some works Gong et al. [Gong, Wang, Guo et al. (2014); Babenko, 
Slesarev, Chigorin et al. (2014); Wan, Wang, Hoi et al. (2014); Razavian, Azizpour, 
Sullivan et al. (2014); Yuan, Xia, Jiang et al. (2019)] directly extract global or local features 
from the activations of fully-connected layers of pre-trained CNN. For example, Wan et al. 
[Wan, Wang, Hoi et al. (2014)] directly used the output of the fully-connected layer from 
the pre-trained network as image representations. Then, the features were post-processed 
by 𝑙𝑙2 normalization and similarity learning to improve the retrieval accuracy. 
Instead of using full-connected layers, some works Babenko et al. [Babenko and 
Lempitsky (2015); Jimenez, Alvarez and Giro-I-Nieto (2017); Mohedano, Salvador, 
Mcguinness et al. (2016); Rezende, Zepeda, Ponce et al. (2017)] prefer to extract image 
representations from the convolutional layer activations. Generally, they generate the 
activations of deep convolutional layers with an input image, and then aggregate these 
activations by performing spatial max-pooling [Tolias, Sicre and Jégou (2015)], sum-
pooling [Babenko and Lempitsky (2015); Jimenez, Alvarez and Giro-I-Nieto (2017)], or 
mean-pooling [Zhi, Duan, Wang et al. (2016)] to generate compact image representations. 
To further improve the retrieval accuracy, these representations are usually post-processed 
by 𝑙𝑙2  normalization and PCA whitening. In these works, the image representations 
generated from convolutional layers have been shown superior performance than those 
from full-connected layers for instance retrieval. However, target objects in an image 
typically occupy only a small proportion of an image, while the above image 
representations are extracted to describe the entire image. That makes these representations 
less robustness to background clutters, leading to inferior performance for identifying 
target objects from distracters in cluttered backgrounds. 
Recently, regional CNN features [Gong, Wang, Guo et al. (2014); Tolias, Sicre and Jégou 
(2015); Mohedano, Salvador, Mcguinness et al. (2016); Hinami, Matsui and Satoh (2017)] 
have shown significantly advantages over global CNN features in that they represent an 
image through a set of regions. Then, the regional CNN features can be cross-matched 
between images to implement instance retrieval. In such manner, the problem of robustness 
to background clutter can be alleviated significantly. For example, Razavian et al. 
[Razavian, Azizpour, Sullivan et al. (2014)] first investigated the use of regional CNN 
features in instance retrieval. Fischer et al. [Fischer, Dosovitskiy and Brox (2014)] detected 
the elliptic regions of interest by using the maximally stable extremal regions (MSER) 
detector. Then, the CNN and SIFT features are extracted from these regions. Experimental 
results illustrate the significant advantages of CNN over SIFT. Although the above region-
based CNN features generally have achieved superior performance than the global CNN 
features, there still suffer the following shortcoming. Generally, they are generated from 
the rectangular blocks divided from the entire image or the small patches detected by the 
traditional patch detectors, and many background clutters are introduced into the regions. 
As a result, these regional features cannot be accurately matched for instance retrieval. 
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Some other methods are proposed to employ fine-tuning network structure to accommodate 
instance retrieval tasks. Liu et al. [Liu, Luo, Qiu et al. (2016)] re-adjusted the network 
structure so that the network can simultaneously output multiple values to predict multiple 
attributes of an image instance. Liu et al. [Liu, Tian, Wang et al. (2016)] proposed an end-to-
end learning framework to identify identical vehicles in different images by capturing both 
the inter-model difference and intra-model difference between different vehicles. Jimenez et 
al. [Jimenez, Alvarez and Giro-I-Nieto (2017)] modified the network structure and replaced 
the fully-connected layer with the global average pool layer. They represent images by 
aggregating pooling features corresponding to the top N categories of the highest prediction. 
In this paper, we propose a RoI-based CNN feature using convolutional feature maps 
(CFMs) [Cao, Liu, Wang et al. (2016)] for instance retrieval. Obviously, it is very likely 
that the visual patterns with similar texture information belongs to the same object. That is 
also illustrated by Fig. 2.  

