Corr?pute.r Modellhg n [< Tech Science Press
Engineering & Sciences

Doi:10.32604/cmes.2025.075442

ARTICLE Check for

updates

A Novel Unified Framework for Automated Generation and Multimodal
Validation of UML Diagrams

Van-Viet Nguyen', Huu-Khanh Nguyen’, Kim-Son Nguyen', Thi Minh-Hue Luong', Duc-Quang Vu',
Trung-Nghia Phung’ and The-Vinh Nguyen""

"Faculty of Information Technology, Thai Nguyen University of Information and Communication Technology, Thai Nguyen, 250000,
Viet Nam

*Distance Learning Center, Thai Nguyen University, Thai Nguyen, 250000, Viet Nam

*Faculty of Arts and Communications, Thai Nguyen University of Information and Communication Technology, Thai Nguyen,
250000, Viet Nam

*Corresponding Author: The-Vinh Nguyen. Email: vinhnt@ictu.edu.vn

Received: 31 October 2025; Accepted: 18 December 2025; Published: 29 January 2026

ABSTRACT: It remains difficult to automate the creation and validation of Unified Modeling Language (UML) dia-
grams due to unstructured requirements, limited automated pipelines, and the lack of reliable evaluation methods. This
study introduces a cohesive architecture that amalgamates requirement development, UML synthesis, and multimodal
validation. First, LLaMA-3.2-1B-Instruct was utilized to generate user-focused requirements. Then, DeepSeek-RI-
Distill-Qwen-32B applies its reasoning skills to transform these requirements into PlantUML code. Using this dual-LLM
pipeline, we constructed a synthetic dataset of 11,997 UML diagrams spanning six major diagram families. Rendering
analysis showed that 89.5% of the generated diagrams compile correctly, while invalid cases were detected automatically.
To assess quality, we employed a multimodal scoring method that combines Qwen2.5-VL-3B, LLaMA-3.2-11B-Vision-
Instruct and Aya-Vision-8B, with weights based on MMMU performance. A study with 94 experts revealed strong
alignment between automatic and manual evaluations, yielding a Pearson correlation of = 0.82 and a Fleiss’ Kappa
of 0.78. This indicates a high degree of concordance between automated metrics and human judgment. Overall, the
results demonstrated that our scoring system is effective and that the proposed generation pipeline produces UML
diagrams that are both syntactically correct and semantically coherent. More broadly, the system provides a scalable
and reproducible foundation for future work in AI-driven software modeling and multimodal verification.

KEYWORDS: Automated dataset generation; vision-language models; multimodal validation; software engineering
automation; UMLCode

1 Introduction

Since the emergence of the Transformer architecture [1], modern software engineering has transformed
tremendously in terms of scale and complexity. As such, communicating efficiently among stakeholders
is becoming vital to ensuring robust programs. Traditionally, the Unified Modeling Language (UML) has
been widely used to fulfill this role and has been an important component of communication in software
design [2,3]. However, its presence has been less emphasized in the last decade due to the need for quick and
runnable software (via the Agile approach, which used only lightweight UML diagrams) [4,5]. As the number
of deep learning models keeps growing, their ability to generate code is increasing in size and complexity.
Thus, modern software is more complex and costly to maintain due to the lack of traceability. In this context,

@ Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
https://doi.org/10.32604/cmes.2025.075442
https://www.techscience.com/doi/10.32604/cmes.2025.075442
mailto:vinhnt@ictu.edu.vn

2 Comput Model Eng Sci. 2026;146(1):33

UML has re-emerged as a new analytical software engineering design component [6,7]. The core value of
UML is that it represents both structural and behavioral aspects of systems, thus providing a standard view
among stakeholders and guiding implementation. However, crafting UML diagrams is an extremely tedious
task, requiring labor-intensive processes, domain experts, and maintaining consistency across multiple
diagrams [8,9]. Furthermore, the prevalence of UML diagrams as static image files adds to the challenge, as
they are not directly machine-readable (unlike textual code, which can be parsed and analyzed by compilers),
making it difficult to integrate them into automated toolchains. Based on the aforementioned points, modern
software engineering is interested in automated design and modeling tools that assist engineers in generating,
interpreting, and verifying UML diagrams with minimal manual effort.

Recent advances in Artificial Intelligence (AI), particularly Large Language Models (LLMs), offer a
promising avenue for automating the modeling process. However, the current approach lacks an overall
pipeline that can operate independently and ensure consistency across stages. Specifically, current systems
still rely heavily on manually written requirements descriptions, which lack standardization and often do not
accurately reflect the perspective of the end user or product owner’s perspective [9]. In addition, no method
effectively leverages the combination of instruction models and reasoning LLMs to transform requirements
descriptions into TypeScript (such as PlantUML code) in a logical, consistent, and generalizable manner.
Furthermore, unlike other domains (e.g., text, common programming languages) that have rich ground
truth; high-quality datasets for UML diagrams are remarkably scarce [4]. The amount of available data is
important for data-driven approaches, as they are essential for training AI models. To alleviate this issue,
previous efforts have compiled UML diagram datasets from various sources [4], but these are limited in
size and often contain duplicate or mislabeled diagrams [4,10]. Most available datasets focus narrowly on
structural elements such as class diagrams, while behavioral perspectives, including sequence diagrams,
activity diagrams, and state machine diagrams, are either underrepresented or absent [10]. This imbalance
limits the ability of AI/ML models to reason about the interplay between system structure and behavior,
a capability crucial for realistic system design and verification. The first core research problem, therefore,
is: How can we automatically generate a comprehensive UML dataset that captures both structural and
behavioral aspects in a scalable and semantically coherent manner? Manual dataset construction approaches
have proven insufficient due to their time-consuming nature and susceptibility to inconsistency [9]. While
semi-automated techniques have emerged, they often fail to ensure diversity and completeness across
multiple UML diagram types [11]. Addressing this gap requires the design of algorithmic pipelines capable
of producing syntactically valid and semantically consistent UML models across heterogeneous diagram
categories. A second, equally critical research problem concerns the validation of dataset correctness and
utility. In contrast to natural language or image datasets, where labeling accuracy can often be validated at
the instance score, UML datasets present an additional layer of complexity: correctness depends not only on
individual diagrams but also on the relationships between multiple diagram types (e.g., alignment between
class and sequence diagrams). Current validation methods are limited to either syntactic checks or manual
expert review, both of which are insufficient to ensure large-scale consistency [4]. Thus, the second research
problem can be stated as: How can we systematically validate the correctness, consistency, and usefulness of
automatically generated UML datasets, particularly when integrating structural and behavioral models with
cross-diagram relationships? Addressing this challenge calls for novel frameworks that combine multimodal
reasoning, visual-semantic validation, and automated integrity checking, ensuring that generated datasets
are not only syntactically valid but also semantically robust and practically useful for downstream Al
applications. However, the literature underscores the need for further advances in creating comprehensive,
high-quality UML datasets [11,12].

Comput Model Eng Sci. 2026;146(1):33 3

In addition to data collection, researchers are also interested in automating the generation of UML
diagrams and other modeling artifacts. One significant challenge is to translate unstructured information
into formal UML models. Natural language processing (NLP) techniques have been used to derive UML
class diagrams directly from requirements specifications [13]. However, these NLP-based methods face
difficulties in accurately interpreting language nuances. Studies have found that existing approaches often
produce incomplete or incorrect UML diagrams from complex requirement texts [13]. Recently, Jahan
et al. [14] experimented with a generative large language model (ChatGPT) to automatically generate UML
sequence diagrams from user stories. They found that ChatGPT sometimes generated overly complex
sequence diagrams (out of scope from user stories). This implies that controlling the semantic consistency
and relevance of auto-generated diagrams remains an open problem even though recent Al can generate
UML content. Thus, it is not just the ability to generate UML diagrams but to validate them. Previously,
the evaluation of generated UML diagrams was still primarily based on manual inspection and qualitative
criteria, leading to inaccuracies, limited scalability, and difficulty in reproducibility in research. Although
Vision-Language Models have proven effective in many multimodal tasks, they have not been exploited
for image-level UML diagram quality assessment-an increasingly important need for software design
automation systems. Therefore, the question is: How can we build a complete, automated pipeline that
combines a requirements-generation model, a reasoning model, and a multimodal evaluation model to create
and evaluate UML diagrams in a unified, reliable, and scalable way? Automated validation encompasses
consistency checking (ensuring no internal contradictions within or between diagrams) and conformance
checking (ensuring the model meets specific requirements or design rules). Conventional approaches for
this task used description logic and ontology-based techniques to formalize UML semantics [15]. However,
these early intuitions required heavy setup (translating models to logical form) and were computationally
intensive. One promising direction is the use of multimodal AI to evaluate UML diagrams [8,16]. This
suggests that future AI could monitor and evaluate design models for errors or deviations.

The aforementioned analysis demonstrated that early prototypes for generating UML diagrams from
text and images had been made, initial datasets to train models were crafted, and emerging Al techniques
for validating diagrams were proposed. However, significant gaps remain in the state of the art, including
high-quality UML datasets [4] for training AI models, automated generation of diverse UML diagrams,
multimodal reasoning, and validation of UML models. As noted by Conrardy & Cabot [11], current Al
converters still depend on a human-in-the-loop for verification. Thus, there is a clear need for an integrated
approach that can refine and ensure the quality of the models.

To address this gap, this paper introduces a novel framework for automated UML dataset generation
and multimodal validation. Our contributions are threefold: (1) an algorithmic pipeline for automatically
generating both structural and behavioral UML models, (2) a conversion method that transforms these
models into comprehensive datasets, and (3) a multimodal visual validation framework that leverages
Al-driven reasoning to ensure accuracy and consistency across representations.

This study makes several significant contributions to advancing automated UML dataset generation
and validation. First, it presents an end-to-end framework that can automatically generate several types
of UML diagrams, including class, object, component, use case, sequence, and state diagrams, while
maintaining semantic integrity and inter-model consistency. Second, it presents a structured methodology
for transforming the generated UML models into machine-readable, well-organized datasets that support
downstream AI and machine learning applications, effectively connecting software modeling with data-
centric learning. Third, the paper presents an innovative multimodal vision validation framework that
integrates structural and behavioral evaluations using quantitative metrics and expert-informed qualitative
assessment, ensuring reliable and scalable model validation. Finally, it releases a large-scale synthetic UML

4 Comput Model Eng Sci. 2026;146(1):33

dataset encompassing a wide range of system scenarios, providing a valuable open benchmark for future
research in automated modeling, Al-driven software engineering, and multimodal reasoning.

