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ABSTRACT: In this work, the Hierarchical Quadrature Element Method (HQEM) formulation of geometrically
exact shells is proposed and applied for geometrically nonlinear analyses of both isotropic and laminated shells. The
stress resultant formulation is developed within the HQEM framework, consequently significantly simplifying the
computations of residual force and stiffness matrix. The present formulation inherently avoids shear and membrane
locking, benefiting from its high-order approximation property. Furthermore, HQEM’s independent nodal distribution
capability conveniently supports local p-refinement and flexibly facilitates mesh generation in various structural
configurations through the combination of quadrilateral and triangular elements. Remarkably, in lateral buckling
analysis, the HQEM outperforms the weak-form quadrilateral element (QEM) in accuracy with identical nodal
degrees of freedom (three displacements and two rotations). Under high-load nonlinear response, the QEM exhibits a
maximum relative deviation of approximately 9.5% from the reference, while the HQEM remains closely aligned with
the benchmark results. In addition, for the cantilever beam under tip moment, HQEM produces virtually no out-of-
plane deviation, compared to a slight deviation of 0.00001 with QEM, confirming its superior numerical reliability. In
summary, the method demonstrates high accuracy, superior convergence, and robustness in handling large rotations
and complex post-buckling behaviors across a series of benchmark problems.

KEYWORDS: Geometrically exact shell; hierarchical quadrature element method; geometrically nonlinear; laminated
shells; local p-refinement; shear and membrane locking; post-buckling behaviors

1 Introduction
Nonlinear shell analysis has long been a subject of extensive research [1], owing to its critical role in a

wide range of engineering fields such as aerospace, civil architecture, and automotive design. Although the
mathematical foundations of shell theory were laid well before the advent of modern computational mechan-
ics, its notoriously intricate formulations have historically posed considerable challenges for numerical
implementation [2]. A major breakthrough came in 1989 when Simo and Fox [3] developed the geometrically
exact shell theory based on Cosserat’s hypothesis [4] and Mindlin-Reissner theory [5]. This shell model
only requires a mid-surface’s position vector and an inextensible director to describe the configuration,
with the exclusion of drilling rotations. Since the introduction of the geometrically exact shell model,
considerable efforts have been devoted to advancing its theoretical framework. Ibrahimbegović established
a finite rotation-based stress resultant framework and addressed singularity issues through vector-like
parameterizations [6]. Zhang et al. [7] developed a nonlocal geometrically exact shell theory for fracture
modeling under finite deformations. Ma et al. [8] introduced a phase-field fracture model for stress-resultant
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geometrically exact shells within the finite deformation regime. Parallel to these, the development of the finite
element method has been a central theme for improving numerical accuracy and mitigating locking effects.
In this context, Zhang et al. [9] introduced a weak-form quadrature element method (QEM), which improves
computational efficiency through direct numerical integration at collocation points. Lavrenčič et al. [10]
systematically compared mixed and hybrid finite element formulations based on variational principles
such as Assumed Natural Strain and Hu–Washizu functionals, aiming to identify optimal approaches for
approximating shell behavior. More recently, Kim et al. [11] applied isogeometric analysis with Bézier
extraction and assumed natural strain methods, further bridging geometric modeling and high-order finite
element analysis.

In practical engineering, the finite element method (FEM) based on geometrically exact formulations
has been extensively applied to model the nonlinear response of shells under large deformations [12].
Representative applications include structural stability in advanced materials and structures [13], the
nonlinear dynamic analysis of fiber-reinforced composite shell [14], the modeling of curved thin-walled
structures with deformable cross-sections [15,16], the simulation of the contact of composite laminates [17],
as well as complex failure phenomena in large deformation [18]. Moreover, contemporary shell modeling
is being reshaped by broader computational mechanics trends. One major trend is the incorporation of
machine learning into the finite element analysis workflow, for purposes ranging from integrating nonlinear
shell analysis into design frameworks [19] to merge pattern recognition with a finite element model [20].
Simultaneously, the push for higher computational efficiency has established GPU-accelerated solvers as a
critical performance enabler, with demonstrated successes in stamping simulation using shell elements [21]
and in explicit dynamics for thin shells [22].

Despite these advancements, practical engineering applications face notable challenges. Low-order
elements are widely used but hindered by high computational costs and locking effects. To address
these limitations, high-order methods have emerged. In the past decades, the hierarchical finite element
method [23], meshfree method [24,25], weak form quadrature element method [26,27], iso-geometric
analysis (IGA) [28,29], spectral elements [30,31] and other high-order schemes have begun to emerge for
large-scale engineering analyses with high accuracy. However, high-order methods often introduce a new set
of challenges, such as meshing difficulties for complex geometries and cumbersome stiffness formulations,
presenting a hurdle for practical application. In this context, the Hierarchical Quadrature Element Method
(HQEM) was developed to address the implementation difficulties of the hierarchical finite element method,
particularly in imposing boundary conditions and assembling elements, by introducing interpolative bases
based on differential quadrature nodes along element boundaries [32]. Consequently, the HQEM offers
a great balance between computational efficiency and implementation practicality. Further compounding
these numerical challenges is the growing need for formulations capable of handling laminated composites,
which are increasingly used in lightweight and high-performance structures [33,34]. Extending existing
models to laminate materials, however, introduces further complexities in constitutive integration and stress
resultant computations, necessitating a mathematically concise and computationally efficient formulation
for the nonlinear analysis of complex shell structures undergoing large deformations.

To meet this need, this work presents an extension of the Hierarchical Quadrature Element Method
(HQEM) [32] to the nonlinear analysis of both isotropic and laminated shells. By leveraging high-order
approximation [35] and hierarchical structure [32], HQEM inherently mitigates shear and membrane locking
and readily enables local p-refinement. Notably, the HQEM has demonstrated versatility across various
engineering applications. Its applications range from the dynamic analysis of rotor systems [36] and the
multi-physics reliability assessment of conical shells [37], to thermo-mechanical fracture simulation with
efficient remeshing [38,39]. The key contributions of this work are summarized as follows: (1) a unified
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HQEM formulation for geometrically exact isotropic and laminated shells; (2) significant simplification of
residual force and stiffness matrix computations; (3) inherent mitigation of shear and membrane locking; (4)
convenient support for local p-refinement; (5) compared with the weak-form quadrilateral element (QEM)
approach [9], accurate capture of nonlinear behavior under high loads; and (6) flexible mesh generation
through the combination of quadrilateral and triangular elements. While the current formulations are
applied to linear elastic laminates, the HQEM framework can be extended to accommodate more complex
scenarios, such as those involving plasticity and functionally graded materials, by introducing appropriate
inelastic material models. These extensions will be explored in future work.

