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Abstract: The theory of compressed sensing (CS) has been proposed to reduce the 

processing time and accelerate the scanning process. In this paper, the image recovery 

task is considered to outsource to the cloud server for its abundant computing and storage 

resources. However, the cloud server is untrusted then may pose a considerable amount 

of concern for potential privacy leakage. How to protect data privacy and simultaneously 

maintain management of the image remains challenging. Motivated by the above 

challenge, we propose an image encryption algorithm based on chaotic system, CS and 

image saliency. In our scheme, we outsource the image CS samples to cloud for reduced 

storage and portable computing. Consider privacy, the scheme ensures the cloud to 

securely reconstruct image. Theoretical analysis and experiment show the scheme 

achieves effectiveness, efficiency and high security simultaneously. 
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1 Introduction 

In recent years, the Compressed sensing (CS) emerged as an image transmission and 

processing framework, due to the Compressive sensing (CS), which allows the original 

signal to be determined from even fewer measurements than the Shannon sampling 

theorem requests by utilizing the signal’s compressibility in some domains. CS finds a 

sparse solution of an ill-posed inverse problem when the signal of interest is known to be 

sparse and compressible. CS theory demonstrates that only O(M) random measurements 

are enough to represent the transformed data x, where K<M≤N. Signal x must be K-

sparse if x has only K significant elements when other elements are zero or close to zero. 

Each measurement yi  is the inner product of x and the measurement vector Φi  ∈ RN, i.e.,  

yi =< Φi , x > .Define Φ = [Φ1,...,ΦM]T, we have 

y = ΦX = ΦBs                                                                                                      (1) 

where NandMR NM   ,  
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The CS-based cryptosystem has some inherent advantages. Firstly, the low cost of CS 

sampling process makes the CS-based cryptosystem very suitable for low-complexity 

restricted system. Secondly, during the CS sampling process, compression and encryption 

can be jointly guaranteed by a simple matrix multiplication operation. It is worth 

mentioning that the combined compression and encryption of CS sampling is an 

appealing option for real-world communications [Xiang, Li, Hao et al. (2018)]. 

More and more digital images are generated because digital technologies and Internet, 

transmitted over the networks and stored on various platforms, such as cloud server, hard 

drive, and others. Some image information may be involved in personal privacy, trade 

secrets, military secrets and even national security, thus it will be very serious that 

attackers copy, malicious spread and tamper with the images in the transmission process 

through the network. for protect the image information over the network, many image 

encryption algorithms have been proposed using chaotic system, [Shah, Li and Sodhro 

(2016); Alam and Hamida (2015); Naganawa, Wangchuk, Kim et al. (2017)], DNA 

computing, [MosavatJahromi, Maham and Tsiftsis (2016); Zhou, Cao, Dong et al. (2015); 

Zhu, Gao and Li (2016)], cellular automata (CA), optical transform [Dautov and Tsouri 

(2014); Cheng, Tsai and Huang (2016); Yan, Wang and Shen (2014)], Brownian motion 

[Norouzi, Seyedzadeh, Mirzakuchaki et al. (2015)]; Latin squares and others. These 

algorithms can actually encrypt image information effectively and ensure data security. 

Compressed sensing allows reducing the number of samples required for high 

dimensional signal acquisition while retaining important information. However, the 

tradeoff is that the image recovery process could be computationally demanding. Owing 

to the limited resources, performing such computationally intensive image recovery tasks 

is impractical from the viewpoint of sensors and end users. 

Existing methods always encrypt the entire plain text or image. However, in case of real-

time and resource-constrained security applications like mobile phone, such traditional 

encryption schemes are not feasible due to their huge computational complexity. To solve 

this limitation up to some extent, the concept of selective encryption is presented, where 

only the important data is encrypted, thereby reducing the amount of image data to be 

encrypted [Wan, Kai and Liu (2012); Ying, Wang and Zhang (2009)]. 