2 Related Work

Research on UML datasets remains relatively limited compared to other domains such as natural
language processing or computer vision. A few notable efforts have attempted to compile UML diagram
repositories, but these are often narrow in scope, small in scale, or lacking in behavioral coverage. ModelSet
provides a labeled collection of software models for ML applications. However, it is primarily restricted
to structural diagrams and does not fully capture relationships across multiple UML types, generating
UML for class diagrams only [17]. Using natural language models to extract class, use case, and activity
diagrams has been explored in both semi-automatic approaches [18-20] and systematic reviews of NLP in
requirements engineering [21]. However, some techniques require aspect orientation [22]. Similarly, while
curated collections of UML diagram images [23] with careful annotation and duplication control exist,
these resources are often image-based rather than model-based, which limits their direct usability for Al
training [4]. Overall, current UML datasets lack the scale, diversity, and multimodal representation needed
to support advanced AI/ML research. While recent exploratory studies have demonstrated the potential of
Deep Learning [24] and Large Language Models (LLMs) [25,26] in aiding novice analysts and modeling class
diagrams, they typically lack a unified framework for large-scale generation.

In contrast, other fields have seen rapid progress through the construction of large-scale, automatically
generated datasets. In computer vision, resources like ImageNet enabled significant advances by providing
deep learning models with millions of labeled examples, sufficient in variety to learn from [27]. Similarly, in
natural language processing, benchmark datasets such as GLUE and SuperGLUE have provided structured
corpora for systematic evaluation of model performance [28]. These successes highlight the transformative
role of dataset availability, and they suggest that analogous approaches leveraging algorithmic generation
pipelines and Vision-Language Models (VLM:s) could be applied to UML modeling, as seen in recent surveys
and engineering applications [29,30]. Although emerging techniques have attempted to generate code from
diagram images [31] or to automate assessment using LLMs [16], UML poses unique challenges due to the
need to capture cross-diagram consistency (coherence between class and sequence diagrams), making the
direct adaptation of existing dataset-generation techniques non-trivial.

Parallel to dataset construction, a body of work has explored automatic or semi-automatic tools for
generating models. Techniques such as natural language-to-UML transformation [19], NLP to automati-
cally extract object-oriented elements from textual specifications [32], or image-to-UML conversion [11]
demonstrate the feasibility of automating parts of the modeling process. However, these methods are
often task-specific and limited in generalizability, focusing either on structural modeling or on diagram
recognition rather than on holistic dataset generation. Moreover, while model-driven engineering tools
provide semi-automated support for generating UML diagrams from specifications, they typically require
significant human intervention and lack scalability when applied to dataset score synthesis.

Taken together, prior research underscores two critical gaps: (1) the absence of comprehensive, large-
scale UML datasets that encompass both structural and behavioral diagrams, and (2) the need for automated
frameworks that not only generate diverse UML artifacts but also validate their correctness and consistency.
Addressing these gaps forms the foundation of our work.

The integration of Al and machine learning (ML) into software engineering has accelerated significantly
in recent years, enabling automation across a broad range of tasks. One central area of application is
automatic code generation, where large language models (LLMs) such as Codex and Code LLaMA have
demonstrated strong capabilities for transforming natural-language requirements into executable source

Comput Model Eng Sci. 2026;146(1):33 5

code [33-36]. Similarly, Al-driven tools have advanced bug detection and program repair, leveraging deep
learning to identify anomalous code patterns and suggest fixes [37]. Another promising direction is model
transformation, where machine learning methods are used to convert high-score system specifications into
formal models such as UML, or to migrate existing models into different representations [11]. Collectively,
these applications highlight the transformative potential of AI/ML to reduce manual effort and improve the
reliability of software engineering processes.

A critical enabler of these advances is the availability of high-quality datasets. For example, code-
generation models are usually trained on billions of lines of source code from platforms like GitHub. This
gives the models the variety they need to work across languages and fields [38]. Bug detection frameworks
similarly rely on curated corpora of buggy and fixed code snippets to train supervised models [37]. In natural
language processing, benchmark datasets like GLUE and SuperGLUE have served as standard evaluation
platforms, catalyzing rapid innovation by providing structured, diverse, and challenging examples [28].

Translating these lessons to UML and model-driven engineering highlights a pressing challenge: unlike
source code or text, UML datasets remain scarce, fragmented, and limited in scope [37], UML code
generation from diagram images [31]. The complexity of UML arises not only from individual diagrams but
also from the semantic dependencies across diagram types, which impose additional requirements on dataset
design. Thus, for AI/ML methods to effectively support UML generation, validation, and transformation,
there is a clear need for comprehensive, large-scale, and multimodally validated datasets that parallel
ImageNet [39] in vision or CodeSearchNet in programming tasks.

In summary, two significant research gaps persist in the current literature. First, there is a notable lack
of a comprehensive UML dataset that simultaneously incorporates both structural and behavioral diagrams
while explicitly preserving their relationships. Second, existing studies lack an integrated validation frame-
work that systematically ensures the correctness, coherence, and consistency of generated UML datasets. This
paper addresses these challenges by introducing a unified framework for automated UML dataset generation
and multimodal validation, establishing a robust foundation for scalable AI and ML-driven advancements
in software modeling and analysis.

3 Method
3.1 Pipeline Overview

The proposed framework implements a unified and fully automated pipeline for generating and validat-
ing UML diagrams from natural-language descriptions. The pipeline consists of three sequential modules: (i)
feature description synthesis from an end-user perspective, (ii) reasoning-augmented PlantUML generation,
and (iii) multimodal diagram validation using an ensemble of Vision-Language Models (VLMs). Fig. 1
illustrates the complete workflow.

3.2 Module 1: Feature Description Generation

The first module aims to produce diverse and coherent feature descriptions that reflect realistic end-
user needs. We employ LLaMA 3.2 1B-Instruct [40], a lightweight instruction-tuned small language model
designed for high-quality natural-language generation. With a size of only about 1 billion parameters, the
model achieves high performance on text generation, question answering, and light logical reasoning tasks,
while remaining resource-efficient enough for edge applications or compute-constrained environments.
The “Instruct” version of LLaMA 3.2 1B is fine-tuned on a high-quality instruction dataset, allowing it
to accurately follow input requests and generate consistent, concise responses. With its balance between
efficiency and performance, LLaMA 3.2 1B-Instruct is a potential choice for research on small language

6 Comput Model Eng Sci. 2026;146(1):33

models (SLMs) applications in specialized tasks such as code generation, natural language processing, and
intelligent education. To ensure naturalistic phrasing, the model is explicitly instructed to “act as an end-
user” and provide domain-relevant requirements without relying on any predefined templates (prompt
structure in Table Al and Fig. Al, Appendix A). The algorithm’s core function is to prompt the model for
a feature description and then refine the raw output by removing artifacts (such as the initial prompt text
and extraneous whitespace). The outcome is a clean, domain-relevant feature description that serves as the
standardized input for the next stage. The complete procedure is illustrated in Algorithm 1.

) E—
State 1: Technical State 2: UML PlantUML N q e Pt
:D R Mul | Vali
Specification Generation Code Generation SteteSlDlsotanRenceringlandiMuliipedalivalidation
‘\
1 e e
I i 23]
/, = e
(Description is passed to D 32Bto) (h 3 Vision Language Model (Qwen2.5-VL-3B-
Start with Llama 3.2 1B to Generate a generate UML Code Diagrams imaged Instruct, LLaMA-3.2-11B-Vision-Instruct, Aya-
Description PlantUML/Python library attempts to generated Vision-8B) for Scoring and Calculate
q generate an image) weighted average

Figure 1: Unified pipeline for UML diagram generation and multimodal scoring

Algorithm 1: Generate feature description

Input: modell; tokenizerl
Output: description
1begin
2 prompt < "Act as an end-user ... Feature description:";
3 pipe < text_generation_pipeline(modell, tokenizerl, max_new_tokens);
4 response < pipe(prompt);
5 description < remove_prompt_text(response, prompt);
6 description < strip_leading newline(description);
7 return trim(description);
8 end

3.3 Module 2: Reasoning-Augmented PlantUML Synthesis

This module translates each feature description into a UML diagram represented in PlantUML format,
while simultaneously generating an explicit reasoning trace. We adopt DeepSeek-R1-Distill-Qwen-32B [41],
which has been optimized for structured reasoning and code generation through large-scale distillation
from Qwen-72B. DeepSeek-R1-Distill-Qwen-32B is a distilled version of the powerful Qwen-72B model,
specifically optimized by the DeepSeek team to enhance reasoning and code generation capabilities while
significantly reducing inference costs. By leveraging a large-scale distillation process from Qwen’s original
base, the model retains high-quality language understanding and generation abilities with only 32 billion

Comput Model Eng Sci. 2026;146(1):33 7

parameters, making it suitable for complex tasks such as multi-hop reasoning, code synthesis, and technical
question answering. DeepSeek-R1-Distill-Qwen-32B is trained on a curated mixture of natural language and
programming datasets, incorporating both open-source code and instruction-following corpora. According
to DeepSeek’s open model release [41], this distilled model shows comparable performance to larger LLMs
while being more efficient for deployment in practical environments. Its strong reasoning capacity and
compatibility with multimodal prompting make it a promising foundation for research in Al code generation
and automated software modeling. Given a description, the model receives a structured prompt and produces
a dual output consisting of:

o executable PlantUML code, and;
o astructured chain-of-thought explaining the mapping between textual requirements and UML con-
structs.

Regular-expression parsing is used to extract valid UML blocks (‘@startuml... @endum!’) and isolate
the reasoning trace enclosed in <think> tags. If no valid diagram is detected, an error flag is returned. The
complete workflow is shown in Algorithm 2 and detailed in Fig. A2.