The organization of this paper is as follows: Section 2 introduces a brief review of geometrically exact
shell theory and constitutive relations of laminated shells. Section 3 introduces the rotation description,
updating of the current director with quaternions. Section 4 introduces the shape function of quadri-
lateral/trilateral HQEM and develops the stress resultant formulation within the HQEM framework,
subsequently deriving the corresponding residual force vectors and tangent stiffness matrices. In Section 5,
seven benchmark problems are analyzed to confirm the accuracy and convergence of the HQEM.
Finally, Section 6 presents the conclusions of the study.

2 Geometrically Exact Shells Model
In the geometrically exact shell model, the shell’s configuration is defined by its mid-surface position

and an associated unit director field. As illustrated in Fig. 1, a Cartesian reference frame {ei} (i = 1, 2, 3) is
introduced, where r denotes the mid-surface position vector, and t represents the unit director. The current
and initial configurations are labeled as Ω and Ω0, respectively. The current configuration of a quadrilateral
shell patch is then fully described by

Ω={ϕ ⊂ R
3 ∣ϕ = r (xα) + x3t (xα) , α = 1, 2 and x3 ∈ [h−, h+]} (1)

where xα (α = 1, 2) are convected coordinates describing the midsurface of the shell, and the x3 is the thickness
coordinate. The thickness of the shell is defined by h = h+ − h−. For the ease of representing the deformation
gradient of the shell, the current covariant frames Gi (i = 1, 2, 3) and initial covariant frames gi (i = 1, 2, 3) are
defined as

{G1 G2 G3} = {r,1 + x3t,1 r,2 + x3t,2 t} (2)

and

{g1 g2 g3} = {r0,1 + x3t0,1 r0,2 + x3t0,2 t0} (3)

where r0 and r denote the mid-surface position vectors in the initial and current configurations, respectively;
t0 and t are the corresponding unit directors. Subscript, (α) indicates partial derivatives with respect to the
coordinates xα (α = 1, 2). The differentiation of the mid-surface in the initial configuration is defined as

dΩ0 = j0dx 1dx2 (4)

in which j0 = ∥r01 × r02∥ is the projection parameter in the initial configuration. With the definition of
deformation gradient F

F = ∇ϕ (∇ϕ)−1 = Gi ⊗ gi (5)
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where gi is the contravariant basis vector of gi, satisfying gi⋅ gj = δij, with δij being the Kronecker delta. The
Green–Lagrange strain tensor ε can be obtained as

ε = 1
2
(FTF − I) = 1

2
(Gi ⋅ G j − gi ⋅ g j)gi ⊗ g j = ε i jgi ⊗ g j (6)

and the strain component εij can also be written as

εi j = ε(0)i j + x3ε(1)i j + (x3)2 ε(2)i j (7)

Given the negligible effect of transverse shear gradients in this context [40], the quadratic terms in x3

can be omitted from Eq. (7). Meanwhile, the retained strain components align with those established by Simo
et al. [41]. The explicit expressions of the strain component are

ε(0)αβ = 1
2
(r,α ⋅ r,β − r0

,α ⋅ r0
,β)

ε(0)α3 = ε(0)3α = 1
2

r,α ⋅ t

ε(1)αβ = 1
2
(r,α ⋅ t,β + r,β ⋅ t,α − r0

,α ⋅ t0
,β − r0

,β ⋅ t0
,α) (8)

The relationship between strain ε and stress s can be expressed as:

s(α) = Dε(α), α = 0, 1 (9)

in which the vector forms of strain ε measures and stress s resultants are given as

s = [s11 s22 s12 s13 s23]
T

ε = [ε11 ε22 2ε12 2ε13 2ε23]
T (10)

Figure 1: Initial and current configurations of shell

A laminated composite shell is composed of a finite number of stacked thin layers with individual
material properties along its thickness direction. As shown in Fig. 2, a local Cartesian material frame {eα}
(α = 1, 2, 3) is defined on the layer’s initial configuration, with its base vectors e1 and e2 aligned with the fiber’s
longitudinal and transverse directions, respectively. For a certain single layer, the homogeneous orthotropic
linear elastic constitutive relationship is assumed for material modeling. The constitutive matrix D of pth
layer is thus obtained as

D(p) = LDLT (11)
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where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/E1 −υ12/E1 0 0 0
−υ12/E1 1/E2 0 0 0

0 0 1/G12 0 0
0 0 0 1/G13 0
0 0 0 0 1/G23

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(12)

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(g1
1)

2 (g1
2)

2 2g1
1 g1

2 0 0

(g2
1 )

2 (g2
2)

2 2g2
1 g2

2 0 0
g1

1 g2
1 g1

2 g2
2 g2

1 g1
2 + g2

2 g1
1 0 0

0 0 0 g1
1 g1

2

0 0 0 g2
1 g2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

in which gβ
α = eα ⋅gβ . E, υ and G denote the Young’s modulus, Poisson’s ratio, and shear modulus of the

material. As depicted in Fig. 2, the vectors eα and the base vectors gα, gα all lie in the plane normal to t0.

Figure 2: Local coordinate systems for a single layer

Although the current formulations are applied to linear elastic laminates, the HQEM framework can
be extended to accommodate more complex scenarios, such as those involving plasticity and functionally
graded materials, by introducing appropriate inelastic material models. These extensions will be explored in
future work.

3 Rotation Description
In classical shell theory, the individual element nodal variable vector δu is defined as

δu = [δrT δθ1 δθ2]
T (14)

where δθ1 and δθ2 represent the two rotation components, respectively. The current director t can be
obtained through quaternions [42] as

t = q ○ e3 ○ q∗ (15)

where q∗ is the conjugated quaternion, and e3 = [0 0 1]T denotes one of the base vectors of the Cartesian
coordinate. The current quaternion q can be updated from the initial quaternion q0 as

q = exp (δθ/2) ○ q0 (16)
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in which

exp (δθ/2) = [cos (∥δθ∥ /2) sin (∥δθ∥ /2) ⋅ δθ
∥δθ∥] (17)

and δθ represents the incremental rotation vector. The quaternion representation adopted here has proven
to be a stable and efficient tool for algebraic operations [43], enabling a convenient and robust description
of spatial rotations and the corresponding update procedures. Besides the quaternion, other rotation
parameterizations, such as updating the rotation vector via the rotation tensor [44,45], are also feasible.