With cloud computing being more widely utilized, it provides a feasible solution to cost- and 

time-saving associated with image recovery for resource-constrained sensors and end users. 

The image signal usually contains confidential or sensitive information, then outsourcing the 

image recovery task to the untrusted cloud server may bring privacy leakage [Shuang and 

Zhou (2017)]. Another problem is that directly using compressed sensing recovering the 

original signals is computationally hard, only when the random measurement matrix is kept 

secret. We note that, although establishment of the symmetric key may introduce some 

overhead due to the complexity of public-key cryptography, it is a one-time procedure 

during system initialization only. Different symmetric keys can be established for different 

meters [Shuren, Wenlong, Junguo et al. (2018)]. 

The chaotic system has the characteristics of high sensitivity to initial conditions and 

control parameters, and is widely used in the field of image encryption to further enhance 

the random- ness of the algorithm and keys. Chaos is a kind of complex dynamical 

behavior with special properties [Yao, Yuan, Qiang et al. (2016)]. A chaotic sequence is 
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pseudorandom and finite, which is suitable for constructing the measurement matrix, 

[Dan, Geng and Pahlavan (2016)]. Chaotic system can generate measurement matrices by 

the deterministic method which means a sequence can be generated by a deterministic 

system while this sequence is pseudorandom meeting the condition of the measurement 

matrix. So, it can simplify the constructing process of the measurement matrix [Liao, 

Leeson, Higgins et al. (2016); Ayatollahitafti, Ngadi, Mohamad Sharif et al. (2016); 

Tsouri, Zambito and Venkataraman (2016)]. 

Block compressed sensing (BCS) is simpler and more efficient than other CS techniques, 

BCS can sufficiently capture the complicated geometric structures. BCS is a great 

success exploit of CS which can be widely used in many aspects. The main advantages of 

BCS includes: (a) Measurement operator can be easily stored and implemented through a 

random undersampled filter bank; (b) Block-based measurement is more advantageous 

for real-time applications as we only got part of the whole data; (c) Since process each 

block is dependent, we can easily got the initial solution and speeded up the 

reconstruction process [Raja and Kiruthika (2015)]. 

Based on the above analyses, in the premise of guaranteeing information security, we 

introduce an image encryption algorithm based on the chaotic system, image saliency and 

block compressive sensing. Our contributions are as follows. First, partition the image into 

small blocks, then through saliency and perturbation, the plain image measure become y. y 

and part secret key transferred to cloud server. The block perturbation image would transfer 

to decryption server. User using the secret key from encryption user, help get the correct 

reconstruct image [Ya, Yun, Jin et al. (2018); Daojian, Yuan, Feng et al. (2018)]. 

2 Preliminaries 

2.1 Block compressive sensing 

In 2006, Candes and Donoho proposed the concept of compressive sensing (CS), it 

compresses and samples simultaneously, and allows the exact recovery of a sparse signal 

from some projections lower than the Nyquist rate. The theory of CS points out that: by 

developing the sparse characteristic of the signal, the discrete sample of the signal is 

obtained by random sampling under the condition of far less than the Nyquist sampling 

rate, and then the reconstruction signal is perfect by the nonlinear reconstruction 

algorithm. Compressive sensing theory asserts that if the signal is naturally sparse or 

sparse in some transform domains, the high dimensional signal can be projected into a 

low dimensional space by a measurement matrix unrelated to the sparse base, and these 

few projections contain enough information about the reconstructed signal, so that the 

original signal can be reconstructed with high probability by solving the optimization 

problem with these projections [Mahsa, Mahdad Hosseini, Claudio et al. (2014); Gan, Zhi, 

Jian et al. (2014)]. 