Algorithm 2: Generate reasoning and plantuml code

Input: description: Textual description of the system or requirement
Input: model2: Pre-loaded language model for UML generation
Input: tokenizer2: Tokenizer associated with model2
Output: uml_code: Generated PlantUML code
Output: reasoning: Reasoning text extracted from model output
Output: error: Error code (0 if success, -1 if UML not found)
1 begin
2 prompt < format_prompt_with_description(description);
3 pipe < text_generation_pipeline(model2, tokenizer2, max_new_tokens);
4 response < pipe(prompt);
5 text_after_think < extract_after(response, " <think>");
6 uml_code < regex_search ("@startuml (.*)@enduml”, text_after_think);
7 if uml_code = NULL then
8 return {uml_code: "No valid PlantUML code found.”,reasoning: "”,error: —1};
9

end
10 reasoning text « regex_search(" <think> (.*?)<think>", response);
1 return {uml_code: uml_code, reasoning: reasoning_text, error: 0};
12 end

3.4 Module 3: Large-Scale Dataset Construction

The third module operationalizes Modules 1 and 2 into a scalable data-generation engine. In each
iteration, it calls Algorithm 1 to generate a user query, which is then passed to Algorithm 2 to retrieve the
PlantUML code and corresponding inference traces. The resulting triple (query, inference, code) is then
stored. To ensure completeness and reliability, the algorithm includes robust exception handling, allowing
the process to continue uninterrupted even if only one error occurs. This systematic approach transforms
the process of generating a single instance into a scalable factory for generating a comprehensive benchmark
dataset. The graphs will then be imaged and three vision-language models will be used to evaluate the model
quality. Algorithm 3 summarizes this process.

8 Comput Model Eng Sci. 2026;146(1):33

Algorithm 3: Generate dataset
Input: None (uses internal functions to generate queries and UML outputs)
Output: inputs|]: List of user queries
Output: reasonings[]: List of reasoning texts
Output: uml_outputs|]: List of PlantUML codes

1 Dbegin

2 inputs < [|;

3 reasonings < [|;

4 uml_outputs < [|;

5 for i < 0to 11997 do

6 try

7 input_query < generate_user_query();

8 output < generate_uml_output(input_query);
9 append input_query to inputs;

10 append out put[“reasoning” | to reasonings;

11 append output[“uml_code”] to uml_outputs;
12 Print [Vcurrent_time] Generated (i+1)/11997";
13 end

14 catch

15 Exception e

16 end

17 continue;

18 end

19 end

3.5 Automated Multimodal Validation Framework

To automate quality assessment, we employ three open source Vision-Language Models (VLM:s), each
with different architectures and training philosophies, to provide a multi-perspective evaluation. Qwen2.5-
VL-3B-Instruct developed by Alibaba’s Qwen team, is a lightweight multimodal model based on Qwen2.5
architecture with only 3 billion parameters, yet it supports high-resolution image understanding and
instruction-following tasks efficiently. It integrates a vision encoder and a pre-trained language decoder
with cross-modal attention for flexible reasoning and fast inference [42]. LLaMA-3.2-11B-Vision-Instruct
an extended variant of Meta’s LLaMA 3 series, incorporates a 11B-parameter text model with vision
capabilities via a learned projection layer. The model is fine-tuned using vision-text instruction datasets and
demonstrates competitive performance in complex visual reasoning tasks while maintaining high language
fluency [40]. Aya-Vision-8B introduced by the Cohere for Al initiative under the Aya project, is a globally
inclusive multilingual vision-language model. With 8 billion parameters, Aya-Vision-8B is optimized not
only for multilingual visual understanding but also for alignment with open instruction datasets [43].

The selection of these models allows us to leverage diverse “opinions” to mitigate the bias of any
single model. Their reasoning capabilities are benchmarked using MMMU [44] to inform our weighted
scoring mechanism.

In this step, the framework integrates the outputs of three Vision-Language Models (VLMs) Qwen2.5-
VL-3B-Instruct, LLaMA-3.2-11B-Vision-Instruct, and Aya-Vision-8B by computing a weighted ensemble
score for each prediction position. As the algorithm iterates over the triplets of model outputs, it first checks
whether all three models produce a value of zero; in such cases, a final score of zero is assigned, indicating

Comput Model Eng Sci. 2026;146(1):33 9

the absence of meaningful signals. Otherwise, only models generating valid (non-zero) outputs contribute
to the final score. Each contributing output is weighted by a model-specific reliability coefficient: 53.1 for
Qwen2.5-VL-3B, 50.7 for LLaMA-3.2-VL-11B, and 39.9 for Aya-Vision-8B. The weighted contributions are
accumulated and normalized by the sum of active weights to produce a stable aggregated score. This strategy
ensures that more reliable models exert greater influence while still leveraging complementary information
from the entire model ensemble.

Rendering: The generated PlantUML code is passed to the PlantUML library. If rendering fails due to
syntax errors, the sample is automatically assigned a score of 0.

Validation: Successfully rendered diagrams are paired with their original technical descriptions. This
(image, text) pair is evaluated by each of the three VLMs (Qwen2.5-VL-3B, LLaM A-3.2-11B-Vision-Instruct,
Aya-Vision-8B). Each VLM is prompted to assess the diagram’s fidelity on a 6-point scale, evaluating the
correctness of entities, relationships, and overall structure against the text.

Scoring: The individual scores from the VLMs are aggregated into a final composite score using a
conditional weighted average. Specifically, the weight distribution is set as 53.1 for Qwen2.5-VL-3B-Instruct,
50.7 for LLaMA-3.2-11B-Vision-Instruct and 39.9 for Aya-Vision-8B, reflecting their relative reliability and
prior performance in evaluation tasks. These weights are taken directly from the models’ scores on the
MMMU benchmark [44], a standard benchmark for assessing multimodal inference performance.

4 Results and Discussion

This section presents a comprehensive evaluation of our proposed framework’s performance in gener-
ating and validating three distinct types of UML diagrams: Use Case, Class, and Sequence. The experiments
were conducted on a large-scale, synthetic dataset of approximately 12,000 samples, with each diagram type
representing a different score of structural and semantic complexity. Our analysis focuses on two primary
aspects: (1) the efficacy of the dual-LLM generation pipeline and (2) the comparative performance of the
multimodal validation system across these varied tasks.

4.1 Results

Behavioral UML Diagrams Fig. 2 presents the distribution of model predictions across fidelity scores
for behavioral UML diagrams (Use Case, Sequence, and State). The results reveal substantial variability
among models. For Use Case diagrams, LLaMA-3.2-11B-Vision-Instruct demonstrates the highest con-
centration at Scores 5, reflecting strong syntactic fidelity but limited diversity across correctness Scores.
Qwen2.5-VL-3B produces a more balanced distribution, with a significant proportion at Scores 3-4 and
a moderate peak at Score 5, suggesting more generalized behavioral reasoning. Aya-Vision-8B, however,
shows dispersed outputs with higher counts at lower scores (0-3), indicating difficulty in capturing coherent
actor-system relationships.

For Sequence diagrams, Qwen2.5-VL-3B achieves a spread across scores 4-6, highlighting its robustness
in modeling dynamic interaction flows. LLaMA-3.2-11B-Vision-Instruct concentrates predictions at scores
4 and 5 but fails to produce outputs at the highest scores (6), suggesting partial correctness with a ceiling
effect. Aya-Vision-8B underperforms, with most predictions clustering at scores 0-3, reflecting difficulty in
reasoning about temporal ordering and message dependencies.

Regarding State diagrams, Qwen2.5-VL-3B again shows the strongest performance, with a high number

of predictions at scores 5 and 6, demonstrating capability in reasoning about system transitions. LLaMA-
3.2-11B-Vision-Instruct produces a spread between lower (scores 1) and mid-range (scores 3-5), suggesting

10 Comput Model Eng Sci. 2026;146(1):33

inconsistent performance. Aya-Vision-8B remains skewed toward scores 0-2, confirming its struggles with
behavioral abstraction.

Distribution of model predictions across fidelity scores for behavioral UML diagrams (Use Case, Sequence

and State)
aya_vision_8b E
£
g lama32vllib —
£ ————
2 F—
o &
H qwen25vi3b
& ——
aya_vision_8b r
£ e
e
P tamasavr1p N
a e——
Q
g _—
5 qwen25v(3b
Z ——
]
n
aya_vision_8b -
£ —
& lama32vl11b B —
a —
o
17
& qwen2svi3b P
o
@
=
0 500 1000 1500 2000 2500 3000
Use Case Diagram Sequence Diagram State Diagram
qwen25vI3b llama32vl11b aya_vision_8b qwen25vi3b llama32vl11b aya_vision_8b qwen25vi3b llama32vl11b aya_vision_8b
WScore =6 6 0 0 325 0 5 142 0 5
BScore=5 108 2659 609 115 344 271 313 160 134
WScore=4 1926 173 95 237 347 81 44 53 4
WScore=3 621 1 677 41 21 151 20 89 93
WScore =2 169 0 1 0 0 0 0 0 3
WScore =1 1 8 236 7 13 148 1 218 251
WScore=0 157 157 1370 275 275 344 479 479 509

Figure 2: Distribution of model predictions across fidelity scores for behavioral UML diagrams (Use Case, Sequence
and State)

Structural UML Diagrams Fig. 3 illustrates the results for structural UML diagrams (Class, Component,
and Object). The findings show a clearer hierarchy of performance across models. For Class diagrams,
Qwen2.5-VL-3B significantly outperforms others with the majority of predictions concentrated at score
6, indicating high-fidelity capture of class relationships and attributes. LLaMA-3.2-11B-Vision-Instruct, in
contrast, distributes predictions between scores 4 and 5 but produces none at score 6, pointing to consistent
partial correctness. Aya-Vision-8B performs weaker overall, with predictions spread across lower score and
only limited accuracy at score 5.

Component diagrams, Qwen2.5-VL-3B again demonstrates balanced performance with strong results
at scores 4 and 5. LLaMA-3.2-11B-Vision-Instruct achieves its highest concentration at score 5, confirming
its syntactic precision but lack of full structural fidelity. Aya-Vision-8B continues to struggle, with outputs
skewed toward scores 0-3.

For Object diagrams, Qwen2.5-VL-3B yields consistent mid-to-high-score predictions, particularly at
scores 4 and 5, capturing instance-score relationships with reasonable accuracy. LLaMA-3.2-11B-Vision-
Instruct focuses overwhelmingly at score 5, reflecting reliable but incomplete mappings. Aya-Vision-8B once
again clusters at lower scores, showing weak alignment with object semantics.

Comput Model Eng Sci. 2026;146(1):33

Distribution of model predictions across fidelity scores for structure UML diagrams (Class,
Component and Object)

aya_vision_gb E

€
€ lemesav1ip B
a -
S P
9 qwen25vi3b
3 -
aya_vision_8b
£
e L
0
g emaz2v11b T
= —
2 _
8. qwen25vi3b
£ -
Q
(o]

=

<

5, lema32vl11b

=]

@ —

S qwen25vi3b

5 —

0 500 1000
Class Diagram
qwen25vi3b lama32vi11b aya_vision_8b

W Score =6 3456 0 12
mScore=5 807 1600 1437
mScore =4 494 2303 577
mScore =3 31 118 1530
mScore=2 1 0 2
WScore=1 2 770 893
mScore=0 209 209 549

Figure 3: Distribution of model predictions across fidelity scores for structure UML diagrams (Class, Component and

Object)

The comparative evaluation underscores a structural-behavioral asymmetry in UML modeling
in Table 1. Structural diagrams, particularly class diagrams, are more tractable for current AI/ML models,
with Qwen2.5-VL-3B achieving near-complete fidelity. Behavioral diagrams, however, remain a significant
challenge, where models either plateau at partial correctness (LLaMA-3.2-11B-Vision-Instruct) or struggle
with abstraction (Aya-Vision-8B). These findings validate the need for richer datasets and multimodal
validation frameworks to bridge the gap between structural and behavioral reasoning in automated

UML synthesis.