The rotation from the initial director to the current director can also be described by the rotation tensor
Λ as

t = Λe3 (18)

In classical shell theory, the rotation of the director vector t is constrained to remain within its normal
plane (i.e., no drilling rotation). In addition, the director orthogonal frame is denoted by {tα} (α = 1, 2, 3).
The {tα} (α = 1, 2, 3) is defined as

tα = Λαeα (α = 1, 2) , t3 = Λe3 = t (19)

where ei (i = 1, 2, 3) represents the inertial (fixed) basis of the Cartesian reference frame {eα} (α = 1, 2, 3),
and defined as

e1= [1 0 0]T , e2= [0 1 0]T , e3= [0 0 1]T (20)

Because the drilling rotation of director t is omitted, the rotations at a point are described by only
two independent variables (δθ1 and δθ2). Therefore, the infinitesimal incremental rotation vector δθ is
constrained to be orthogonal to t and its variation δt. In this way, the infinitesimal incremental rotation
vector δθ can be obtained as

δθ = t × δt = [t1 t2] [
δθ1
δθ2

] (21)

For the orthogonality of the rotation tensor Λ, the variation of Λ is given by introducing a rotation
vector variation δθ as

δΛ = δθ̂Λ (22)

where ˆ denotes the skew-symmetric tensor form of a vector. The variation of t thus can be obtained
from Eq. (18) as

δt = δΛt0 = −t̂δθ= − t̂ [t1 t2] [
δθ1
δθ2

] (23)

4 Element Formulation of HQEM

4.1 Shape Functions for HQEM
Although the quadrilateral element is the most prevalent and is the main element discussed in this

work, triangular elements are advantageous in certain cases, such as for modeling circular/spherical shells,
for facilitating mesh generation. Consequently, the shape functions for triangular elements are also addressed
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in this section. Different from the quadrilateral element method (QEM), where all element nodes serve as
integration points, the HQEM instead employs Gauss-Lobatto integration points (mg × ng) for numerical
integration. The HQEM permits independent node distribution at the vertices, edges, and interior of each
element. Provided that the C0 continuity of the basis functions across element boundaries is guaranteed,
this flexibility enables the assembly of elements with varying edge-node configurations and arbitrarily
distributed face nodes. This capability enables key features such as local p-refinement and the combination
of quadrilateral and triangular elements.

4.1.1 Quadrilateral Elements
The hierarchical quadrature elements with curved edges in two-dimensional domains are shown

in Fig. 3. The bases on the edges of the quadrilateral element are Serendipity interpolation shape functions
based on non-uniform Gauss-Lobatto nodes, while the bases inside the quadrilateral element are the
hierarchical shape functions in tensor product form.

(a) (b)

Figure 3: A quadrilateral element: (a) parametric domain, (b) geometric domain

As illustrated in Fig. 3, this flexibility enables varying nodal counts along individual edges in the
quadrilateral element. The corresponding shape functions for these geometric features are respectively
defined as Table 1. The shape function matrix h are defined as

h= [h
v
1 h

e ,1
i h

v
2 h

e ,2
i h

v
3 h

e ,3
i h

v
4 h

e ,4
i hṁ ,ṅ] (24)

with the dimension of 1 × n, and n represents the total number of HQEM nodes. As depicted in Eq. (24),
h

e ,k
i (k = 1, 2, 3, 4) is the Serendipity interpolation shape functions on the edges, h

v
k(k = 1, 2, 3, 4) is the

shape function at four corners, hṁ ,ṅ represents the shape function inside the quadrilateral element domain.
As shown in Table 1, M and N denote the number of nodes on the boundaries in the ξ and η directions,
respectively. Correspondingly, ṁ and ṅ represent the number of nodes in the interior of the element along
these directions. LM

i (ξ) is the Lagrange shape function corresponding to the i-th node on an edge along ξ
direction:

LM
i (ξ) =

M
∏

j=1, j≠i

ξ − ξ j

ξi − ξ j
. (25)
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The Lṁ is the Legendre polynomials, and

φṁ (ξ) = ∫
ξ

−1
Lṁ (ξ)dξ =

(ξ2 − 1)
ṁ (ṁ + 1)

dLṁ (ξ)
dξ

, ξ ∈ [−1, 1] , ṁ = 1, 2, ⋅ ⋅ ⋅ (26)

Table 1: Shape function of the quadrilateral element

Geometries Shape function

4 vertices

h
v
1 = (1 − η)

2
LM

1 (ξ) + (1 − ξ)
2

LN
1 (η) − (1 − ξ) (1 − η)

4
,

h
v
2 = (1 − η)

2
LM

M (ξ) + ξ
2

LN
1 (η) − ξ (1 − η)

4

h
v
3 = ξ

2
LN

N (η) + η
2

LM
M (ξ) − ξη

4
, h

v
4 = (1 − ξ)

2
LN

N (η) + η
2

LM
1 (ξ) − (1 − ξ) η

4

4 edges
h

e ,1
i = (1 − η)

2
LM

i (ξ) , 2 ≤ i ≤ M − 1, h
e ,2
i = ξ

2
LN

i (η) , 2 ≤ i ≤ N − 1

h
e ,3
i = η

2
LM

i (ξ) , 2 ≤ i ≤ M − 1, h
e ,4
i = (1 − ξ)

2
LN

i (η) , 2 ≤ i ≤ N − 1

Face
hṁ ,ṅ = φṁ (ξ)φṅ (η)

φṁ (ξ) = ∫
ξ
−1 Lṁ (ξ)dξ =

(ξ2 − 1)
ṁ (ṁ + 1)

dLṁ (ξ)
dξ

, ξ ∈ [−1, 1] , ṁ = 1, 2, ⋅ ⋅ ⋅

In order to analyze HQEM’s capacity of p-refinement, a simply supported plate subjected to a central
point load is modeled as illustrated in Fig. 4a. The material and geometrical parameters are defined as
follows: Poisson’s ratio υ = 0.3, Young’s modulus E = 10.92 × 105, length l = 5, lΔ = 1.2, and thickness h = 0.1.
Due to symmetry, only one quarter of the plate is discretized using a 4-element mesh, an assembly of
low-order, transition, and high-order elements. The transition element acts as an intermediate component
that smoothly bridges the disparity in nodal density between coarse low-order and refined high-order
regions, and thus effectively localizes the refinement influence. As shown in Fig. 4b, compared to uniform
p-refinement, the local p-refinement approach demonstrates excellent performance while simultaneously
reducing computational costs. The difference in CPU time between the element assembly with pl = ph−3 and
the element assembly with uniform p-refinement is denoted as ΔtCPU. Fig. 4b additionally plots ΔtCPU against
the number of nodes per side of the high-order element. It is noteworthy that locally increasing the element
order leads to growth in the condition number of the system matrix. However, our numerical experiments
show that, for the same maximum order ph, the condition number of the local p-refinement scheme remains
on the same order of magnitude as that of the global uniform refinement scheme. The increase is primarily
governed by the local maximum order ph, rather than the order jump (ph−pl).
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Figure 4: (a) quadrilateral p-refinement; (b) central point deflection comparing local p-refinement and uniform p-
refinement, where ph and pl represent the p-order of high-order and low-order elements

4.1.2 Trilateral Elements
For modeling spherical or circular shells, the use of triangular elements offers a dual advantage in

both geometric representation and computational efficiency. First, the triangular element naturally conforms
to the rotational symmetry, which simplifies mesh generation; second, under a comparable total number
of DOFs, the triangular element typically achieves a higher polynomial order, thereby promoting faster
convergence relative to other element types.