      

      
Figure 2: The feature maps produced by a certain layer (conv5) of Alexnet with input 
images. The first row shows the input images, and the second row visualizes the 
corresponding feature maps 
This figure visualizes the activation values of a certain layer of CNN with an input image, 
and these activations are viewed as the responses of a certain convolutional filter. From 
this figure, we observe that the visual patterns with the similar activation values belong to 
the same object. Based on this observation, we detect multiple RoIs, i.e., potential target 
object regions, from an image based on its CFMs properties. Then, the regional CNN 
features are extracted from the CFMs of these regions. Finally, the instance retrieval is 
implemented by comparing these RoI-based CNN features between images. 

3 The proposed ROI-based CNN features extraction method 
In this section, we detail the extraction process of RoI-based CNN features and introduce 
how to use these features for instance retrieval. 

3.1 Generation of convolutional feature maps (CFMs) 
In our approach, the famous pre-trained network, i.e., Alexnet, is employed. From Krizhevsky 
et al. [Krizhevsky, Sutskever and Hinton (2012)], it has five convolutional layers (conv1, 
conv2, ..., conv5) followed by three fully connected layers (fc6, fc7, fc8). If an image is fed 
into a pre-trained CNN, the output of a convolutional layer is a set of CFMs, which is a 3D 
tensor of size W×H×D. Where D is the number of output feature channels, and W and H are 
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proportional to the width and height of the input image, respectively. 

3.2 RoI-based feature extraction 
In this subsection, we introduce how to generate base regions from images. The base 
region generation consists of two steps: base region detection based on CFMs and base 
region optimization.  

3.2.1 Base region detection based on CFMs 
Intuitively, the CFMs of CNN pre-trained on large labeled datasets have different responses 
for different textures. Generally, in the CFMs, high activation values correspond to well-
textured region, while low activation values represent weakly textured regions. Based on this 
phenomenon, we can detect relatively high activation values, and combine the positions of 
these activation values to form a potential target region in an image. 
For each map in CFMs, the binarization operation is performed by a defined threshold to 
obtain the corresponding binarized map. Then, for 𝑑𝑑 − 𝑡𝑡ℎ map in the binarized CFMs, the 
locations of non-zero values are utilized to form a base region, which is represented by 

𝑅𝑅𝑑𝑑 = �𝑃𝑃𝑖𝑖𝑑𝑑�𝑓𝑓�𝑃𝑃𝑖𝑖𝑑𝑑� > 0�, 1 ≤ 𝑑𝑑 ≤ 𝐷𝐷                                       (1) 
where, 𝑓𝑓�𝑃𝑃𝑖𝑖𝑑𝑑� is the activation value of 𝑃𝑃𝑖𝑖𝑑𝑑 in 𝑑𝑑 − 𝑡𝑡ℎ feature map, and D is the number 
of feature maps. Afterward, for simplification, the rectangle regions 𝑅𝑅𝑑𝑑′  are used as base 
regions to approximate the detected irregular regions, as shown in Fig. 3. 
As a result, totally D base regions are generated from an image.  

 
Figure 3: The toy examples of (a) query image and (b) its CFMs, which are a 3D tensor of 
size W×H×D. (c) A base region extracted from locations of non-zero activations in a 
feature map  

3.2.2 RoI detection 
In the generated base regions, there are two kinds of regions that are less likely to be the 
regions of target objects. In this subsection, we will eliminate these regions to optimize the 
result of base region generation. The first kind of regions are those regions with relatively 
small size. If the ratio between the areas of the regions and that of the entire image is less 
than the threshold 𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚, we will remove these regions. The second kind is the regions of 
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which aspect ratio (= max (𝑊𝑊𝑟𝑟,𝐻𝐻𝑟𝑟)
min (𝑊𝑊𝑟𝑟,𝐻𝐻𝑟𝑟)

) is greater than the predefined threshold 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, where 𝑊𝑊𝑟𝑟 
and 𝐻𝐻𝑟𝑟 represent the width and length of the base region, respectively. Next, the sum of 
the activation values for each remaining base region is calculated and sorted in descending 
order. Then, we iteratively filter the base regions until we select K regions with higher 
activations, meanwhile, we guarantee that the Intersection over Union (IOU) between 
regions are less than 𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 (𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 is set to 95%). 
Finally, the RoIs of an image are obtained according to the relationships between the sizes of 
the image and its CFMs. Fig. 4 visualizes the ROIs generated from some example images 
using CFMs. Fig. 5 shows the extraction pipeline of RoIs from a given image.  