Table 1: Distribution score for three vision-language models on UML Diagram (UML Diagrams: Class, Object,

Component, Use Case, Sequence, State)

1500

Component Diagram

2000

2500

qwen25vi3b Llama32vi11b aya_vision_8b

3
520
372

22
2
0

81

1
886
29
0
0
3
81

8
346
44
123
1
75
403

3000

3500 4000

Object Diagram
qwen25vi3b | llama32vi11b aya_vision_8b

2
546
354

27
2
1

68

0 5
890 300
39 39

0 248
0 1
3 1086
68 301

Diagram Model 0 1 2 3 4 5 6
qwen25vI3b 209 2 1 31 494 807 3456

Class diagram llama32vlllb 209 770 0 118 2303 1600 0

aya_vision_8b 549 893 2 1530 577 1437 12

qwen25vI3b 68 1 2 27 354 546 2

Object diagram llama32vlilb 68 3 0 0 39 890 0

(Continued)

1

12 Comput Model Eng Sci. 2026;146(1):33

Table 1 (continued)

Diagram Model 0 1 2 3 4 5 6
aya_vision_Sb 301 106 1 248 39 300 5
Component qwen25vI3b 81 0 2 22 372 520 3
diagram llama32vlllb 81 3 0 0 29 886 1
aya_vision_8b 403 75 1 123 44 436 8
qwen25vI3b 157 11 169 621 1926 108 6
Use case diagram llama32vlllb 157 8 0 1 173 2659 0
aya_vision_8b 1370 236 1 677 95 609 0

qwen25vI3b 275 7 0 41 237 115 325
Sequence diagram llama32vlllb 275 13 0 21 347 344 0
aya_vision_8b 344 148 0 151 81 271 5

qwen25vI3b 479 1 0 20 44 313 142
State diagram llama32vll1b 479 218 0 89 53 160 0
aya_vision_8b 509 251 3 93 4 134 5

4.2 Quantitative Code Generation Analysis

A subset of 60 samples was selected from the dataset for Human Expert Validation. In this process,
experts carefully revised the PlantUML code to ensure correctness and consistency according to their
professional judgment. To quantitatively evaluate the generated diagrams against the expert-refined versions,
we employed the BLEU metric, which measures the similarity between the model-generated output and the
expert-adjusted reference. This approach allows us to assess the alignment of automated generation with
domain-specific expert knowledge.

To complement the multimodal visual validation, we conducted a text-based quantitative analysis
using the BLEU (Bilingual Evaluation Understudy) metric to measure the syntactic similarity between the
PlantUML code generated by DeepSeek-R1-Distill-Qwen-32B and the ground truth references (Details about
BLEU at Appendix B). The distribution of BLEU scores across the six diagram families is illustrated in Fig. 4.

The analysis reveals distinct performance characteristics across diagram types:

High stability in structural and interaction models: Class Diagrams and Sequence Diagrams demon-
strate the most consistent performance, with average BLEU scores typically ranging from 0.60 to 0.80.
Notably, Sequence Diagrams (Sequence diagram, scores > 0.80) demonstrate the model’s ability to accurately
capture message order and interaction syntax, reinforcing the high visual fidelity scores observed in the
above section.

Variance in Object and State Diagrams: Object Diagrams and State Diagrams displayed significant
variance. While perfect matches were recorded (Object diagram), there were instances of notably low scores
(<0.1). This discrepancy suggests that for diagrams requiring specific instance naming or complex state
transitions, the model may generate valid structures with divergent variable identifiers compared to the
reference, heavily penalizing the BLEU score despite potential semantic correctness.

Comput Model Eng Sci. 2026;146(1):33 13

Bleu Score distribution by UML Diagram type

1.0 4 —— .
o
°
S
L]
0.8 1 e ‘%
o L] °
° ———
L]
® ° [’—
% o ° ° .. 7 .
0.6
S : L
g 2 L]
> e © °
[7]
E L]
.
0.4 1
O —_——
L O
®q
°
0.2 * >
o
D W
0.0
Class Diagram Object Diagram Component Diagram Use Case Diagram State Diagram Sequence Diagram
Diagram Type

Figure 4: Bleu score distribution by UML diagram type

Use Case Efficacy: Use Case Diagrams achieved exceptional scores in several instances (Use case
and Sequence diagrams), indicating strong alignment in translating actor-action requirements into code.
However, the presence of outliers highlights the sensitivity of n-gram-based metrics to the ordering of
declarations in PlantUML.

The integration of BLEU metrics addresses the limitation of relying solely on visual scoring. It confirms
that the proposed pipeline not only generates visually coherent diagrams but also maintains high syntactic
fidelity in the underlying source code, ensuring the practical utility of the generated artifacts for software
engineering tasks.

Fig. 5 presents the average BLEU scores across the evaluated UML diagram types, revealing a distinct
hierarchy in generation fidelity. Class Diagrams significantly outperform other categories with the highest
average score of 0.7029, suggesting that the model is particularly effective at synthesizing static structural
definitions. A consistent performance tier is observed among Sequence (0.6341), Object (0.6137), and
Use Case (0.6022) diagrams, indicating balanced capabilities in modeling interactions and requirements.
However, Component Diagrams exhibit a notable drop in performance, achieving the lowest score of 0.4483,
which highlights potential challenges in generating the specific component-interface dependencies required
for this format.

14 Comput Model Eng Sci. 2026;146(1):33

Average Bleu Score by Diagram type

0.7029

0.7 A
0.6341

0.6137 0.6022
0.6 0.581

o
u
L

0.4483

o
»
L

Average Bleu Score
o
w

o
N

0.1

0.0

Diagram type
Figure 5: Average bleu score by diagram type

4.3 Discussion
4.3.1 Interpretation of the Results
Discussion on Behavioral Diagram Evaluation:

Use Case Diagrams The evaluation of use case diagrams highlights substantial differences in behavioral
reasoning across the three models. Qwen2.5-VL-3B demonstrates a relatively balanced distribution, with
a strong concentration at scores 4 and 3 (1926 and 621 instances, respectively), suggesting moderate-to-
high semantic alignment in actor-use case interactions. In contrast, LLaMA-3.2-11B-Vision-Instruct shows a
sharp skew toward score 5 (2659 instances), indicating its strength in capturing actor-system relationships at
near-correct scores but with reduced diversity across intermediate scores. Aya-Vision-8B, however, displays
a more dispersed distribution with significant counts at scores 0, 1, and 3 (1370, 236, and 677, respectively).
This pattern suggests sensitivity to low-score structural recognition while struggling with higher-order
behavioral coherence. Overall, the results underscore that while larger models like LLaMA achieve high
syntactic fidelity [45], mid-scale models (Qwen2.5) appear to generalize behavioral structures more evenly,
and vision-centric models (Aya) face difficulty in abstracting actor-system dynamics.

Sequence Diagrams Behavioral reasoning for sequence diagrams shows a different trend. Qwen2.5-VL-
3B produces a relatively even distribution across scores 4, 5, and 6 (237, 115, and 325 instances), reflecting
an ability to model interaction flows with incremental behavioral depth. LLaMA-3.2-11B-Vision-Instruct
performs similarly, with 347 and 344 instances at scores 4 and 5, but lacks higher-score (6) predictions,
revealing a ceiling effect in capturing complete interaction fidelity. Aya-Vision-8B, by contrast, allocates more
predictions at lower scores (344 at 0 and 148 at 1) and fewer at the higher spectrum, suggesting difficulty in
mapping sequential dependencies when reasoning from visual features. Collectively, these findings reveal

Comput Model Eng Sci. 2026;146(1):33 15

that sequence modeling is more demanding in terms of behavioral reasoning, with only Qwen2.5 showing
robustness across all scores, whereas LLaMA converges to partial correctness and Aya underperforms in
interaction depth.

State Diagrams For state diagrams, which require capturing system dynamics over transitions, all
models show varying scores of behavioral understanding. Qwen2.5-VL-3B demonstrates a strong mid-to-
high distribution, with 313 instances at score 5 and 142 at score 6, reflecting its ability to reason about state
transitions with relatively high accuracy. LLaMA-3.2-11B-Vision-Instruct, however, distributes predictions
more at lower and mid scores (218 at score 1, 89 at score 3, and 160 at score 5), suggesting that while it captures
basic transition structures, it struggles to sustain behavioral depth across full state flows. Aya-Vision-8B, once
again, shows a tendency toward lower scores (509 at 0 and 251 at 1), indicating a reliance on surface-score
recognition with limited behavioral abstraction. Importantly, the concentration of Qwen2.5 at higher scores
suggests that smaller models, when well-tuned, may outperform larger or vision-centric counterparts in tasks
demanding explicit behavioral reasoning. Recent work has started to explore direct code generation from
UML diagram images using large multimodal models [31], suggesting that our evaluation pipeline could be
integrated into end-to-end modeling workflows.

Taken together, the comparative analysis demonstrates that behavioral modeling presents a distinct
challenge across UML diagram types. Use case diagrams favor larger models that capture actor-system
mappings, sequence diagrams highlight the robustness of mid-scale models in capturing dynamic interac-
tions, and state diagrams emphasize the importance of fine-grained transition reasoning, where smaller yet
well-aligned models outperform. These results suggest that future datasets and pipelines should emphasize
behavioral annotation granularity and multimodal reasoning [46], as these remain the bottlenecks in auto-
mated UML synthesis. Our findings complement emerging work evaluating VLMs on UML diagrams [47],
but extend it by introducing a dual text-visual validation pipeline with fine-grained scoring.