The hierarchical trilateral elements with curved edges in two-dimensional domains are shown in Fig. 5.
The corresponding shape function matrix h is defined as

h= [h
v
1 h

e ,1
i h

v
2 h

e ,2
i h

v
3 h

e ,3
i hṁ ,ṅ] (27)

with the dimension of 1 × n. The corresponding shape functions for these geometric features are defined as
shown in Table 2. Here, alongside M and N, Q is introduced, which represents the number of nodes on the
trilateral element’s 2nd edge. The Jacobi polynomials P(α ,β)

ṁ are employed to construct the hierarchical shape
functions inside the HQEM element. The recursion formula of Jacobi polynomials is as follows

a1i P(α ,β)
i+1 (ξ) = (a2i + a3i ξ)P(α ,β)

i (ξ) − a4i P(α ,β)
i−1 (ξ) (28)

where i is a nonnegative integer, α > −1, β > −1 and

P(α ,β)
0 (ξ) = 1, P(α ,β)

1 (ξ) = 1
2
[α − β + (α + β + 2) ξ] (29)

and

a1i = 2 (i + 1) (i + α + β + 1) (2i + α + β)
a2i = (2i + α + β + 1) (α2 − β2)
a3i = (2i + α + β) (2i + α + β + 1) (2i + α + β + 2)
a4i = 2 (i + α) (i + β) (2i + α + β + 2)

(30)
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Figure 5: A triangular element: (a) parametric domain, (b) geometric domain

Table 2: Shape function of trilateral element

Geometries Shape function

3 vertices

h
v
1 (ξ, η) = 1 − ξ − η

1 − ξ
LM

1 (ξ) + 1 − ξ − η
1 − η

LN
1 (η) − (1 − ξ − η)

h
v
2 (ξ, η) = 1 − ξ − η

1 − ξ
LM

M (ξ) + ξ
1 − η

LP
1 (η) − ξ (1 − ξ − η)

1 − ξ

h
v
3 (ξ, η) = ξ

1 − η
LP

P (η) + 1 − ξ − η
1 − η

LN
N (η)

3 edges

h
e , 1
i (ξ, η) = 1 − ξ − η

1 − ξ
LM

i (ξ) , i = 2, ⋅ ⋅ ⋅ , M − 1; h
e , 2
j (ξ, η) = ξ

1 − η
LQ

j (η) ,

j = 2, ⋅ ⋅ ⋅ , Q − 1

h
e ,3
j (ξ, η) = 1 − ξ − η

1 − η
LN

j (η) , j = 2, ⋅ ⋅ ⋅ , N − 1

Face hṁ ,ṅ (ξ, η) = 2pP(2, 2p+5)
ṅ [2 (η + ξ) − 1] [(η + ξ)p P(2, 2)

ṁ (η − ξ
η + ξ

)]

The Jacobi polynomials are defined on [−1, 1].
It is well known that the trilateral element is conveniently applied to modeling circular/spherical shells

for facilitating mesh generation. A fully clamped elastic circular plate subjected to a uniform pressure is
analyzed in this work, as shown in Fig. 6a. Due to symmetry, a quarter of the plate is modeled using either a
single triangular element or a combination of quadrilateral and triangular elements, with all elements having
11 nodes per side. As shown in Fig. 6b, the results from the trilateral HQEM are in excellent agreement with
both the analytical solution (Chia et al. [46]) and the reference numerical solution (Wang et al. [47]).
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Figure 6: (a) Trilateral p-refinement; (b) normalized central deflection results for the clamped circular plate

4.2 Discretization of Element Virtual Work through the HQEM
Assuming that the number of layers through the thickness of the laminated shell is nl, the element

internal virtual work δWint can be written as

δWint = ∫
V(e)

0

(s∶ δε)dV0 = ∫
A(e)

0

nl

∑
p=1

∫
x3
(p+1)

x3
(p)

j0sijδεijdx3dx 1dx2

= ∫
A(e)

0

nl
∑
p=1

1
∑
k=0

1
∑
l=0

(a(k+l)(p) j0δε(k)TD(p)ε(l))dx 1dx2 (31)

where x3
(p+1) and x3

(p) represent the thickness coordinates on the upper and the lower surface of the pth layer.
As shown in Eq. (31), a(k+l)(p) represents the weighted thickness coefficient of the pth layer, which serves to
partition the through-thickness integration term and is obtained as

a(k+l)(p) = ∫
x3
(p+1)

x3
(p)

(x3)(k+l) dx3 (32)

with the integer (k + l) ranging from 0 to 2. The weighted thickness coefficients a(k+l)(p) defined in Eq. (32)
are evaluated analytically for each layer. For shells with a single layer, Eq. (31) can be written as

δWint = ∫
A(e)

0

[ j0hδε(0)TDε(0) + 1
12

j0h3δε(1)TDε(1)]dx 1dx2 (33)

The Gauss-Lobatto quadrature [48] is employed to evaluate integrals in the Hierarchical Quadrature
Element Method (HQEM), with mg and ng integration points assigned along its two dimensions, respectively.
The total nodal variable vector δd for an HQEM element with n nodes are defined as

δd= [δuT
1 ⋅ ⋅ ⋅ δuT

i ⋅ ⋅ ⋅ δuT
n] (34)

the definition of δui can be referred to Eq. (14). And then, the global nodal coordinate array δd is
reorganized into five n × 1 consolidated vectors: δ r1, δ r2, δ r3, δθ1, δθ2, each collecting the respective
component from all n nodes. This restructuring enhances computational efficiency and facilitates subsequent
interpolation processes.
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The variation of strain measures at the (i, j) Gauss-Lobatto integration point can now be expressed as:

δε(k)
i j = B(k)

i j δd (k = 0, 1) (35)

in which

B(k)
i j = A(k)

i j Hi j (k = 0, 1) (36)

and

A(0)i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rT
,1 01×3 01×2 01×4

01×3 rT
,2 01×2 01×4

rT
,2 rT

,1 01×2 01×4
tT 01×3 rT

,1Λ 01×4
01×3 tT rT

,2Λ 01×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A(1)i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

tT
,1 01×3 rT

,1Λ ,1 rT
,1Λ 01×2

01×3 tT
,2 rT

,2Λ ,2 01×2 rT
,2Λ

tT
,2 tT

,1 rT
,2Λ ,1 + rT

,1Λ ,2 rT
,2Λ rT

,1Λ
02×3 02×3 02×2 02×2 02×2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, Λ = −t̂ [t1 t2] (37)

Hi j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h
T
,1 0n×1 0n×1 h

T
,2 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1

0n×1 h
T
,1 0n×1 0n×1 h

T
,2 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1

0n×1 0n×1 h
T
,1 0n×1 0n×1 h

T
,2 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1

0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 h
T

0n×1 h
T
,1 0n×1 h

T
,2 0n×1

0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 0n×1 h
T

0n×1 h
T
,1 0n×1 h

T
,2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(38)

At the integration point (i, j), the partial derivatives r,α , t,α (for α = 1, 2) are interpolated from the
corresponding derivatives of the interpolation shape function h, namely h,1, h,2, which represent the partial
derivatives along the two coordinate directions.