      

Figure 4: The base regions generated from different instance images. These regions are 
shown by the bounding boxes with different color 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The extraction of RoI-based features from a given image. (a) The input image; 
(b) The Corresponding CFMs; (c) The binarized CFMs; (d) The base regions generated 
from the binarized CFMs; (e) The remaining base regions after region optimization; (f) The 
RoIs of the input image generated by mapping the base regions to the image 

3.2.3 Feature extraction 
We extract two kinds of CNN features to represent ROIs, i.e., one is from the fully-
connected layer and the other from the convolutional layer. 
The feature generated from the fully-connected layer usually have a higher level of 
semantic abstraction for the objects in the image, which allows high discriminability for 
distinguishing different objects. For a ROI in the image, we feed it directly into Alexnet to 
get the output of the fully-connected layer as the feature of this region. Then, PCA-
whitening and 𝑙𝑙2 normalization are implemented to obtain compact feature representation. 
Recent work has shown that the features of convolutional layers have better discriminating 
power than fully-connected layers. As the feature extracted from the convolutional layer 
preserve spatial information of the objects in the image, we also extract the convolutional 
layer feature. The convolutional layer feature of the ROI is extracted by sum-pooling or 
max-pooling of the corresponding portion of CFMs. Consequently, the feature 
dimensionality is equal to the number of feature channels. 
The binarization is performed to all the extracted CNN features. We perform binarization 
to a feature 𝑓𝑓𝑖𝑖 by 
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𝑓𝑓𝑖𝑖 = �1, 𝑖𝑖𝑓𝑓 𝑓𝑓𝑖𝑖 > 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑖𝑖)
0, otherwise                                                (2) 

3.2.4 Image retrieval and re-ranking 
We use a combination of low-level visual features and semantic features to represent each 
image. For each image in a database, the SURF descriptors are extracted as the low-level 
features and quantized to visual words based on BOW model, and thus the image can be 
represented as a histogram of visual words, i.e., BOW representation. Then, the classic 
inverted file is built for fast retrieval. At the same time, the CNN features of each RoI in 
the image are retained as high-level semantic features. 
In the query stage, we first match the quantized SURF features between a given query 
image and database images by looking up the inverted index file, and then score the 
similarities between database images to the query image by TF-IDF strategy. Then the top 
N ranked database images are used as candidate images for re-ranking of initial retrieval 
result. During the query re-ranking stage, RoI-based features are extracted from the query 
image by the same feature extraction algorithm described above. 
Then, the RoI-based CNN features are cross-matched between query and database images, 
and the maximum feature similarities are used as the similarity between them. To improve 
the matching efficiency, we propose a fast feature matching method to avoid exhaustive 
matching between images. In the matched CNN features between query image and top n 
candidate images where n≪N, the true feature matches usually occupy a large proportion. 
Based on this observation, in the query re-ranking stage, we use the exhaustive feature 
matching only for the top n candidate images, and thus obtain the first k RoI-based features 
with highest matching frequencies in the query image. Thus, the query image can be 
accurately represented by these top k RoI-based CNN features. Afterword, for the 
remaining (N-n) candidate images, we only calculate the similarity between their RoI-
based CNN features and the first k RoI-based features of the query image. This simple fast 
matching strategy can significantly reduce the computational complexity of feature 
matching, and also suppress the similarity between dissimilar images, which will improve 
retrieval accuracy. 
Finally, the maximum feature similarity between query image and candidate images is used 
as the image similarity for the re-ranking of initial retrieval result. 

4 Experiments 
In this section, we will systematically evaluate the performance of the proposed method on 
public image datasets, and compare with those of the state-of-the-art methods. 

4.1 Datasets 
We evaluate our approach on the following datasets.   
Oxford5k dataset. This dataset contains 5062 images of 11 landmarks from Oxford 
University. Each landmark contains 5 query images, and thus there are 55 queries in total. 
Paris6k dataset. This dataset is similar to Oxford5k, but it contains 6412 images of 11 Paris 
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land-marks. Each landmark contains 5 query images, and 55 queries in total. 
To reduce computation complexity, the resolution of all database images is adjusted to no 
more than 500×500 pixels. 

4.2 Experiment setup 
Mean average precision (mAP) is adopted to compute the accuracy of the proposed method. 
We find that the features extracted from conv5 layer of CFMs are more effective than other 
convolutional layers, and the features extracted from the fc7 layer provide superior 
performance to those of other layers. Therefore, in the remaining experiments, we extract 
RoIs and then use the features extracted from fc7 or conv5 layer to represent each RoI. All 
experiments are performed on a PC with 3.2 GHz Core-i5 (8 GB RAM). 

