
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.075119

ARTICLE

Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning
in Mental-Health Risk Assessment

Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,* and Seungmin Rho3

1Department of Computer Science, Fakir Mohan University, Balasore, 756019, Odisha, India
2Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
3Department of Industrial Security, Chung-Ang University, Seoul, 06974, Republic of Korea
*Corresponding Authors: Noman Khan. Email: noman@yonsei.ac.kr; Mi Young Lee. Email: miylee@cau.ac.kr
Received: 25 October 2025; Accepted: 19 December 2025; Published: 29 January 2026

ABSTRACT: Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts
to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm,
long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances,
detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the
sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal
relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper
presents a Continual Neuro-Symbolic Graph Learning (CNSGL) framework that unifies symbolic reasoning, causal
inference, and continual learning within a single architecture. Each post is represented as a symbolic graph linking
clinically relevant tags to textual content, enriched with causal edges derived from directional Point-wise Mutual
Information (PMI). A two-layer Graph Convolutional Network (GCN) encodes these graphs, and a Transformer-
based attention pooler aggregates node embeddings while providing interpretable tag-level importances. Continual
adaptation across datasets is achieved through the Multi-Head Freeze (MH-Freeze) strategy, which freezes a shared
encoder and incrementally trains lightweight task-specific heads (small classifiers attached to the shared embedding).
Experimental evaluations across six diverse mental-health datasets ranging from Reddit discourse to clinical interviews,
demonstrate that MH-Freeze consistently outperforms existing continual-learning baselines in both discriminative
accuracy and calibration reliability. Across six datasets, MH-Freeze achieves up to 0.925 accuracy and 0.923 F1-Score,
with AUPRC ≥ 0.934 and AUROC ≥ 0.942, consistently surpassing all continual-learning baselines. The results confirm
the framework’s ability to preserve prior knowledge, adapt to domain shifts, and maintain causal interpretability,
establishing CNSGL as a promising step toward robust, explainable, and lifelong mental-health risk assessment.

KEYWORDS: Catastrophic forgetting; causal inference; continual learning; deep learning; graph convolutional
network; mental health monitoring; transformer

1 Introduction
Mental-health disorders such as depression, anxiety, and suicidal ideation are rising globally, posing

serious risks to individuals and society [1,2]. With the growth of online platforms and clinical records, vast
amounts of unstructured text now capture personal experiences and distress signals [3,4]. Automatically
analyzing this text for early detection of psychological risk has become an urgent research problem. However,
it remains highly challenging due to the ambiguity of natural language, and the subtlety of psychological
cues [5,6]. Timely detection enables early intervention and targeted allocation of limited mental-health
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resources, and real-world deployment demands models that are not only accurate but also interpretable and
well-calibrated so that clinicians and moderators can act on predictions with confidence [7].

In many real-world scenarios, posts and interviews carry implicit cues (e.g., hopelessness, insomnia,
self-harm) that are difficult to capture with surface features alone [8]. Purely neural approaches can learn
powerful representations but often lack interpretability and causal grounding; purely symbolic methods
offer transparency but struggle with linguistic variability and generalization [9]. Moreover, data arrive over
time from different communities and collection protocols, creating domain shift and exposing models to
catastrophic forgetting when retrained sequentially [10,11]. These factors emphasize an integrated approach
that can (i) structure free text into clinically meaningful graphs, (ii) model directional relations among risk
factors, and (iii) learn continually across datasets without erasing earlier competencies. In addition, class
imbalance, where rare but critical signals such as suicidal ideation are underrepresented, biases predictions
and reduces reliability. Addressing these issues requires models that are both interpretable and adaptable,
while retaining stability across evolving datasets.

Continual learning (CL), also referred to as lifelong or incremental learning, aims to enable models to
acquire new knowledge over time without forgetting previously learned information [12]. Unlike traditional
retraining approaches that require access to all past data, CL supports sequential learning across tasks
or domains by reusing shared representations and adapting to new inputs efficiently. This paradigm is
particularly valuable in mental-health applications, where new linguistic trends, populations, and annotation
protocols continuously emerge. A robust continual learning mechanism ensures that models remain up to
date while preserving earlier competencies, enabling sustainable and realistic deployment in evolving digital
health environments.