Application of Eqs. (33)–(35), the internal force Gint can be obtained as

Gint =
mg

∑
i=1

ng

∑
j=1

wiw j j0i j ∣Ji j∣
nl
∑
p=1

1
∑
k=0

1
∑
l=0

(a(k+l)(p)B
(k)T
i j D(p)ε(l))

i j
(39)

for a single layer, Gint can be obtained as

G(e)
int =

mg

∑
i=1

ng

∑
j=1

wiw j j0i j ∣Ji j∣ [hB(0)TDε(0) + 1
12

h3B(1)TDε(1)] (40)

The external force Gext can be obtained as

Gext =
mg

∑
i=1

ng

∑
j=1

wiw j j0i j ∣J∣i j Ti jN(e)
a +∑

p

mg

∑
i=1

wi μα i pTi pN(e)
l i p +∑

q

ng

∑
j=1

wi μαq jTq jN(e)
l q j +∑TrsN(e)

nrs (41)

with

Ti j =
⎡⎢⎢⎢⎣
⋅ ⋅ ⋅ δ i k δ j l

⎡⎢⎢⎢⎣

I3×3 03×2

03×3 [t01 t02]
T
k l

⎤⎥⎥⎥⎦
⋅ ⋅ ⋅

⎤⎥⎥⎥⎦
(42)

N(e)
a = [ ⋅ ⋅ ⋅ P̃T

k l m̃T
k l ⋅ ⋅ ⋅ ] , N(e)

l = [ ⋅ ⋅ ⋅ PT
k l mT

k l ⋅ ⋅ ⋅ ] , N(e)
n = [ ⋅ ⋅ ⋅ PT

k l mT
k l ⋅ ⋅ ⋅ ] (43)



Comput Model Eng Sci. 2026;146(1):10 13

J=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x 1

∂ξ1
∂x 1

∂ξ2

∂x2

∂ξ1
∂x2

∂ξ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [J11 J12

J21 J22] , ∣J∣ = J11 J22 − J12 J21 (44)

in which J is the Jacobian matrix, and ∣J∣ is the corresponding Jacobian determinant. The vector Gext is
determined primarily through the Tij matrix, where the subscript pair (i, j) corresponds to the nodal point
at which the external force is applied. This correspondence is implemented numerically by employing the
Kronecker delta δij in the assembly process. And then, Gext is reformulated into the vector comprising five
n × 1 sub-vectors that correspond to δd. P̃ and m̃ are area force and moment vector, P and m are line force
and moment vector, P and m are nodal force and moment vector; t01 and t02 represents the orthonormal
basis in initial configuration; μ1 = ds/dξ and μ2 = ds/dη; the wi and w j denote the weighting coefficients of
the Gauss-Lobatto quadrature points along the two respective dimensions.

4.3 Tangent Stiffness Matrix
Suppose that R(i) and d(i) are the nodal residual force vector and the nodal displacement vector after

the i-th iteration (respectively), with their increments denoted as ΔR(i) and Δd(i). For an equilibrium
configuration, the incremental form of the residual force is defined as

ΔR = KΔd (45)

where K represents the tangent stiffness matrix. The solution is considered convergent if both of the following
inequality criteria are satisfied:

∥ΔR (i)∥ ≤ τ ∥R (i)∥ or ∥Δd (i)∥ ≤ τ ∥d (i)∥ (46)

The tolerance parameter τ is set to a small value, such as 1 × 10−6. The global residual force vector R is
given by

R=Gint − Gext (47)

According to Eq. (39), where the internal stiffness matrix Kint can be obtained from the variation of
internal force Gint as

Kint =
mg

∑
i=1

ng

∑
j=1

wiw j j0i j ∣Ji j∣
nl
∑
p=1

1
∑
k=0

1
∑
l=0

a(k+l)(p)i j [B(k)T
i j D(p)B

(l)
i j + HT

i jΞ
(k+l)
(p)i j Hi j + HT

i jΨ
(k+l)Hi j] (48)

for a single layer, the inner stiffness matrix Kint can be obtained as

Kint = h
mg

∑
i=1

ng

∑
j=1

wiw j j0i j ∣Ji j∣ [B(0)Ti j DB(0)i j + HT
i jΞ
(0)
i j Hi j + HT

i jΨ
(0)Hi j]

+ 1
12

h3
mg

∑
i=1

ng

∑
j=1

wiw j j0i j ∣Ji j∣ [B(2)Ti j DB(2)i j + HT
i jΞ
(2)
i j Hi j + +HT

i jΨ
(2)Hi j] (49)
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in which

Ξ(0+l)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(l)
11 I3×3 s(l)

12 I3×3 s(l)
13 Λ 03×4

s(l)
12 I3×3 s(l)

22 I3×3 s(l)
23 Λ 03×4

s(l)
13 ΛT s(l)

23 ΛT 02×2 02×4
04×3 04×3 04×2 04×4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

Ξ(1+l) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 03×3 s(l)
11 Λ , 1 + s(l)

12 Λ , 2 s(l)
11 Λ s(l)

12 Λ
03×3 03×3 s(l)

12 Λ , 1 + s(l)
22 Λ , 2 s(l)

12 Λ s(l)
22 Λ

s(l)
11 ΛT

, 1 + s(l)
12 ΛT

, 2 s(l)
12 ΛT

, 1 + s(l)
22 ΛT

, 2 02×2 02×2 02×2

s(l)
11 ΛT s(l)

12 ΛT 02×2 02×2 02×2

s(l)
12 ΛT s(l)

22 ΛT 02×2 02×2 02×2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51)

Ψ(0+l) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

06×6 06×2 06×4

02×6 −[tT
1

tT
2
] (s(l)

13 r̂,1 + s(l)
23 r̂,2)Λ 02×4

04×6 04×2 04×4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(52)

Ψ(1+l) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

06×6 06×2 06×2 06×2

02×6
−[tT

1
tT

2
] [(s(l)

11 r̂, 1 + s(l)
12 r̂, 2)Λ , 1

+ (s(l)
22 r̂, 2 + s(l)

12 r̂, 1)Λ , 2]
−[tT

1
tT

2
] (s(l)

11 r̂, 1 + s(l)
12 r̂, 2)Λ −[tT

1
tT

2
] (s(l)

22 r̂, 2 + s(l)
12 r̂, 1)Λ

02×6 −[tT
1

tT
2
] (s(l)

11 r̂, 1 + s(l)
12 r̂, 2)Λ 02×2 02×2

02×6 −[tT
1

tT
2
] (s(l)

22 r̂, 2 + s(l)
12 r̂, 1)Λ 02×2 02×2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(53)

where Λ,1 and Λ,2 are the partial derivatives of Λ along the two coordinate directions at the integration point
(i, j), and are obtained via interpolation of the corresponding shape function derivatives, h,1 and h,2.