2.2 Image saliency 

So far, there has been a large number of saliency detection models proposed for various 

multimedia processing applications. Most existing saliency detection methods are 

implemented in uncompressed domain. Generally, most images over Internet are stored 

in the compressed domain of joint photographic expert group (JPEG). These existing 
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saliency detection methods must decompress these compressed images to extract features 

from the compressed images in compressed domain. However, this is a computation 

consuming and time-consuming process. It is advantageous to use the saliency detection 

model in the compressed domain to extract the salient regions in images in the proposed 

method. Therefore, as in, we follow a saliency detection model in the compressed domain 

to extract the salient region in the image. Firstly, the DCT coefficients are used to extract 

the intensity, color and texture features; then, the feature contrast is calculated by the 

feature differences between image patches; the final salient regions can be extracted by 

the spatially weighted feature contrast [Rouf, Mustafa, Xu et al. (2012)]. 

We outsource the image CS samples to cloud for reduced storage and portable computing. 

Consider privacy, the scheme ensures the cloud to securely reconstruct image. 

Theoretical analysis and experiment show the scheme achieves effectiveness, efficiency 

and high security simultaneously [Shahrasbi and Rahnavard (2016); Khan, Ahmad and 

Hwang (2015)]. 

2.3 BCS-SPL 

Block-based random image sampling is coupled with a projection driven compressed 

sensing recovery that encourages sparsity in the domain of directional transforms 

simultaneously with a smooth reconstructed image. Both contourlets as well as complex 

valued dual-tree wavelets are considered for their highly directional representation, while 

bivariate shrinkage is adapted to their multiscale decomposition structure to provide the 

requisite sparsity constraint. Smoothing is achieved via a Wiener filter incorporated into 

iterative projected Landweber compressed-sensing recovery, yielding fast reconstruction. 

The proposed approach yields images with quality that matches or exceeds that produced 

by a popular, yet computationally expensive, technique which minimizes total variation. 

Additionally, reconstruction quality is substantially superior to that from several 

prominent pursuits-based algorithms that do not include any smoothing. Adopted the 

general paradigm of block-based random image sampling coupled with a projection-

based reconstruction promoting not only sparsity but also smoothness of the 

reconstruction. This framework facilitates the incorporation into the CS-recovery process 

of directional transforms based on contourlets and complex-valued dual-tree wavelets. 

[Zhou, Zhang, Wu et al. (2014); Wu and Liu (2012)]. 

3 Proposed scheme 

In this section, we will present our BCS-based privacy-preserving image recovery 

scheme based on cloud. We assume a semi-trusted cloud as the adversary in our scheme 

throughout this paper, i.e., the cloud performs the reconstruction service honestly, but is 

curious in learning content of the client data. The cloud involves two entities: the data 

owner and the end user, which are assumed to mobile devices with only limited 

computational resources. Fig. 1 demonstrates the detail of the scheme. The scheme 

consists of three parts: encryption, cloud work, decryption. In encryption part, plain 

image measure becomes y through block, saliency and perturbation. Then transfer y and 

part of the secret key to cloud server. The cloud server solves the BCS reconstruction 

problem using BCS-SPL recoding algorithm. Then the block perturbation image would 
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transfer to decryption server. Decryption user using the secret key from encryption user, 

help get the correct reconstruct image. The detail of the three part will be introduce in the 

next subsection. 

 

Figure 1: Scheme architecture 

Although CS prevents the recovery of the original signal under wireless eavesdropping, 

we identify the following vulnerability of CS in leaking statistics of the original signal. 

Note that x represent important privacy information of the user. Tab. 1 shows an example 

of the leak of statistics. We can see that, when transfer matrix is used, the 2-norm of the 

original signal can be accurately estimated. The estimated upper bound of x is close to x. 

When random measurement matrix is used, the x can be exactly estimated. 

Table 1: Signal feature change 

 L2 Estimated variance 

True value 12678 435.2 21.43 

Estimated 13568 [12.1 482.1] 411 

Estimated(psi) 584621 [842 18942] 19212 
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Figure 2: Energy leakage of CS encryption 

Information entropy is an important criterion to measure the feature of randomness. 11 is 

the image shown in Fig. 2. We can see that the entropies of the cipher images are very 

close to the ideal value, which can be seen in Fig. 3. It means the information leakage of 

the proposed coding scheme is negligible. 