To address these challenges, a Continual Neuro-Symbolic Graph Learning (CNSGL) framework is
proposed in this work for causal inference and continual learning in mental-health risk assessment. CNSGL
represents each post as a symbolic graph in which a post node connects to tag nodes derived from a risk
lexicon. Beyond simple co-occurrence, graphs are enriched with directional edges using a variant of point-
wise mutual information to reflect likely precursors and consequents among risk factors. A two-layer Graph
Convolutional Network (GCN) propagates information over this structure, and a lightweight Transformer
attention pooler, anchored by a learnable [CLS] token, aggregates node embeddings while producing
tag-level importances for interpretability.

To enable continual adaptation, the proposed framework employs a Multi-Head Freeze (MH-Freeze)
strategy that freezes the shared encoder after the first dataset and incrementally attaches lightweight task-
specific heads for subsequent datasets. Here, “task-specific head” refers to a small linear-sigmoid classifier
attached to the shared embedding for each dataset. This form is adopted to enable lightweight adaptation
on a fixed embedding space: the frozen GCN-Transformer encoder produces a stable representation, and
the head maps it directly to a calibrated probability via binary cross-entropy (BCE) loss. This keeps updates
simple and efficient, reduces the risk of cross-task gradient interference, and preserves calibration. In
contrast, deeper or non-linear heads introduce extra trainable layers that can overfit to a single dataset and
reintroduce interference with previously learned tasks. Each dataset is treated as a separate task (T1-T6),
allowing systematic evaluation of domain transfer and retention. Our evaluation further incorporates both
discrimination and calibration metrics (AUROC, AUPRC, Brier score, and Expected Calibration Error) to
quantify predictive reliability under domain shift and sequential learning conditions.

1.1 Motivation
In mental health risk assessment and monitoring, systems are deployed in dynamic and evolving

scenarios. In many real world scenarios, diverse signals (clinical notes, social media text, speech, and
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wearable biosignals) are used to detect risk states such as depression, anxiety, self-harm intent, and acute
stress. However, most pipelines are trained on static datasets with fixed labels and vocabularies. When new
expressions, populations, or risk patterns appear, performance is often degraded. In practice, full retraining
on new data is often required, while incremental updates risk catastrophic forgetting that overwrites
previously learned knowledge [13]. Therefore, continual learning is increasingly regarded as important for
mental health tasks. Rather than retraining from scratch, new risk categories or domains can be incorporated
as they arise while preserving recognition of earlier ones [14].

1.2 Research Gaps
Despite rapid progress, Several unresolved challenges continue to hinder dependable mental-health risk

detection from text:

• Missing causal structure: Most models treat symptoms as flat labels; they do not encode directed tag→tag
influences or use them during message passing.

• Limited interpretability: Explanations are often post-hoc for text tokens, not concept-level (symbolic
tags) nor pathway-level (causal paths).

• Catastrophic forgetting: Models struggle to retain prior knowledge as new datasets arrive, while simple,
deployable continual-learning solutions are still lacking.

• Opaque pooling: Mean/max pooling blurs which symbolic tags matter per post; attention over concept
nodes is rarely leveraged.

In light of the above, we propose a continual neuro-symbolic framework that builds per-post symbolic
tag graphs with directed links, encodes them via a two-layer GCN, and uses a lightweight attention head
to form calibrated, interpretable post representations. For sequential datasets, we adopt a frozen-encoder,
multi-head protocol to prevent forgetting while keeping adaptation lightweight. The key contributions of this
work are summarized below:

• A neuro-symbolic graph learning framework is proposed that combines symbolic reasoning, causal
inference, graph-based neural encoding, and continual learning for mental-health risk assessment.

• Symbolic graphs are constructed from text using risk-related tags, ensuring interpretability by grounding
predictions in clinically meaningful indicators.

• A causal-aware enrichment mechanism introduces directed tag–tag edges, capturing potential causal
influences among symptoms rather than simple co-occurrence.

• A graph convolutional encoder is employed to propagate symbolic and causal features, followed by a
lightweight Transformer-based attention head weights the post–tag embeddings and a classifier that
outputs binary risk predictions through probability estimation and thresholding.