Fig. 7 presents the flowchart of the simulation process, with several critical steps highlighted: Node
sampling automatically distributes nodes based on inter-node distances while assigning identical num-
bers to nodes sharing coordinates (step 3); Stiffness matrices and force vectors are computed through
Eqs. (39)–(53) (step 4); The nonlinear system in Eq. (45) is solved using either Newton-Raphson
(Sections 5.1–5.3) or arc-length methods (Sections 5.4–5.7) (step 7); Solution accuracy is enhanced through
local or global p-refinement (step 9); and final mode shapes or deformation patterns are visualized using
integration nodes with Gauss-Lobatto quadrature, which provides numerical advantages over standard
Gauss quadrature (step 10). The pseudocode for the key steps of element matrix assembly is provided in
Algorithm 1. This procedure is applicable to both global and local p refinement, wherein the element stiffness
matrix and internal force vector are computed through the weighting coefficients of the Gauss–Lobatto
quadrature points.
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Figure 7: Flow chart of the simulation process by the HQEM

Algorithm 1: Assembly of element tangent stiffness and internal force vectors
Input: {EN, tn, vi} //nodal connectivity of element i

D{i} // Constitutive matrix for element i
a(ii) // Displacement for element i
q{i} // quaternion for element i
weights{i} // global Quadrature weights (Gauss–Lobatto) for element i

Output: Global tangent stiffness matrix K, global internal force vector Fint
1: for each element i = 1 to EN (number of elements) do
2: Retrieve element data:
tn = number of nodes in element i

vi = global node indices for element i
Local-to-global mapping for degrees of freedom:
ii = [5*vi-4, 5*vi-3, 5*vi-2, 5*vi-1, 5*vi] (5 DOFs per node)

3: Compute local contributions:
[stiff, fint] = StiffnessGeoShell5DOFs(D{i}, a(ii), q{i}, weights{i})

4: Map local to global indices for matrix/vector assembly:
nd = 1:tn

Local index set jj = [nd, tn+nd, 2*tn+nd, 3*tn+nd, 4*tn+nd]
5: Assemble into global system:

K(ii, ii) += stiff(jj, jj) // Add element stiffness to global tangent matrix
Fint(ii) += fint(jj) // Add element internal force to global vector

6: end for

5 Numerical Examples

5.1 Cantilever Beam under a Tip Moment
This example analyzes a cantilever beam under a prescribed drilling rotation at its free end—a classical

benchmark for large deformation analysis. As shown in Fig. 8, the material parameters are defined as follows:
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Poisson’s ratio υ = 0, length l = 10, width w = 1, and thickness h = 0.1, and Young’s modulus E = 1.2 × 107.
The beam is subjected to a line moment m = 200π per unit length at its tip and is modeled using a single
HQEM element. The load is applied incrementally in four steps. Fig. 9 illustrates the initial and deformed
configurations at each load step in the e1–e3 plane using a single HQEM element of 2 × 13 nodes. It’s observed
by Xiao and Zhong [49], many beam formulations experience membrane locking and fail to accurately
capture deformations when the beam bends into a semicircle. In contrast, the present method successfully
forms a full circle in only 4 load steps, demonstrating its robustness in handling large load increments. With
the tolerance parameter τ set to 1 × 10−6, Table 3 summarizes the displacement components u at the free
end for the last load step. By leveraging high-order approximation, HQEM inherently mitigates shear and
membrane locking. As shown in Table 3, the minimum number of nodes along the length needed for a
full circular roll-up is 7. The results show that displacements converge as the number of integration nodes
along the length increases, demonstrating that HQEM’s high-order basis is crucial for accurately capturing
the circular configuration. Furthermore, the HQEM results align closely with those from the weak-form
quadrilateral element method (QEM) by Zhang et al. [9], confirming that HQEM achieves quantitatively
comparable accuracy and efficiency to QEM. It is also worth noting that while the final configuration from
QEM exhibits a slight out-of-plane deviation u2(QEM) = 0.00001 along the e2-direction, the HQEM result
shows virtually no deviation, with u2(HQEM) = 0.00000, further validating its superior numerical reliability.

Figure 8: Roll-up of a cantilever beam

Figure 9: Initial and deformed configurations of a cantilever beam subjected to an end moment
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Table 3: End displacement components of a cantilever beam rolled into a circle

Mesh u1(HQEM) u1(QEM) u2(HQEM) u2(QEM) θ2(HQEM) θ2(QEM)
2 × 7 10.36426 – 0.00000 – 6.23632 –
2 × 8 9.95474 – 0.00000 – 6.31431 –
2 × 9 9.99792 9.99481 0.00000 0.00001 6.28893 6.28785
2 × 10 9.99016 9.99510 0.00000 0.00001 6.28943 6.28728
2 × 11 9.99016 9.99343 0.00000 0.00001 6.28940 6.28733
2 × 12 9.99012 9.99342 0.00000 0.00001 6.28940 6.28733
2 × 13 9.99012 9.99341 0.00000 0.00001 6.28940 6.28733
2 × 14 9.99012 9.99341 0.00000 0.00001 6.28940 6.28733

5.2 Ring Plate Loaded at Free Edge
In this section, a ring plate under a free-edge load is analyzed to assess the HQEM’s capabilities in

avoiding shear locking. It is acknowledged that low-order shape functions tend to artificially stiffen the
element, resulting in severely underestimated displacements, a phenomenon known as shear locking. By
leveraging high-order approximation, HQEM inherently mitigates shear and membrane locking. Fig. 10a
illustrates a ring plate that is clamped along its inner edge and subjected to a line force of P = 6000 per unit
length along the free outer edge. The geometric and material parameters are as follows: inner radius R1 = 6,
outer radius R2 = 10, thickness h = 0.03, Young’s modulus E = 2.1 × 1011, and Poisson’s ratio υ = 0. The plate is
modeled using a single quadrilateral element with 14 × 7 nodes in the circumferential and radial directions,
respectively. Fig. 10b plots the vertical displacements at points A, B against the applied load, together with the
final deformed configuration. The results from the present formulation show excellent agreement with those
of Büechter and Ramm [50] obtained using a 16 × 2 mesh of 16-node degenerated shell elements, thereby
validating the proposed model.
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Figure 10: (a) Ring plate loaded at free edge; (b) deflection–load curves for a ring plate loaded at free edge
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5.3 Pinched Hemispherical Shell with 18○ Hole
This test is widely used to evaluate a formulation’s capability in handling rigid body modes, inextensional