Discussion on Structural Diagram Evaluation:

The evaluation of class diagrams shows a clear divergence in structural reasoning across the three
models. This aligns with recent deep learning approaches that successfully extract class diagrams from
software artifacts [24], reinforcing the relative tractability of structural UML tasks. Qwen2.5-VL-3B yields a
strong concentration at the highest fidelity scores (3456 instances at scores 6), indicating its effectiveness in
capturing structural relationships such as inheritance, associations, and class attributes with high precision.
LLaMA-3.2-11B-Vision-Instruct, on the other hand, produces a bimodal distribution: 2303 predictions at
score 4 and 1600 at score 5, but no predictions at score 6. This pattern suggests that while the model can
capture partial or near-correct structures, it struggles to achieve fully accurate class specifications. Aya-
Vision-8B displays the widest spread, with considerable counts at low scores (549 at score 0 and 893 at score
1) and moderate presence at higher scores (1437 at score 5). This indicates that vision-centric reasoning is
sensitive to surface-score features but lacks robustness in abstracting complete structural correctness. Our
findings are complementary to prior work on automatic class-diagram generation from text [13], which
primarily focuses on structural correctness rather than multimodal visual evaluation.

For component diagrams, Qwen2.5-VL-3B again shows balanced performance with strong results
at scores 4 and 5 (372 and 520 instances), suggesting proficiency in modeling dependencies and mod-
ular boundaries. LLaMA-3.2-11B-Vision-Instruct demonstrates a pronounced skew toward score 5 (886
instances), confirming high syntactic accuracy but limited diversity across correctness scores, with very
few reaching complete fidelity (only 1 at score 6). Aya-Vision-8B continues to exhibit high counts at lower
scores (403 at score 0 and 75 at score 1), suggesting difficulty in identifying architectural partitions, though it
achieves moderate alignment at score 5 (346 instances). This reinforces the view that multimodal alignment
is challenging when higher-order abstraction of the software architecture is required.

16 Comput Model Eng Sci. 2026;146(1):33

For Object diagrams, which demand capturing instances and their concrete relationships, show patterns
similar to component diagrams. Qwen2.5-VL-3B produces consistent results with a balanced distribution,
particularly at scores 4 and 5 (354 and 546 instances), indicating reasonable accuracy in mapping objects
to their class definitions. LLaMA-3.2-11B-Vision-Instruct, however, concentrates heavily at score 5 (890
instances) with negligible predictions at higher scores, reflecting its reliance on partial correctness rather
than complete alignment. Aya-Vision-8B again clusters at the lower scores (301 at 0, 106 at 1), with limited
high-fidelity predictions (only 5 at score 6). This suggests that while vision-based reasoning can identify
object instances, it often misaligns them with the structural semantics of the system model.

Interestingly, we observed a divergence between BLEU scores and VLM visual scores in Object
Diagrams. While BLEU scores penalized deviations in variable naming conventions (resulting in lower text
metrics), the VLM evaluation often rated these diagrams highly (Score 5-6) because the visual topology and
relationships remained correct. This reinforces the necessity of our dual-validation approach: BLEU ensures
syntactic adherence to specifications, while VLMs assess semantic and visual correctness.

Overall, the evaluation of structural diagrams demonstrates that Qwen2.5-VL-3B consistently achieves
the best balance between accuracy and distribution, excelling particularly in class diagram fidelity. Graph-
based approaches such as UML common graph provide fine-grained topological similarity for multiple
diagram types [48], which complements our current score-based evaluation. LLaM A-3.2-11B-Vision-Instruct
shows strong partial correctness but rarely achieves full structural accuracy, highlighting a ceiling effect
similar to its performance on behavioral diagrams. Aya-Vision-8B, while capable of identifying basic entities,
struggles to generalize abstract structural rules, reinforcing the necessity of multimodal fine-tuning. These
findings emphasize that structural UML tasks benefit most from models optimized for symbolic and
relational reasoning, whereas vision-centric approaches require additional alignment strategies to capture
software design abstractions.

Comparative Analysis: Structural and Behavioral Diagrams:

When comparing structural and behavioral modeling tasks, a distinct divergence in model performance
emerges in Table 2. For structural diagrams (class, component, and object), Qwen2.5-VL-3B consistently
demonstrates superior fidelity, with strong accuracy at higher scores most notably in class diagrams where
it achieves a majority of predictions at score 6. This indicates that smaller, well-tuned models are highly
effective at capturing static system elements such as classes, components, and object instances. LLaMA-
3.2-11B-Vision-Instruct, while performing reliably at mid-to-high scores (4-5), rarely reaches full structural
correctness, suggesting a plateau in its abstraction capability. Aya-Vision-8B, in contrast, tends to misallocate
predictions toward lower scores, reflecting challenges in abstracting symbolic relationships from visual input.

Table 2: Distribution of final weighted composite scores for UML diagram (UML diagrams: Class, Object, Component,
Use Case, Sequence, State)

Diagram, Scores 0 (1,2) [2,3) (3,4) (4, 5) sc>o;e
Class diagram 209 1 242 1122 2211 1215
Object diagram 68 0 4 130 795 3
Component diagram 81 0 3 90 821 5
Use case diagram 157 12 49 816 1969 6
Sequence diagram 275 2 16 184 325 198

State diagram 479 1 127 225 147 20

Comput Model Eng Sci. 2026;146(1):33 17

In contrast, behavioral diagrams (use case, sequence, and state) present a greater challenge across all
models [49]. While LLaMA-3.2-11B-Vision-Instruct excels in syntactic fidelity for use case diagrams (skewing
toward score 5), it struggles to sustain behavioral reasoning in sequence and state diagrams, failing to produce
higher-score predictions. Qwen2.5-VL-3B offers a more balanced distribution, particularly in sequence
and state diagrams, indicating robustness in capturing dynamic interactions and system transitions. Aya-
Vision-8B underperforms across behavioral tasks, often clustering at lower scores, suggesting that behavioral
abstraction requires reasoning capabilities beyond surface-score recognition.

Taken together, these results highlight a critical asymmetry in UML modeling tasks: structural reasoning
appears more tractable for AI/ML models, especially smaller transformer-based architectures, whereas
behavioral reasoning remains an open challenge requiring more nuanced datasets, multimodal integration,
and reasoning-oriented training objectives. This demonstrates the value of the proposed pipeline in bridging
the structural-behavioral gap by enabling comprehensive dataset generation and multimodal validation.

Error Analysis for Zero-Score Cases.

During the rendering phase, approximately 10.5% of the generated PlantUML codes failed to com-
pile successfully, resulting in a score of 0. These failures were primarily due to syntactic or structural
inconsistencies in the automatically generated code, as shown in

PlantUML 1.2025.10betal
[From string (line 3)]

@startuml
actor User
object Application

Figure 6: Example of a rendering failure resulting in a zero score. The PlantUML parser reports a syntax error

The “Syntax Error?” message is a consequence of providing a syntactically incomplete definition for
an inferred diagram type. While the individual statements (actor, object) were correct, their combination
without a corresponding message flow failed to constitute a valid sequence diagram according to the
PlantUML grammar.

This case highlights a key design aspect of domain-specific languages (DSLs) like PlantUML: the
trade-off between flexibility (implicit typing) and strictness. While type inference enhances usability for
simple cases, it can lead to seemingly cryptic errors when the script provides insufficient context for a
complete structural definition. For developers and technical writers, the key takeaway is that when defining
interaction-based diagrams, it is imperative to include at least one interaction to ensure syntactic validity.

The parser successfully processes actor User and object Application as valid participant definitions.
However, upon reaching the end of the script (or @enduml), it has not encountered any message-passing
statements (e.g., User -> Application). This lack of interaction constitutes a violation of the expected structure
for a sequence diagram, leading the parser to report a syntax error at the last successfully parsed, yet
ultimately insufficient, line.

An illustrative error message is presented in , where the PlantUML compiler returns a “Syntax
Error? (Assumed diagram type: sequence)” message. This indicates that the model failed to follow the
correct sequence-diagram grammar, producing an invalid action label or missing transition. Such cases were
automatically assigned a zero score and later analyzed to refine prompt constraints and post-processing filters
in future iterations.

18 Comput Model Eng Sci. 2026;146(1):33

4.3.2 Limitations

Despite the promising results, several limitations must be acknowledged. First, the evaluation relies on
a finite set of UML diagram types (class, component, object, use case, sequence and state), leaving other
important diagram families such as activity, deployment, or communication diagrams unexplored. This
partial coverage may constrain the generalizability of the findings to the full UML specification. Second, the
dataset, while diverse, remains limited in size and annotation depth compared to established benchmarks in
computer vision or natural language processing. As a consequence, behavioral reasoning tasks, particularly
in sequence and state diagrams, still expose weaknesses across all tested models. Third, model evaluation is
restricted to three representative architectures (Qwen2.5-VL-3B, LLaMA-3.2-11B-Vision-Instruct and Aya-
Vision-8B), which may not fully capture the broader landscape of vision-language and code-oriented models.
Prior studies on multimodal prompting show that evaluation performance can be highly sensitive to prompt
design [50]; a systematic study of prompting strategies for UML diagrams is left as future work. Fourth,
while this study incorporates BLEU scores to assess syntactic fidelity, other complementary structural metrics
such as graph edit distance or execution-based validation were not fully explored. Prior work has shown
that graph edit distance is effective for matching and comparing UML class models [51], but we leave its
integration into our evaluation pipeline as future work. The absence of these measures may restrict the
ability to capture fine-grained topological discrepancies that syntactic metrics might miss. A limitation is that
our study prioritizes the framework’s accuracy and reliability over a formal evaluation of its computational
performance. Specifically, the reliance on multiple large models (LLMs and VLMs) introduces considerable
computational overhead. Future work should address a detailed analysis of metrics such as inference time per
stage, overall throughput, and resource utilization to provide a clearer picture of the feasibility of integrating
this framework into real-time modeling tools. Finally, the scoring framework emphasizes syntactic and
structural fidelity but provides only partial insight into semantic correctness, which is critical for ensuring
executable and functionally valid UML representations.

4.3.3 Future Research

Building upon these limitations, several avenues for future research emerge. Expanding the dataset to
cover the complete spectrum of UML diagram types and increasing annotation granularity for behavioral
semantics will be crucial to advancing automated UML synthesis. Incorporating execution-based evaluation
metrics and formal verification mechanisms can enhance the assessment of semantic validity, complement-
ing the current focus on structural fidelity. Furthermore, extending the benchmark to include a wider range of
foundation models such as reasoning-optimized LLMs, multimodal transformers, and domain specific code
models will provide a more comprehensive comparison across architectures. Another promising direction
is the integration of hybrid multimodal reasoning pipelines, where symbolic, textual, and visual features
are jointly optimized to reduce the structural behavioral gap. Finally, expanding the dataset to include
additional UML diagram types particularly Activity, Deployment and Package diagrams would help capture
a fuller spectrum of software design semantics and longitudinal studies on real-world industrial datasets
and collaborative validation with software engineers can strengthen the practical relevance and adoption of
automated UML generation frameworks.