• A continual learning strategy (multi-head frozen-encoder) is implemented to preserve knowledge across
datasets while enabling adaptation to new domains, mitigating catastrophic forgetting.

• Extensive experiments are conducted on multiple datasets, and results are compared against strong
continual learning baselines, demonstrating improved robustness, interpretability, and adaptability.

The remainder of this paper is organized as follows: Section 2 presents an extensive survey of related
research and methods relevant to this work, Section 3 presents the proposed CNSGL framework, including
symbolic graph construction, causal enrichment, the GCN–Transformer encoder, and the MH-Freeze
continual-learning strategy. Section 4 describes the experimental details, and evaluation metrics. Section 5
presents the ablation study analyzing the contribution of each component. Section 6 concludes the paper
and highlights future directions.
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2 Related Work
Detecting mental-health risk from text is a challenging and active area with direct applications to

screening, risk stratification, and clinical decision support. This section reviews related research across the
categories listed in the subsections, aligning each category of methods pertinent to this work.

2.1 Mental-Health Risk Detection from Text
This subsection reviews key efforts on detecting mental-health signals from social-media text, ranging

from traditional machine learning (ML) to deep learning (DL). Hemmatirad et al. [15] showed that lexicon
and handcrafted features paired with support vector machine or logistic regression classifiers can distinguish
high-risk users using linguistic and emotional cues. With the advent of contextual embeddings, hybrid
models such as BERT+BiLSTM have been proposed by Zhou and Mohd [16] to better handle informal
language, emojis, and sequential patterns in depression-related posts.

Prior surveys consolidate the literature and shed light on persistent challenges. Garg [17] reviewed
92 studies, introduced an updatable suicide-detection repository, and emphasized the need for real-time,
responsible AI. Skaik and Inkpen [18] surveyed NLP/ML approaches for public mental-health surveil-
lance, summarizing data collection strategies, modeling tools, and remaining gaps. Other studies explore
emotion-aware and efficiency-focused systems. Benrouba and Boudour [19] proposed an emotion-aware
content-filtering framework that classifies posts into basic emotions and compares them with an “ideal”
lexicon to flag potentially harmful content. Ding et al. [20] compared ML models (logistic regression, random
forest, LightGBM) with DL models (ALBERT, GRU) for binary and multi-class mental-health classification,
finding that ML methods offer better interpretability and efficiency on medium-sized datasets, whereas DL
models better capture complex linguistic patterns.

2.2 Causal Inference
Causal reasoning in language means modeling directional influence (A→ B) so that changing A would

change the likelihood of B, beyond simple correlation. This has been studied using temporal precedence and
directional association measures, causal discovery on event graphs, and counterfactual analyses. However, in
social-media risk assessment, such causal structure is rarely embedded within the encoder itself. Choudhury
and Kiciman [21] examined the causal impact of online social-support language in Reddit mental-health
communities on future suicidal-ideation risk. Using human assessments within a stratified propensity-score
framework to form comparable cohorts, they estimated treatment effects of support types and found that
esteem and network support significantly reduce subsequent risk, with implications for tools that enhance
support provision.

Zhang et al. [22] proposed a causal framework based on a counterfactual neural temporal point process
(TPP) to estimate the individual treatment effect (ITE) of misinformation on user beliefs and actions at
scale, using a neural TPP with Gaussian mixtures for efficient inference. Experiments on synthetic data and
a real COVID-19 vaccine dataset showed identifiable causal effects of misinformation, including negative
shifts in users’ vaccine-related sentiments. Cheng et al. [23] surveyed Event Causality Identification (ECI)
and proposed a systematic taxonomy split into sentence-level ECI (SECI) and document-level ECI (DECI)
tasks, reviewing approaches from feature/ML methods to deep semantic encoding, event-graph reasoning,
and prompt/causal-knowledge pretraining, with notes on multilingual, cross-lingual, and zero-shot large
language model settings.
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2.3 Neural Encoders: Graph + Attention
GCN encoders capture relational structure for text via message passing on graphs, benefiting settings

with explicit concept relations [24]. Hamilton et al. [25] proposed GraphSAGE, an inductive framework
that extended GCNs to unsupervised learning and introduced trainable aggregation functions beyond
simple convolutions. The method generated embeddings for unseen nodes by sampling and aggregating
neighborhood features, leveraging node attributes for generalization. Yao et al. [26] introduced Text GCN,
which built a corpus-level graph from word co-occurrence and document-word relations to jointly learn
word and document embeddings. Without relying on external embeddings, Text GCN outperformed
state-of-the-art methods on multiple benchmarks and showed strong robustness with limited training data.