          

          
 (a) 

           

             
 (b) 

          

           
(c) 

Figure 6: Examples of top retrieved images before (top) and after (bottom) re-ranking with 
RoI-based feature extraction. The left is query images in which the objects are highlighted 
by blue box. The best matching object position after re-ranking is highlighted by bounding 
box with magenta color. The positive/negative images are marked with green/red border  

Fig. 6 is a query result for some query images. The left column is the query image, the first 
row on the right is the top retrieved images returned by using the BoW model, and the 
second row is the top retrieved results returned by the re-ranking. The true positives are 
marked by the green color, and the false positives are shown by red color. 
For vector 𝑓𝑓1 and 𝑓𝑓2 (𝑓𝑓1,𝑓𝑓2 ∈ 𝑅𝑅1∗𝑑𝑑), the similarity is computed as  
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Sim(𝑓𝑓1,𝑓𝑓2) = 1 −  𝑠𝑠𝑠𝑠𝑚𝑚(𝑟𝑟𝑎𝑎𝑠𝑠(𝑓𝑓1−𝑓𝑓2))
𝐷𝐷

                                         (3) 

where D represents the feature dimensionality. 
We only analyze the impact of different K with small values (K=5,10,15,20) on the 
retrieval results, as higher K leads to an exponential increase in the computation cost of 
similarity. Tab. 1 and Tab. 2 show the retrieval accuracy of the proposed method using 
different K and feature extraction methods. As shown in Tab. 1 and Tab. 2, larger K leads 
to higher retrieval accuracy. We can also see that the features extracted from the fully-
connected layer can yield better results than those from the convolutional layer. The reason 
may be that the features from the fully-connected layer contain a higher level of visual 
abstraction, while features from the convolutional layer tend to capture low-level 
information of the target object. In the two tables, Dim represents the dimensionality of the 
feature. Baseline refers to the retrieval accuracy using only global image representation; 
Fc7 corresponds to the activation value of the fc7 layer directly from the CNN; Max-
pooling or Sum-pooling means that max-pooling or sum-pooling is performed for the 
conv5 feature maps. 

Table 1: Retrieval result on the Paris6k dataset 

Table 2: Retrieval result on the Oxford5k dataset 

4.3 Comparison with the state-of-the-arts 
In this section, we compare RoI-based feature extraction with the state-of-the-art methods on 
several instance retrieval datasets. From Tab. 3, it clear that our method achieves highest 
MAP values on Paris6K dataset. Also, the MAP value of our method is comparable to that 
of Mohedano et al. ’s method [Mohedano, Salvador and Mcguinness (2016)]. 

Table 3: Comparison with existing methods based on CNN-based extraction 
Methods NetWork Layer Paris6k Oxford5k 
[Mohedano, Salvador, Mcguinness et al. (2016)] VGG16 conv 84.8 78.8 
[Razavian, Azizpour, Sullivan et al. (2014)] OverFeat fc 67.6 52.0 
[Ng, Yang and Davis (2015)] VGG16 conv 69.4 64.9 
[Mopuri and Babu (2015)] Alexnet fc 71.47 60.71 
[Babenko and Lempitsky (2015)] VGG16 conv - 65.7 
Fc7 (ours) Alexnet fc 86.78 72.86 

 

Feature Dim Baseline K=5 K=10 K=15 K=20 
Fc7 4096 80.55 85.04 85.93 86.78 86.78 
Max-pooling 256 81.64 82.4 81.63 81.84 81.01 
Sum-pooling 256 77.15 82.38 81.55 81.24 80.51 

Feature Dim Baseline K=5 K=10 K=15 K=20 
Fc7 4096 65.42 71.23 72.32 72.76 72.86 
Max-pooling 256 69.21 71.09 71.33 69.62 68.34 
Sum-pooling 256 65.31 71.76 71.99 71.31 69.32 
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5 Conclusion 
In this paper, we propose a novel RoI-based feature extraction method. By analyzing the 
properties of CFMs of images, multiple ROIs that may contain the target object are detected. 
Using these regions for the extraction of image feature representations can effectively 
reduce the impact of image background on retrieval performance. Moreover, the proposed 
method can be easily combined with other post-processing algorithms to further improve 
the retrieval performance. Experiments demonstrate the effectiveness of the proposed 
method in re-ranking of initial retrieval result on several public datasets. 
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