3.1 Encryption 

The proposed image encryption scheme is illustrated in Fig. 4, and the detailed 

encryption steps are as follows: 

Step 1: Assume the size of the plain image I is N×N, then it is split into N1×N1 blocks. N1 

is set to 32 in our experiments.  

Step 2: Do saliency detection for all blocks, calculate the saliency value of each block. 

Step 3: Perform zigzag confusion on I with (x0, y0), which is produce from chaotic 

sequence 

Step 4: Then the image I is sparse by use of discrete wavelet transform (DWT), and the 

sparse coefficient matrix I1 with the same size of N×N is obtained. 

Step 5: Select Reference Block using saliency value, the blocks which has smallest value 

would choose to be reference block, the other blocks would encrypt based reference 

block. The encrypted blocks were Bi = Bi−1 − Bi−2, the order of i is produce from the same 

chaotic sequence. And B1 is reference block. 

Step 6: We get the same secret key from chaotic sequence, produce (r, z0), using skew 

tent map produce random measurement matrix, then produce Eq. (1) get measurement y, 

after that we quantization y. 
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Figure 3: Encryption 

3.2 Cloud work 

For the cloud, the access request is processed by calling Data Detect to resolve the 

rightful ownership of the image. If the detection result reveals match, the cloud would 

call Problem Solve to solve the problem and output the answer e to the authorized end 

user. Otherwise, the cloud would refuse to serve. 

To avoid the cloud servers being lazy or intentionally corrupting the computation result, 

we propose to design a result verification method to handle these two malicious 

behaviors. After the end user recovers original f, he only needs to perform a simple 

matrix-vector multiplication and verify whether. If so, the results returned from the two 

cloud servers are trusted; otherwise, we can consider that the cloud servers are cheating. 

3.3 Decryption 

The decryption process is depicted in Fig. 4, which is the inverse operation of the 

encryption process. Before the decryption, secret keys including 512-bit hash value K, 

abandoning number n0 of chaotic sequences, the total number e of evolutions, the total 

number w of scrambling rounds, four parameters: x0,y0,z0,r , initial location ( x0,y0 ) and 

the measurement matrix dare firstly computed as described in section 3.1 . When got cipher 

image, decoding using BCS-SPL algorithm take advantage of chaotic measurement matrix, 

then do dwt inverse transfer. The last step is zigzag perturbation inverse. 

Noting that block-based random image sampling coupled with a projection-based 

reconstruction promotes not only sparsity but also smoothness of the reconstruction. This 

framework facilitates the incorporation into the CS-recovery process of directional 

transforms based on sparse wavelets. The resulting algorithms inherit the fast execution 

speed of the projection-based CS reconstruction while the enhanced directionality 

coupled with a smoothing step encourages superior image quality, particularly at low 

sampling rates. 
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Figure 4: Decryption 

   

4 Simulation results 

Fig. 5 is the original figure. We set block 1 as reference block, the following encoding 

scheme is all based reference block, the other block transform make use of it, and 

Reference block only encrypted using traditional chaotic compressed sensing. Other 

blocks all first transform, then encrypt. This is because reference block has the least 

image information and do not need too many encrypt. Experiment shows in Fig. 6. Block 

1 is the reference block. 

   

        Figure 5: Original figure                         Figure 6: Image block based saliency 

4.1 Privacy analysis 

Consider for security, chaotic compressed sensing cryptosystem is computational security 

under brute-force attack and cipher text only attack, because of its key security. In the 

signal encryption step, the signal y is encrypted by perturbation block, which are 

encrypted by two different keys, which make X is computationally-infeasible in practice. 