4.4 Human Expert Validation and Correlation Analysis

To validate the reliability of our automated multi-VLM evaluation framework, we conducted a human
evaluation study. The primary goal was to measure the correlation between the composite scores generated
by our VLM ensemble and the quality ratings provided by human experts in Fig. 7. A subset of 60 UML
diagrams was randomly sampled from the dataset we generated, ensuring balanced representation across all

Comput Model Eng Sci. 2026;146(1):33 19

nine diagram types. These diagrams, along with their corresponding textual specifications, were presented to
a panel of four subjects for evaluation. The panel consisted of: Lecturer in Information Technology; Expert,
Enterprise in Information Technology; PhD student in Information Technology or related field; Student in
Information Technology or related field.

Distribution of participants by survey role

= Lecturer in Information Technology = Expert, Enterprise in Information Technology
PhD student in Information Technology or related field = Student in Information Technology or related field

Figure 7: Distribution of participants by survey role

Participants: We recruited 94 participants from four distinct groups based on their expertise in software
engineering and UML modeling. The group comprised 14 universities Lecturer in Information Technology;
12 experts, Enterprise in Information Technology; 7 PhD students in Information Technology; 61 students
in Information Technology. All participants confirmed proficiency across both structural and behavioral
UML diagrams.

A stratified random sample of 60 diagrams was selected from our generated dataset of nearly 12,000.
The sample was balanced to include 10 diagrams from each of the six types (Class, Object, Component, Use
Case, Sequence, State) to ensure representative coverage.

Evaluation Protocol and Criteria

The experts were asked to rate the quality of each UML diagram on the same 1-to-5 Likert scale
used by the VLMs, where 1 represents “very poor alignment” and 5 represents “Very Good Alignment”
with the textual specification. To ensure consistency, a detailed evaluation rubric was provided. The key
criteria included:

1. Semantic Correctness: Does the diagram accurately represent the entities, relationships, and processes
described in the text?

2. Structural Completeness: Are all major components (classes, actors, states, etc.) from the specification
present in the diagram?

20 Comput Model Eng Sci. 2026;146(1):33

3. Syntactic Accuracy: Does the diagram adhere to the standard conventions and syntax of the specific
UML type (e.g., correct use of arrows for inheritance vs. association)?

4. Overall Coherence: Is the diagram logically organized, clear, and easy to understand?

The final expert score for each diagram was calculated as the average of the “Overall Fidelity” scores
from the 94 experts.

To ensure the consistency and objectivity of the expert judgments, we calculated Fleiss’ Kappa, a robust
statistical measure for assessing the reliability of agreement between multiple raters. The raw scores from the
94 experts across the 60 sampled diagrams were aggregated to determine the level of consensus. The resulting
Kappa value was K = 0.78. According to the widely accepted interpretation scale by Landis and Koch,
this value falls into the “Substantial Agreement” range (0.61-0.80). This high level of inter-rater reliability
confirms that our human-generated ground truth is consistent and provides a solid baseline for validating
the performance of the VLM-based evaluation framework.

Semantic Correctness Structural Completeness

Number Participants

Number Participants

Object Diagram
20 25 20 30 10 i
58 49 53 47 44 44
6 20 2 7 20 32

28 2
47 52
10 18
[1

Number Participants

—e—1-Very Poor Alignmen

Class

—e—1-Very Poor Alignment

6diagrams

t —e—2-Poor Aligiment —em=3-Neutral

(a) Semantic Correctness

Syntactic Accuracy

2

6 diagrams

—e—2Poor Alignment —@=3-Neutral —@=—4-Good Alignment —#=5-Very Good Alignment

(c) Syntactic Accuracy

o

1
0

6diagrams

—e—1-Very Poor Alignment —#=2-Poor Aligiment =—@m3Neutral == 4-Good Allgnment =—@=5-Very Good Algnment

(b) Structural Completeness

Overall Coherence

7
H &0
s 50
2
5 40
H
I 2 2
2
17 20 18
2
10
[[[[[b
° C
ClassDiagiam Object Diagram OGNt Use Case Diagiam Saquance Diagram Sate Diagram
—e—5-Very Good Alignment 1 2 1 1 7 0
—e—4.Go0d Algment s B s s E) a
” 20 2 18 2 2
' 1 2 1 ' 1
—e—1-Very Poor Aligment o 0 ° o 0 °
6 diagrams
—e—1-Very Poor Agnment —e—2-Poor Alignment pment —e—51

Figure 8: Human expert evaluation scores for UML diagrams across four quality criteria

To quantitatively validate the reliability of our VLM-based evaluation framework, we performed a
correlation analysis comparing the VLM-generated composite scores against the mean overall fidelity ratings
provided by the 94 human experts for the 60-diagram subset. The analysis yielded a strong, statistically

Comput Model Eng Sci. 2026;146(1):33 21

significant positive correlation, with a Pearson correlation coefficient (r) of 0.82 (p < 0.001). This high
degree of correlation demonstrates a substantial alignment between our automated assessment and human
expert judgment. Consequently, these findings provide robust empirical evidence that the proposed multi-
VLM scoring mechanism serves as a valid and reliable proxy for human evaluation, enabling scalable and
consistent quality assessment of generated UML diagrams.

5 Conclusion and Future Work

In this paper, we propose a unified and scalable framework for automatically generating, validating, and
evaluating UML diagrams using large language models (LLMs). The approach integrates a dual modeling
process for requirements understanding and UML code generation, coupled with a multi-modal scoring
mechanism that leverages vision-language models to assess both structural accuracy and semantic fidelity.
The framework has been applied to a diverse set of UML diagrams, covering structural diagrams: Class (5000
samples), Object (1000 samples) and Component (1000 samples). Behavioral Diagrams: Use Case (2998),
Sequence (1000), and State (999) resulting in six large-scale annotated datasets aligned with 12,000 natural
language specifications. Our findings show that while LLMs are capable of producing plausible and often
structurally correct UML diagrams, challenges remain in modeling complex interrelationships and nuanced
semantics across diagram types. To mitigate this, we introduce a feedback loop mechanism that iteratively
refines low quality outputs based on evaluation scores, alongside a multi perspective validation system
employing vision-language models (LLaMA 3.2-Vision, Qwen2.5-VL, Aya-Vision) with a weighted aggrega-
tion scheme for reliable and reproducible assessment across UML tasks. Overall, the proposed framework not
only addresses the scarcity of comprehensive UML datasets but also establishes a reusable pipeline for future
research in automated system modeling, LLM benchmarking, and reasoning-aware diagram generation, with
potential extensions to additional diagram families (Activity, Deployment diagrams...) and integration of
Retrieval-Augmented Generation (RAG) modules for improved contextual grounding during synthesis.

This research establishes a robust foundation for automated UML dataset construction and multimodal
verification; however, several avenues remain open for further exploration. Future work will extend the
framework to encompass additional UML diagram types beyond the current scope, including both structural
diagrams (Class, Component, Object) and behavioral diagrams (Use Case, Sequence, State), as well as
Package and Deployment diagrams, thereby broadening its applicability across different stages of software
modeling. A key challenge lies in enhancing temporal reasoning capabilities, particularly for Sequence
Diagram synthesis where correct ordering of interactions and lifeline consistency are critical, which may
require the integration of temporal constraint solvers or hybrid neuro-symbolic reasoning approaches.
In addition, fine-tuning and domain adaptation of both generation and evaluation models using large
scale, domain-specific corpora will be explored to improve structural fidelity and semantic precision, with
retrieval-augmented generation (RAG) serving as a promising strategy to inject contextual knowledge during
synthesis. The automated evaluation pipeline can also be enriched with multimodal metrics such as graph-
structural similarity and ontology-based alignment to complement the vision-language scoring system and
provide deeper diagnostic insights. Finally, incorporating human-in-the-loop feedback mechanisms could
enable iterative refinement of both diagram generation and scoring, fostering adaptive, self-improving
Al-assisted modeling tools that enhance the accuracy, robustness, and industrial adoption of Al-driven
design automation.

Acknowledgement: None.

22 Comput Model Eng Sci. 2026;146(1):33

Funding Statement: This research was supported by the PH2025-TN07-07 project conducted at the Thai Nguyen
University of Information and Communication Technology, Thai Nguyen, Vietnam, with additional support from the
Al in Software Engineering Lab.

Author Contributions: Study conceptualization: Van-Viet Nguyen, Huu-Khanh Nguyen,The-Vinh Nguyen, Duc-
Quang Vu, Kim-Son Nguyen, Thi Minh-Hue Luong; data collection and experiment: Van-Viet Nguyen, Huu-Khanh
Nguyen, The-Vinh Nguyen; analysis and interpretation of results: Van-Viet Nguyen, The-Vinh Nguyen, Duc-Quang
Vu, Trung-Nghia Phung; draft manuscript preparation: Vinh Nguyen, Duc-Quang Vu,Trung-Nghia Phung; Van-Viet
Nguyen and The-Vinh Nguyen served as the corresponding authors for this manuscript. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: The datasets analyzed during the current study are available in the repository:
https://huggingface.co/nguyenvanviet/datasets (accessed on 17 December 2025).

Ethics Approval: Not applicable.
Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Abbreviations

The following abbreviations are used in this manuscript

UML Unified Modeling Language

LLM Large Language Model

VLM Vision-Language Models

BPMN Business Process Model and Notation
Al Artificial Intelligence

ML Machine Learning

SysML Systems Modeling Language

NLP Natural Language Processing

LLaMA Large Language Model Meta Al
MMMU Massive Multi-discipline Multimodal Understanding

RAG Retrieval-Augmented Generation
PhD Doctor of Philosophy

BLEU Bilingual Evaluation Understudy
Appendix A

Table Al illustrates the structured prompt templates designed for the two main stages of the proposed
training process. The first format prompt, “Create software feature descriptions from a user perspective,”
guides the model to simulate the behavior of an end-user or product owner. The goal is to generate coherent
and human-like descriptions of hypothetical software features. These descriptions serve as high-quality
textual inputs that reflect real-world software requirement expressions. The prompt explicitly instructs the
model to (1) invent a plausible software feature, (2) describe its functionality from a user’s point of view and
(3) avoid any discussion of implementation details such as as Class, Use case diagrams and more.