Transformers, driven by self-attention, excel at weighting inputs and can be used as interpretable pooling
over concept embeddings [27]. Vaswani et al. [28] proposed the Transformer, a sequence transduction archi-
tecture based solely on attention mechanisms, removing recurrence and convolutions. The model achieved
state-of-the-art results on Workshop on Machine Translation 2014 English to German and English to French
translation tasks, while being more parallelizable and significantly faster to train than prior approaches.

Devlin et al. [29] introduced Bidirectional Encoder Representations from Transformers (BERT), a
bidirectional Transformer-based model pre-trained on unlabeled text by jointly conditioning on left and
right context. With simple fine-tuning, BERT achieved state-of-the-art results on eleven NLP tasks. Yang
et al. [30] proposed a hierarchical attention network (HAN) for document classification, which reflected
the hierarchical structure of documents and applied attention at both word and sentence levels. The
model outperformed prior methods on six large-scale benchmarks and provided interpretable document
representations by highlighting informative words and sentences.

2.4 Continual Learning for Mental Health
Continual learning addresses time-varying, patient-specific data in mental-health scenarios by incre-

mentally updating models from electronic health records, speech/text, and wearable streams while
preserving prior knowledge. Although the CL for mental health literature remains limited, we highlight a
few representative systems that show feasibility under practical constraints. Gamel and Talaat [31] proposed
SleepSmart, an Internet of Things (IoT) enabled continual learning framework for intelligent sleep enhance-
ment. The system employed wearable biosensors to capture physiological signals during sleep, which were
processed via an IoT platform to deliver personalized recommendations. By leveraging continual learning,
SleepSmart improved recommendation accuracy over time, and a pilot study demonstrated its effectiveness
in enhancing sleep quality and reducing disturbances.

Lee and Lee [32] explored the role of continual learning in medicine, where models adapt to new
patient data without forgetting prior knowledge. They emphasized challenges such as catastrophic forgetting
and regulatory constraints, but argued that continual learning offers advantages over non-adaptive Food
and Drug Administration approved systems by incrementally improving diagnostic and decision-support
performance. Li and Jha [33] proposed DOCTOR, a continual-learning framework for multi-disease
detection on wearable medical sensors at the edge. The system used a multi-headed deep neural network
with replay-based CL, via exemplar data preservation or synthetic data generation to mitigate catastrophic
forgetting while sequentially adding tasks with new classes and distributions. In experiments, a single model
maintained high accuracy, yielding up to 43% higher test accuracy, 25% higher F1 score, and 0.41 higher
backward transfer over naive fine-tuning.

A structured comparison is presented in Table 1 to more clearly contextualize CNSGL within existing
work. Prior methods typically incorporate only one or two of the components, symbolic representations,
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causal edge modeling, graph-based encoders, Transformer attention mechanisms, or continual-learning
strategies, rather than unifying all of them within a single framework. As shown in Table 1, approaches
that employ symbolic reasoning rarely integrate GNN encoders or explicit causal edge construction;
causal GNN models generally do not use symbolic tag vocabularies or Transformer-based pooling; and
continual-learning systems commonly operate without symbolic graphs or causal modeling. In contrast,
CNSGL combines directional PMI-derived causal edges, a symbolic tag graph, a two-layer GCN encoder, a
Transformer attention pooler, and a multi-head freeze continual-learning strategy within one architecture
tailored for mental-health risk detection. This integrated design forms the central novelty of the approach
and demonstrates how CNSGL extends beyond existing component-wise methods.