bending, and membrane locking [51]. As shown in Fig. 11a, a hemispherical shell with an 18○ polar cutout is
subjected to alternating radial forces P. The structure, with radius R = 10, thickness h = 0.04, cutout angle
θ = 18○ is modeled using one quadrant due to symmetry. For isotropic case, the material parameters are
Young’s modulus E = 6.825 × 107, and Poisson’s ratio υ = 0.3. As shown in Fig. 11b, the radial displacements
at points A and B under the applied load, obtained with a 12 × 12 nodes, agree excellently with the reference
solution from Büechter and Ramm [51] based on 256 four-node assumed-strain elements. In addition
to isotropic materials, two anisotropy laminate configurations are examined. The first is a [45○/0○/−45○]
laminate with uniformly thick layers. The second is a [30○/0○] laminate, where the 30○ ply has a thickness of
0.75h and the 0○ ply a thickness of 0.25h. For the anisotropic case, the material properties are: E1 = 7 × 107,
E2 = E3 = 7 × 106, G12 = G13 = 7 × 107, G23 = 1 × 107, and υ12 = υ13 = υ23 = 0.3. As shown in Fig. 11c, the results
exhibit excellent agreement with those obtained by Abaqus S4 element (25 × 25 elements), confirming the
accuracy of the present method in modeling nonlinear behavior for anisotropy laminated composite shells.
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Figure 11: (a) Pinched hemispherical shell with 18○ hole; (b) displacement–load curves for pinched hemispherical shell;
(c) deflection–load curves for hemispherical laminate shell
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5.4 Stretch and Compression of a Cylindrical Shell with Free Edge
This study investigates a free-ended cylindrical shell under opposing radial forces (tensile or compres-

sive). This problem is a recognized benchmark in nonlinear shell analysis because its boundary conditions
can induce hourglass modes with the use of reduced integration [9]. As shown in Figs. 12a and 13a, the shell
has a length l = 10.35, radius R = 4.953, and thickness h = 0.094, with a Young’s modulus of E = 10.5 × 106 and
Poisson’s ratio υ = 0.3125. Leveraging symmetry, one-eighth of the shell is modeled. A single quadrilateral
element with 10× 17 nodes was used to analyze the stretching of this cylindrical shell. Under tensile loading (P
from 0 to 40,000), Fig. 12b plots the radial deflections at points A, B, and C. The response features two distinct
regions separated by a snap-through buckling stage, characterized by one stable configuration to another. The
spherical arc-length method was employed to trace this stiff response and capture the buckling behavior [52]
by adjusting load increments dynamically based on the current state. With a single quadrilateral element, a
clear snap-through phenomenon is only observed when the number of nodes along the perimeter is at least
9 and along the radius is at least 5. Notably, the curves become significantly steeper in the post-buckling
phase, indicating a sharp increase in structural stiffness. The results agree excellently with the numerical
simulation obtained by Ota et al. [53]. For the compression case (P from 0 to 2900), the cylindrical shell
was analyzed using a single quadrilateral element with 12 × 12 nodes. Fig. 13b presents the load-deflection
curves at points A and B; the response at point C closely follows that of point B and is omitted for clarity.
The present results show excellent agreement with the reference solution of Zhang et al. [9] obtained using
the quadrilateral element method (QEM) with a 12 × 12 nodal configuration, demonstrating that the HQEM
achieves quantitatively comparable accuracy to QEM. In addition, a 9-element mesh, consisting of low-
order, transition, and high-order elements, discretizes one-eighth of the cylinder for the compression case
(P = 3000), as illustrated in Fig. 13c. As shown in Fig. 13d, selecting a suitable local p-refinement strategy can
achieve high accuracy and reduced computational cost relative to uniform p-refinement.
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Figure 12: (a) Stretch of a cylindrical shell with free end; (b) deflection–load curves of a cylindrical shell subjected to
stretch
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Figure 13: (a) Compression of a cylindrical shell with free end; (b) deflection–load curves of a cylindrical shell subjected
to compression; (c) local p-refinement strategy discretizing one-eighth of the cylinder; (d) radial deflection of point A
comparing local p-refinement and uniform p-refinement

5.5 Pinched Semi-Cylindrical Shells
This section analyzes a semi-cylindrical shell subjected to a pinching force at the midpoint of its free-

hanging circumferential edge, which has been analyzed by various researchers [54–56]. The opposite edge
is fully clamped, while both longitudinal edges are restrained in vertical deflection and rotation about the
e2-axis. As shown in Fig. 14a, the geometric properties are as follows: radius R = 101.6, length l = 304.8,
thickness h = 3. For the isotropic case, the material parameters are Young’s modulus E = 2068.5, and Poisson’s
ratio υ = 0.3. For the anisotropy case, laminates with stacking sequences [0○/90○/0○] and [90○/0○/90○]
are considered. The anisotropy material parameters are E1 = 2068.5, E2 = E3 = 517.125, G12 = G13 = 795.6,
G23 = 198.894, υ12 = υ13 = υ23 = 0.3 for the laminate case. In the laminated shell, all plies are equal in thickness.
A ply is of 0○ if its fibers are parallel to the longitudinal direction of the shell. In this work, this benchmark
problem is simulated using a half-model exploiting symmetry and discretized with a 25 × 16 HQEM mesh.
As shown in Fig. 14b, the present HQEM results at point A are in good agreement with the reference data
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from Sze et al. [57], thus confirming the method’s accuracy in modeling nonlinear behavior for both isotropic
and laminated structures.
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Figure 14: (a) The semi-cylindrical shell subjected to an end pinching force; (b) load–deflection curves of the semi-
cylindrical shell subjected to end pinching force

5.6 Hinged Cylindrical Panel with Central Point Load
This example analyzes a hinged cylindrical panel under a central point load, a benchmark problem

renowned for its complex snap-back behavior. As shown in Fig. 15a, the panel, defined by a central angle
2θ = 0.2 radians, length l = 508, and radius R = 2540. Due to symmetry, only one quadrant of the panel is
modeled using a single quadrilateral HQEM element with 12 × 12 nodes, and two thicknesses are considered:
h = 12.7 and h = 6.35. For the isotropic case, the material parameters are Young’s modulus E = 3102.75 and
Poisson’s ratio υ = 0.3. Besides isotropic materials, the [0○/90○/0○] laminate and [90○/0○/90○] laminate at
two different thicknesses are considered. For the anisotropy case, the material parameters are E1 = 3300,
E2 = E3 = 1100, G12 = G13 = 660, G23 = 440, υ12 = υ13 = υ23 = 0.25. The cylindrical arc-length method is
employed to trace the nonlinear load-displacement response at the center point [52]. As shown in Fig. 15b–d,
the results exhibit excellent agreement with those of Ota et al. [53], confirming the accuracy of the present
method in capturing the snap-through response for both isotropic and laminated composite shells.
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Figure 15: (a) Hinged cylindrical panel with central point load; (b) deflection–load curves of isotropic case for h = 12.7
and h = 6.35; (c) deflection–load curves of laminate case for h = 12.7; (d) deflection–load curves of laminate case for
h = 6.35