Table Al: Generate a user query for the dataset

Format Prompt: Create software feature descriptions from a user perspective

“Generate a user query for the dataset.”
prompt = “Act as an end-user or product owner who has conceived a
software feature.

(Continued)

https://huggingface.co/nguyenvanviet/datasets

Comput Model Eng Sci. 2026;146(1):33

23

Table Al (continued)

Format Prompt: Create software feature descriptions from a user perspective

You are now explaining this feature requirement to a software
developer.

The developer needs this information to draft flowcharts and class
diagram.

Your task is to:

1. Invent a plausible and interesting new software feature.

2. Describe this feature from a user’s perspective, focusing on what
it does.

Output should be easy to understand.

Answer only about the description of the feature, not about the
flowchart or use case diagram..

Feature description:”

Table A2

Table A2: Input-description

LLaMA generates user requirements

As a user, I want to be able to easily find and view all my notes in
a single, organized list. I want to be able to view all my notes,
including any attachments or comments, in a single list, so I can
easily review them at a glance. I want to be able to search for
specific notes or keywords in the list, so I can quickly find what
I'm looking for.

I also want to be able to sort the list by different criteria, such
as date, author, or priority, so I can easily organize my notes.

I want to be able to add new notes or attachments to the list, so I
can keep track of all my notes in one place.

And, I want to be able to delete notes or attachments from the list,
so I can keep my notes organized and up-to-date.

Overall, I want to be able to easily access and manage my notes in a
single, organized list, so I can quickly find what I need when I
need it.

Fig. Al shows about Llama 3.2 1B to generate a description.
Fig. A2 shows how DeepSeek-R1-Distill-Qwen-32B to generate a PlantUML Code.
Fig. A3 is Diagram Rendering and Multimodal Validation.

24

O

Comput Model

Eng Sci. 2026;146(1):33

Step 1:
Generate a user query for the dataset

4 R

prompt = "Act as an end-user or product owner|

who has conceived a software feature. You are

now explaining this feature requirement to a|
per. The per needs this|

information to draft flowcharts and deployment|

I Your task is to:

1. Invent a plausible and interesting new

Start with Llama 3.2 1B to generate a description

Step 2:
Llama-3.2-1B-Instruct Generate a description

N

software feature.

2. Describe this feature from a
perspective, focusing on what it does.
Output should be easy to understand. Answer|
only about the description of the feature, not

about the flowchart or diagrams.

user's

Feature description:"

Step 3:
Ouput - Description

and view all my notes in a single, organized
1ist. I want to be able to view all my notes,
incluging any attachments or comments, in a

can quickly find what I'm looking for.

I also want to be able to sort the list by
different criteria, such as dats, author, ox
priority, so I can easily organize my notes.

I want to be able to add new notes or
attachments to the list, so I can keep track
of all my notes in one place.

And, T vant to be able to delete notes or
attachments from the list, so I can keep my.
notes organized and up-to-date.

Overall, T want to be able to easily access
and manage my notes in a single, organized
1ist, 50 I can quickly find what T need when T
need it.

o /

—©

Figure Al: Llama 3.2 1B to generate a description

Step 1:
Description

45 a user, I mant £ be able to easily tind
and view 411 ny notes in a single, organizad
List. T want to be able to view ail ny notes,
including any attachments or coments, in a
single 1ist, 50 1 can sasily zeview them at @
glance. 1 want to be able to seazch for
specific notes ox keywords in the list, so T
can quickly find what I'm looking for.

DeepSeek-R1-Distill-Qwen-32B to generate a
PlantUML Code

Step 2:
DeepSeek-R1-Distill-Qwen-32B Reasoning

T also vant to be able to sort the list by
ditferent criteria, such as date, author, or
priority, so I can eastly organize my notes.

T want to be able to add new notes or
attachnents o the 1ist, 0 I can keep track
of 211 my notes in one place.

And, T vant to be able to delete notes or
attachrents fron the 1ist, 0 I can keep =y,
notes oxganized and up-to date.

Overall, I want to be able to easily access

and sanage my notes in a single, organized
1ist, 50 T can quickly find what T need when T
needit.

1 oo 1o ganenste 3 Pl o

Step 3:
PlantUML Code

uml_code.
string

@startuml
actor "Usex” as Usex

usecase “View All Notes® as ViewAllNotes

--> ViewAllNotes
--> Seaxchliotes
--> Sortfiotes
--> AddNewliote
--> Deleteliote

Figure A2: DeepSeek-RI-distill-qwen-32B to generate a plantUML code

Comput Model Eng Sci. 2026;146(1):33

25

State 3: Diagram Rendering and Multimodal Validation

(*

Diagrams imaged
generated

3 Vision Language Model (Qwen2.5-VL-3B-
Instruct, LLaMA-3.2-11B-Vision-Instruct,A ya-
Vision-8B) for Scoring and Calculate
weighted average

Figure A3: Diagram rendering and multimodal validation

Experiment Environment: Table A3 for Hardware and Table A4 for Software-Training.

Appendix B

BLEU scores were computed using the sentence-level BLEU implementation from the NLTK library.
By default, BLEU-4 was employed with uniform weights over 1- to 4-grams. A simple whitespace-based
tokenization was applied, and smoothing method 1 proposed by Chen and Cherry (2014) was used to mitigate
zero scores for short sequences. Each generated diagram was evaluated against a single reference.

Table A3: Hardware

Hardware

1. 4 x NVIDIA RTX A5000 (24 GB VRAM): High-performance

GPU for deep learning.

2.2 x Threadripper PRO 5965WX (48 cores): Multi-core CPU

for parallel processing
3.256 GB RAM: Large memory for handling big datasets

Table A4: Software & training

Software & training

1. Libraries & Frameworks: Unsloth
2025.6.2: Fast Mllama patching.
Transformers: 4.51.3. vLLM: 0.9.1.
Platform: Linux. Torch: 2.7.0+cul26.
8.6. CUDA

2. Training Duration: 500 h.

CUDA:

26 Comput Model Eng Sci. 2026;146(1):33

References

1. Vaswani A, Shazeer N, Parmar N, Uszkoreit], Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings
of the 31st International Conference on Neural Information Processing System; 2017 Dec 4-9; Long Beach, CA,
USA. p. 6000-10.

2. Booch G, Rumbaugh J, Jacobson I. The unified modeling language user guide. 2nd ed. Boston, MA, USA: Addison-
Wesley; 2005.

3. Holt], Perry S. SysML for systems engineering. Vol. 7. Institution of Engineering and Technology; 2008.

4. Torcal], Moreno V, Llorens J, Granados A. Creating and validating a ground truth dataset of unified modeling
language diagrams using deep learning techniques. Appl Sci. 2024;14(23):10873. doi:10.3390/app142310873.

5. Whittle], Hutchinson], Rouncefield M. The state of practice in model-driven engineering. IEEE Softw.
2013;31(3):79-85. d0i:10.1109/MS.2013.65.

6. Alenezi M, Akour M. Ai-driven innovations in software engineering: a review of current practices and future
directions. Appl Sci. 2025;15(3):1344. d0i:10.3390/app15031344.

7. Nguyen VV, Nguyen HK, Nguyen KS, Luong Thi Minh H, Nguyen TV, Vu DQ. A novel pipeline for automatic UML
sequence diagram synthesis and multimodal scoring. In: Thai-Nghe N, Do TN, Benferhat S, editors. Intelligent
systems and data science. Singapore: Springer Nature Singapore; 2026. p. 473-85. doi:10.1007/978-981-95-335
5-8_34.

8. Shehzadi N, Ferzund J, Fatima R, Riaz A. Automatic complexity analysis of UML class diagrams using visual
question answering (VQA) techniques. Software. 2025;4(4):22. doi:10.3390/software4040022.

9. Ahmed S, Ahmed A, Eisty NU. Automatic transformation of natural to unified modeling language: a systematic
review. In: 2022 IEEE/ACIS 20th International Conference on Software Engineering Research, Management and
Applications (SERA); 2022 May 25-27; Las Vegas, NV, USA. p. 112-9. d0i:10.1109/SERA54885.2022.9806783.

10. Loépez JAH, Canovas Izquierdo JL, Cuadrado JS. ModelSet: a dataset for machine learning in model-driven
engineering. Software Syst Model. 2022;21(3):967-86. d0i:10.1007/s10270-021-00929-3.

1. Conrardy A, Cabot J. From image to UML: first results of image-based UML diagram generation using LLMs.
arXiv:2404.11376. 2024.

12. Rouabhia D, Hadjadj I. Behavioral augmentation of UML class diagrams: an empirical study of large language
models for method generation. arXiv:2506.00788. 2025.

13. MengY, Ban A. Automated UML class diagram generation from textual requirements using NLP techniques. JOIV:
Int J Inf Vis. 2024;8(3-2):1905-15. d0i:10.62527/j0iv.8.3-2.3482.

14. Jahan M, Hassan MM, Golpayegani R, Ranjbaran G, Roy C, Roy B, et al. Automated derivation of UML sequence
diagrams from user stories: unleashing the power of generative Al vs. a rule-based approach. In: Proceedings of
the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems. MODELS
"24; 2024 Sep 22-27; Linz, Austria. New York, NY, USA: Association for Computing Machinery; 2024. p. 138-48.
doi:10.1145/3640310.3674081.

15. Simmonds J, Bastarrica MC. A tool for automatic UML model consistency checking. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering. ASE ’05; 2005 Nov 7-11; Long Beach,
CA, USA. New York, NY, USA: Association for Computing Machinery; 2005. p. 431-2. doi:10.1145/1101908.1101989.

16. Bouali N, Gerhold M, Rehman TU, Ahmed F. Toward automated UML diagram assessment: comparing LLM-
generated scores with teaching assistants. In: Proceedings of the 17th International Conference on Computer
Supported Education (CSEDU-Volume 1; 2025 Apr 1-3; Porto, Portugal. p. 158-69. d0i:10.5220/0013481900003932.

17. Babaalla Z, Jakimi A, Oualla M. LLM-driven MDA pipeline for generating UML class diagrams and code. IEEE
Access. 2025;13:171266-86. d0i:10.1109/ ACCESS.2025.3615828.

18. Deeptimahanti DK, Kumar D, Babar MA. Semi-automatic generation of UML models from natural language
requirements. ACM SIGSOFT Software Eng Notes. 2011;36(4):1-8. doi:10.1145/1953355.1953378.