Table 1: Comparison of CNSGL with representative neuro-symbolic, causal-modeling, and continual-learning
architectures

Author Model Symbolic Causal Edge Graph Encoder Transformer Continual Application
Representation Modeling (GCN/GNN) Attention Learning Domain

Nie et al.
(2022) [34] Incremental GCN

No (utterances &
speakers as
nodes; no
symbolic

tags/lexicons)

No GC/N

Yes, multi-head
attention for

utterance
correlation

Yes, Incremental
fine-tuning with
new utterances

Conversation
emotion detection

Kaur et al.
(2022) [35]

Transformer-based
causal

categorization
No Causal labels, but

no causal edges No Yes No

Mental-health
causal

categorization on
social-media posts

Kodati &
Tene

(2023) [36]

Context-based
bidirectional gated
recurrent unit with

multi-head
attention and a
convolutional

neural network

Partial, POS tags
+ lexicon

features (not
symbolic graphs)

No No, CNN used

Yes, Multi-Head
Attention +

BERT MLM/Self-
attention

No
Suicidal-emotion

detection on
social-media text

Kumar
(2023) [37]

Neuro-Symbolic AI
framework

Yes, structured
knowledge

graphs, symbolic
reasoning,
cognitive
theories

General causal
reasoning

mentioned, but
no graph

construction
method

No No No

personalized
mental health

therapy,
computational

psychiatry

Tang et al.
(2023) [38]

Causality-Driven
GCN Framework No

Yes, causal
interventions +

invariant
prediction
principle +

causality scoring

GCN No No

Automated
classification of

postural
abnormalities in

Parkinson’s disease

Bhuyan et al.
(2024) [39]

Conceptual Neuro-
Symbolic AI
framework

Yes, symbolic
reasoning &

discrete logic
No GNN No Yes

General AI/Neuro-
Symbolic
reasoning

Dalkic
(2025) [40]

Context-Aware EEG
Emotion

Recognition System

No (raw EEG +
context

embeddings; no
symbolic tags or

lexicons)

No No
Yes, Temporal
Transformer

encoder

Yes, EWC-based
continual
learning

EEG-based
emotion recogni-

tion/affective
computing

Patanè et al.
(2025) [41]

Prompt-based
continual learning

framework

No (mobile
sensing features;

no symbolic
tags/lexicons)

No No
Yes, Transformer

backbone with
task prompts

Yes, Replay
buffer +

prompt-based
adaptation

personalized
mental well-being

monitoring

Febrinanto
et al.

(2025) [42]

Causal Graphs for
Brains No

Yes, causal
discovery +

transfer entropy
+

curvature-based
rewiring

Yes. GNN models
refined causal

graphs
No No

Brain disease
classification

(neuroscience)

(Continued)
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Table 1 (continued)

Author Model Symbolic Causal Edge Graph Encoder Transformer Continual Application
Representation Modeling (GCN/GNN) Attention Learning Domain

Gosala et al.
(2025) [43]

GCN-LSTM;
12-layer GCN

No (EEG
electrodes as

nodes, not
symbolic tags)

No, edges from
cohesion/

phase-locking,
not causal)

Yes, GCN +
hybrid

GCN-LSTM
No No

Schizophrenia
classification from

EEG (clinical
neuroimaging)

Our Work
Continual Neuro-
Symbolic Graph

Learning (CNSGL)

Yes, symbolic
mental-health

tags with clinical
relevance

Yes, directional
PMI edges

encoding causal
tendencies

between tags

Yes, 2-layer GCN
encoder

Yes,
Transformer-

based attention
pooling with
CLS-to-tag
weights for

explainability

Yes, Multi-Head
Freeze (encoder

frozen after
Task-1) to

prevent
forgetting

Mental-health risk
detection from

social media posts

3 Proposed Work
A Continual Neuro-Symbolic Graph Learning (CNSGL) framework is proposed for causal inference and

continual learning in mental-health risk assessment. In this framework, symbolic reasoning, causal graph
construction, graph neural encoding, and continual learning are combined within a single architecture. The
details of the proposed work are presented in the following subsections.