We claim that the confidentiality of the sensed signal is well protected. Correspondingly, 

the cloud servers cannot recover the original image content either. So in our scheme, the 
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cloud finish storage and computation mask but cannot produce information leakage. 

We analyze the privacy of transmitted data packets through experiment implementation. 

We use the sized 256x256 image Lena as test image. Chaotic system produces a random 

seed a=0.1, encoder uses this seed to produce the measurement matrix A. y=A*x, the 

decoded file is shown in Fig. 7, and assume the adversary produces a newly same seed 

a=0.1+0.01, the decoded file is in Fig. 7, very different from Fig. 8. 

4.2 Computation complexity 

The computational complexity of our scheme mainly contains the following three parts: 

(1) the key generation; (2) perturbation; (3) measurement Time complexity is also an 

important index to evaluate the performance of the encryption scheme. The encryption 

process consists of compression and encryption of the plain image, and embedding 

process, and the decryption one is composed of extraction process of the compressed 

cipher image and reconstruction process of the plain image. we can watch that firstly, for 

the total encryption and decryption times, embedding and extraction times of the 

compressed cipher image are very little, in detail, in encryption process, compression and 

encryption of the plain image accounts for about 60 total time, and in decryption process, 

the reconstruction process costs around 95 G to 1024 G, the encryption time is from 

0.4049 s to 3.9024 s, but the decryption time is from 1.4724 s to 122.4369 s. Thus, the 

proposed encryption scheme is suitable for the small and medium size images, when the 

size of the image is larger, the time complexity is very higher. In the following work, we 

will plan to substitute block compressive sensing (BCS) for compressive sensing (CS) to 

reduce the computation complexity and shorten the encryption and decryption time. 

 

Figure 7: Measurement when a=0.1 

4.3 Efficiency analysis 

In our scheme, we shift the image reconstruction task to the cloud side to make the 

compressed sensing technique much more practical. The sensor side and the user side 
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only need to do simple addition and subtraction operations Moreover, there will be no 

difference even for different sizes of images. Therefore, our design can reduce the 

computation burden of the sensor side and the end user side tremendously. 

4.3 Time complexity analysis 

Regardless of the security considerations, encryption speed is also important, especially 

in real-time internet applications. In this paper, we analyze the encryption and decryption 

time of different size images at different compression ratios (CR), and the results are 

listed in Tab. 2 and Tab. 3.  

 

Figure 8: Measurement when a=0.1+0.01 

Table 2: Encryption time 

Image Size Lena Cameraman Peppers 

CR=0.15 0.4472 0.4607 0.4921 

CR=0.35 0.4742 0.4682 0.5166 

CR=0.55 0.4830 0.4852 0.5225 

From Tab. 2, we can watch that (1) for the same plain image, the change of CR has a 

slight impact on the encryption time. When CR varies from 0.15 to 0.55, the encryption 

time for 256×256 images is about 0.46 s. (2) for the same original image, the decryption 

time under different compression ratios is different. And with the increasing of CR, the 

decryption time also increases. As shown in Tab. 3, when CR changes from 0.15 to 0.55, 

the time of decrypting Lena image is varying from 1.1 s to 15 s. The reason lays in 

solving the optimal solution in the reconstruction process, and the larger the measurement 

matrix, the more time needs. 
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Table 3: Signal feature change 

Image Size Lena Cameraman Peppers 

CR=0.15 1.1267 1.1413 2.3156 

CR=0.35 6.0213 2.0684 8.1423 

CR=0.55 13.2451 5.2635 14.2513 

5 Conclusions 

In this paper, a block compressed sensing for Images selective encryption based privacy 

preserving in cloud is proposed, which integrates the technique of CS domain processing 

into the secure computation outsourcing. We outsource the image CS samples to cloud 

for reduced storage and portable computing. Consider privacy, the scheme ensures the 

cloud to securely reconstruct image. Theoretical analysis and experiment show the 

scheme achieves effectiveness, efficiency and high security simultaneously. 
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