19. Abdelnabi EA, Maatuk AM, Abdelaziz TM, Elakeili S. Generating UML class diagram using NLP techniques and

heuristic rules. In: Proceedings of the 20th International Conference on Sciences and Techniques of Automatic
Control and Computer Engineering (STA); 2020 Dec 20-22; Monastir, Tunisia. p. 277-82. doi:10.1109/STA50679.
2020.9329301.

https://doi.org/10.3390/app142310873
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.3390/app15031344
https://doi.org/10.1007/978-981-95-3355-8_34
https://doi.org/10.1007/978-981-95-3355-8_34
https://doi.org/10.3390/software4040022
https://doi.org/10.1109/SERA54885.2022.9806783
https://doi.org/10.1007/s10270-021-00929-3
https://doi.org/10.62527/joiv.8.3-2.3482
https://doi.org/10.1145/3640310.3674081
https://doi.org/10.1145/1101908.1101989
https://doi.org/10.5220/0013481900003932
https://doi.org/10.1109/ACCESS.2025.3615828
https://doi.org/10.1145/1953355.1953378
https://doi.org/10.1109/STA50679.2020.9329301
https://doi.org/10.1109/STA50679.2020.9329301

Comput Model Eng Sci. 2026;146(1):33 27

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

Maatuk AM, Abdelnabi EA. Generating UML use case and activity diagrams using NLP techniques and heuristics
rules. In: Proceedings of the International Conference on Data Science, E-learning and Information Systems 2021;
2021 Apr 5-7; Maan, Jordan. New York, NY, USA: Association for Computing Machinery; 2021. p. 271-7. doi:10.
1145/3460620.3460768.

Necula SC, Dumitriu E, Greavu-$erban V. A systematic literature review on using natural language processing in
software requirements engineering. Electronics. 2024;13(11):2055. doi:10.3390/electronics13112055.

Alshareef S, Maatuk AM, Abdelaziz T. Aspect-oriented requirements engineering: approaches and techniques. In:
Proceedings of the First International Conference on Data Science, E-learning and Information Systems; 2018 Oct
1-2; Madrid, Spain. p. 1-7. d0i:10.1145/3279996.3280009.

Metzner A. Systematic teaching of UML and behavioral diagrams. In: 2024 36th International Conference on
Software Engineering Education and Training (CSEE&T); 2024 Jul 29-Aug 1; Wiirzburg, Germany. p. 1-5. doi:10.
1109/CSEET62301.2024.10663036.

Babaalla Z. Extraction of UML class diagrams using deep learning: comparative study and critical analysis.
Procedia Comput Sci. 2024;232(1):110-9. d0i:10.1016/j.procs.2024.05.053.

De Bari D, Garaccione G, Coppola R, Torchiano M, Ardito L. Evaluating large language models in exercises of UML
class diagram modeling. In: Proceedings of the 18th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. ESEM ’24; 2024 Oct 24-25; Barcelona, Spain. New York, NY, USA: Association for
Computing Machinery; 2024. p. 393-9. doi:10.1145/3674805.3690741.

Wang B, Wang C, Liang P, Li B, Zeng C. How LLMs Aid in UML modeling: an exploratory study with novice
analysts. In: 2024 IEEE International Conference on Software Services Engineering (SSE); 2024 Jul 7-13; Shenzhen,
China. p. 249-57. d0i:10.1109/SSE62657.2024.00046.

DengJ, Dong W, Socher R, Li L], Li K, Fei-Fei L. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition; 2009 Jun 20-25; Miami, FL, USA. p. 248-55. doi:10.
1109/CVPR.2009.5206848.

Wang A, Singh A, Michael], Hill F, Levy O, Bowman SR. GLUE: a multi-task benchmark and analysis platform
for natural language understanding. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP; 2018 Nov 1; Brussels, Belgium. p. 353-5.

Danish S, Ali M, Khan T. A comprehensive survey of Vision-Language Models: pretrained models, fine-tuning,
prompt engineering, adapters, and benchmark datasets. Inf Fusion. 2025;108(9):102300. doi:10.1016/j.inffus.2025.
103623.

Picard C, Thomas E, Zhao L. From concept to manufacturing: evaluating vision-language models for engineering
design. Artifi Intell Rev. 2025;58(6):2451-76. doi:10.1007/s10462-025-11290-y.

Bates A, Singh R, Shah A. Unified modeling language code generation from diagram images using multimodal
large language models. SoftwareX. 2025;23(1):101580. doi:10.1016/j.mlwa.2025.100660.

Shinde SK, Bhojane V, Mahajan P. NLP based object oriented analysis and design from requirement specification.
Int] Comput Appl. 2012;47(21):30-4.

Xu FE, Alon U, Neubig G, Hellendoorn VJ. A systematic evaluation of large language models of code. In:
Proceedings of the 6th ACM SIGPLAN International Symposium on Machine Programming. MAPS 2022; 2022
Jun 13; San Diego, CA, USA. New York, NY, USA: Association for Computing Machinery; 2022. p. 1-10. doi:10.
1145/3520312.3534862.

Wang Y, Le H, Gotmare A, Bui N, Li], Hoi S. Codet5+: open code large language models for code understanding
and generation. In: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing;
2023 Dec 6-10; Singapore. Stroudsburg, PA, USA: ACL; 2023. p. 1069-88. d0i:10.18653/v1/2023.emnlp-main.68.
Viet NV, Vinh NT. Large language models in software engineering A systematic review and
vision.2024;2(2):146-56. d0i:10.56916/jesi.v2i2.968.

Dehaerne E, Dey B, Halder S, De Gendt S, Meert W. Code generation using machine learning: a systematic review.
IEEE Access. 2022;10:82434-55. doi:10.1109/ACCESS.2022.3196347.

https://doi.org/10.1145/3460620.3460768
https://doi.org/10.1145/3460620.3460768
https://doi.org/10.3390/electronics13112055
https://doi.org/10.1145/3279996.3280009
https://doi.org/10.1109/CSEET62301.2024.10663036
https://doi.org/10.1109/CSEET62301.2024.10663036
https://doi.org/10.1016/j.procs.2024.05.053
https://doi.org/10.1145/3674805.3690741
https://doi.org/10.1109/SSE62657.2024.00046
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1016/j.inffus.2025.103623
https://doi.org/10.1016/j.inffus.2025.103623
https://doi.org/10.1007/s10462-025-11290-y
https://doi.org/10.1016/j.mlwa.2025.100660
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.56916/jesi.v2i2.968
https://doi.org/10.1109/ACCESS.2022.3196347

28

37

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Comput Model Eng Sci. 2026;146(1):33

Padhye R, Lemieux C, Sen K. JQF: coverage-guided property-based testing in Java. In: Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2019); 2019 Jul 15-19; Beijing
China. p. 398-401. doi:10.1145/3293882.3339002.

Chen M, Tworek], Jun H, Yuan Q, Pondé H, Kaplan J, et al. Evaluating large language models trained on code.
arXiv:2107.03374. 2021.

Recht B, Roelofs R, Schmidt L, Shankar V. Do imagenet classifiers generalize to imagenet? In: Proceedings of the
36th International Conference on Machine Learning; 2019 Jun 9-15; Long Beach, CA, USA. p. 398-40L.

Touvron H, Lavril T, Izacard G, Martinet X, Lachaux MA, Lacroix T, et al. LLaMA: open and efficient foundation
language models. arXiv:2302.13971. 2023.

DeepSeek-Al. DeepSeek-Rl1: incentivizing reasoning capability in LLMs via reinforcement learning.
arXiv:2501.12948. 2025.

Wang P, Bai S, Tan S, Wang S, Fan Z, Bai J, et al. Qwen2-VL: enhancing vision-language model’s perception of the
world at any resolution. arXiv:2409.12191. 2024.

Ustiin A, Aryabumi V, Yong Z, Ko WY, Dsouza D, Onilude G, et al. Aya model: an instruction finetuned
open-access multilingual language model. In: Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics; 2024 Aug 11-16; Bangkok, Thailand. p. 15894-939.

Yue X, Ni Y, Zhang K, Zheng T, Liu R, Zhang G, et al. MMMU: a massive multi-discipline multimodal
understanding and reasoning benchmark for expert AGI. In: Proceedings of the 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition; 2024 Jun 16-22; Seattle, WA, USA. p. 9556-67. d0i:10.1109/CVPR52733.
2024.00913.

Kingori AW, Muketha GM, Ndia JG. A framework for analyzing UML behavioral metrics based on complexity
perspectives. Int] Software Eng (IJSE). 2024;11(1):1-12.

Singh D, Sidhu H. Optimizing the software metrics for uml structural and behavioral diagrams using metrics tool.
Asian] Comput Sci Technol. 2018;7(2):11-7. doi:10.51983/ajcst-2018.7.2.1877.

Munde AR. Evaluation of vision language model on UML diagrams; 2025 [cited 2025 Dec 17]. Available
from: https://www.researchgate.net/publication/388499054_Evaluation_of_Vision_Language Model_on_UML_
Diagrams/citations.

Fauzan R, Siahaan D, Rochimah S, Triandini E. Structural similarity assessment for multiple UML diagrams
measurement with UML common graph. AIP Conf Proc. 2024;2927:060001. doi:10.1063/5.0192102.

Arifin MN, Siahaan D. Structural and semantic similarity measurement of UML use case diagram. Lontar
Komputer: Jurnal Ilmiah Teknologi Informasi. 2020;11(2):88. doi:10.24843/LKJIT1.2020.v11.i02.p03.

Keskar A, Perisetla S, Greer R. Evaluating multimodal vision-language model prompting strategies for visual
question answering in road scene understanding. In: Proceedings of the Winter Conference on Applications of
Computer Vision; 2025 Feb 28-Mar 4; Tucson, AZ, USA. p. 1027-36.

Cech P. Matching UML class models using graph edit distance. Expert Syste Appl. 2019;130:206-24. doi:10.1016/j.
eswa.2019.04.008.

https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.51983/ajcst-2018.7.2.1877
https://www.researchgate.net/publication/388499054_Evaluation_of_Vision_Language_Model_on_UML_Diagrams/citations
https://www.researchgate.net/publication/388499054_Evaluation_of_Vision_Language_Model_on_UML_Diagrams/citations
https://doi.org/10.1063/5.0192102
https://doi.org/10.24843/LKJITI.2020.v11.i02.p03
https://doi.org/10.1016/j.eswa.2019.04.008
https://doi.org/10.1016/j.eswa.2019.04.008

	A Novel Unified Framework for Automated Generation and Multimodal Validation of UML Diagrams
	1 Introduction
	2 Related Work
	3 Method
	4 Results and Discussion
	5 Conclusion and Future Work
	Abbreviations
	Appendix A
	Appendix B
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