5.7 Lateral Buckling of a Cantilever Right-Angle Frame
This section demonstrates the ability of the HQEM to predict critical loads and trace complex post-

buckling paths by analyzing a right-angle cantilever frame under a concentrated tip load. This structure
is prone to lateral buckling beyond a critical load and has been studied using both beam [58–60] and
shell [41,61] theories. As shown in Fig. 16a, the frame has dimensions of 240 in length, 30 in width, and 0.6
in height. Its Young’s modulus is 71,240, and its Poisson’s ratio is 0.31. In Case I, the concentrated load is
directed outward in-plane along the e3 direction, while in Case II, it is directed inward. To trigger lateral
buckling, a perturbation out-of-plane load Pf = 0.0001 is applied. The load-displacement curves at points
A and B, obtained with two 13 × 9 HQEM elements, are presented in Fig. 16b. Notably, for the inward
loading case (Case II), the QEM [9] (modeled with 2 elements of 13 × 9 nodes) shows marked deviations
from the reference results [62] (modeled with 44 9-node CAM elements [61]) at higher loads, and the latter
account for drilling rotations and thickness-direction extensions. The maximum relative difference between
the two methods is about 9.5%. In contrast, using the identical mesh (two 13 × 9 elements) as the QEM [9],
the HQEM—which only considers five variables—maintains excellent agreement with results obtained by



Comput Model Eng Sci. 2026;146(1):10 23

Smoleński [62] and Abaqus (120 × 8 × 1 C3D8I solid elements). The enhanced convergence performance of
HQEM is attributed to its consistent use of a complete nodal representation for interpolation at integration
points. In contrast, the QEM relies on a direction-dependent node selection strategy, which can introduce
interpolation inconsistencies. This fundamental difference allows HQEM to more accurately capture the
non-uniform deformation gradients and complex nonlinear behavior, thereby achieving better convergence
performance. As a result, HQEM demonstrates superior capability in simulating nonlinear structural
behavior. Additionally, Fig. 17a,b respectively depict the deformation geometries for Case I and Case II under
the concentrated loads (P = 8) by the HQEM (modeled with 2 elements of 13 × 9 nodes). The prediction of
the deflection-load curve for a right-angled beam demonstrates that the proposed nonlinear HQEM enables
accurate forecasting of buckling instability, which is crucial for the safe design of such structures.
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Figure 16: (a) Cantilever right-angle frame under tip load; (b) load–displacement curves for right-angle frame under
tip load obtained by HQEM

Figure 17: (a) Deformed configurations of the right-angle cantilever under the tip load (P = 8) for (a) Case I and
(b) Case II
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6 Conclusions
This study presents a unified Hierarchical Quadrature Element Method (HQEM) formulation for the

geometrically nonlinear analysis of both isotropic and laminated shells, marking the first implementation
of HQEM in nonlinear shell analysis for composite shells. The key innovations and conclusions include:
(1) a unified HQEM formulation for geometrically exact isotropic and laminated shells; (2) significant
simplification of residual force and stiffness matrix computations; (3) inherent mitigation of shear and
membrane locking; (4) convenient support for local p-refinement; (5) compared with the weak-form
quadrilateral element (QEM) approach, accurate capture of nonlinear behavior under high loads; and (6)
flexible mesh generation through the combination of quadrilateral and triangular elements.

Nevertheless, it is important to acknowledge certain limitations inherent to the current formulation.
While classical shell theory remains widely used in engineering practice owing to its lower implementation
complexity and computational cost, its exclusion of drilling rotations introduces fundamental limitations in
modelling complex geometries, including: the challenges in applying conjugate drilling loads for moment
equilibrium; rotational incompatibility at non-smooth shell junctions; and numerical instabilities when han-
dling twisting moment transfer. Furthermore, the HQEM leverages high-order approximation to overcome
the high computational costs and locking limitations of low-order elements, yet it introduces new challenges
such as meshing difficulties for complex geometries and growth in the condition number, which may pose
obstacles to practical application.

Notwithstanding these limitations, the present HQEM formulation establishes a general framework
for geometrically exact shell analysis. Although the current formulations are applied to linear elastic
laminates, the HQEM framework can be extended to accommodate more complex scenarios, such as those
involving plasticity and functionally graded materials, by introducing appropriate inelastic material models.
In particular, our subsequent work will focus on: (1) extending the method to the nonlinear analysis of
shells incorporating drilling rotation and thickness stretch; (2) implementing inelastic material models for
plasticity and functionally graded materials; and (3) undertaking the dynamic analysis of shell structures.
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Nomenclature
a(k+l)(p) Weighted thickness coefficient
d Total nodal variable vector
D Constitutive matrix
ei Cartesian reference frame
E Young’s modulus
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F Deformation gradient
gi Initial covariant frames
G Shear modulus
Gext External force
Gi Current covariant frames
Gint Internal force
h Thickness of the shell
h

e ,k
i Shape functions on the edges

h
v
k Shape functions at four corners

hm ,n Shape function inside element domain
h Shape function matrix
j0 Projection parameter
J Jacobian matrix
∣J∣ Jacobian determinant
K Tangent stiffness matrix
Kint Internal stiffness matrix
l Length
LM

i Lagrange shape function
Lm Legendre polynomials
ṁ Number of domain nodes along ξ direction
mg Gauss-Lobatto integration points number
m Nodal moment vector
m̃ Area moment vector
m Line moment
m Line moment vector
M Number of edge nodes along ξ direction
n Total number of HQEM nodes
ṅ Number of domain nodes along η direction
ng Gauss-Lobatto integration points number
N Number of edge nodes along η direction
ph p-order of high-order elements
pl p-order of low-order elements
P Nodal force
P Nodal force vector
P Line force
P̃ Area force vector
P Line force vector
Pf Perturbation out-of-plane load
Pn

(α+β) Jacobi polynomials
q Current quaternion
q∗ Conjugated quaternion
q0 Initial quaternion
Q Number of nodes on trilateral element’s 2nd edge
r Mid-surface position vector
r0 Initial mid-surface position vector
R Radius
R Residual force vector
s Stress
t Current unit director



26 Comput Model Eng Sci. 2026;146(1):10

ΔtCPU Difference in CPU time
t0 Initial unit director
tα Director orthogonal frame
t0α Initial director orthogonal frame
u Displacement
u Individual element nodal variable vector
w Width
wi Weighting coefficients along ξ direction
w j Weighting coefficients along η direction
Wint Internal virtual work
xα Convected coordinates
δij Kronecker delta
ε Green–Lagrangian strain tensor
εij Strain component
η 2nd parametric variable
θ Rotation vector
θ Angle
θα Rotation components
Λ Rotation tensor
ξ 1st parametric variable
τ Tolerance parameter
υ Poisson’s ratio
Ω Current configurations
Ω0 Initial configurations
ˆ Skew symmetric tensor
CPU CPU time
ext External force
g Gauss-Lobatto integration points
h High-order elements
int Internal force
l Low-order elements
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