3.1 Symbolic Graph Construction
Mental-health text from online platforms or clinical records is largely unstructured and often contains

implicit cues about psychological conditions that are difficult to analyze directly. To impose structure and
enhance interpretability, each post is represented as a symbolic graph that captures both semantic content
and clinically meaningful indicators. A compact set of ten symbolic tags, sleep, anxiety, depression, stress,
anger, lonely, health, fear, coping, and suicidal, was constructed based on well-established constructs in
computational mental-health research and their frequent annotation in benchmark datasets. The vocabulary
was further validated through manual inspection and an expert-informed review to ensure clinical relevance.
A small, consistent set was intentionally maintained to minimize noise and support stable directional PMI
estimation during causal graph construction. Let D denote the dataset of posts, and let di ∈ D denote a post
in this collection. A vocabulary V of risk-related terms, including hopelessness, insomnia, and self-harm, is
predefined. Using this lexicon, a set of symbolic tags is assigned to the post,

τi = {t1 , t2, . . . , tm}, t j ∈ V ,

where each t j denotes a tag identified in di . These tags provide explicit signals of potential risk factors, linking
the unstructured narrative of a post to interpretable constructs grounded in psychology.

The symbolic graph is defined as Gi = (Vi , Ei , Xi) consisting of:

• Nodes: Vi = {v0} ∪ {v j ∶ t j ∈ τi}, where v0 represents the post and v j denote the symbolic tags.
• Edges: Ei = {(v0, v j), (v j , v0)} establish bidirectional links between the post and its tags.
• Features: Node attributes encode symbolic and semantic information. Tag node features use Term

Frequency-Inverse Document Frequency (TF-IDF) scores [44] of the tag t j in post di . For a tag node v j,

xv j[0] = TFIDF(t j , di),

while the post node v0 is enriched with a 64-dimensional embedding obtained through truncated
singular value decomposition (SVD) of the TF-IDF representation,
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xv0[1 ∶] = SVD(TFIDF(di)) ∈ R64.

At this stage, Gi uses undirected post-tag links (implemented as bidirectional pairs) to encode associa-
tion rather than causality. Directional tag–tag edges are introduced in the subsequent Causal-Aware Graph
Enrichment step, where order-sensitive statistics are is used to determine edge orientation.

3.2 Causal-Aware Graph Enrichment
Edges based solely on co-occurrence capture statistical associations but cannot distinguish whether

one factor precedes or influences another. For example, sleep deprivation may frequently appear with
stress, yet in many cases it precedes and contributes to suicidal ideation. To incorporate such directional
relationships, graphs are enriched with causal edges in addition to co-occurrence links. To quantify how
strongly tags co-occur in the input space, point-wise mutual information (PMI) is used here. Consider the
tags sleep and anxiety. These tags may frequently appear together in posts, which would yield a symmetric,
undirected edge in a standard co-occurrence graph. Directional PMI instead focuses on ordered pairs and
estimates whether one tag is more likely to appear before the other. If ordered counts show that mentions of
sleep problems systematically precede anxiety indicators more often than the reverse, then PMIdir(sleep→
anxiety) exceeds PMIdir(anxiety→ sleep), and the graph includes the directed edge sleep→ anxiety. In this
way, directional PMI encodes asymmetric, precedence-aware relationships that cannot be represented by
undirected co-occurrence edges alone. PMI between two given tags ta and tb is calculated in Eq. (1) [45]:

PMI(ta , tb) = log P(ta , tb)
P(ta)P(tb)

(1)

Probabilities were estimated by counting how often each tag and each tag pair appeared within the same
post and then normalizing by the total. A small smoothing constant was applied so that rare tags didn’t get
zero probability. Because PMI treats a pair the same in either order, it captures association only and does not
encode direction. Let c(ta ≺ tb) be the number of posts in which ta occurs before tb , and let Npairs be the
total number of ordered tag pairs considered. Eq. (2) shows the mathematical definition of the directional
PMI:

PMIdir(ta→ tb) = log P(ta ≺ tb)
P(ta)P(tb)

, (2)

where, P(ta ≺ tb)≈ c(ta≺tb)
Npairs

is the probability of ordered event. A directional PMI threshold δ is applied
to filter out weak or noisy associations. In practice, δ was selected through validation by sweeping values
in {0.0, 0.05, 0.1, 0.2} and choosing the smallest threshold that removed spurious edges while preserving
clinically meaningful relations. The framework was most stable for δ = 0.1, which we adopt for all experi-
ments. Sensitivity analysis showed that the graph structure remained consistent for thresholds within a small
neighborhood (0.05–0.15), indicating that results are not overly sensitive to the exact choice of δ.

A directed edge, ta → tb is introduced whenever PMIdir(ta → tb) > δ. This indicates that the occurrence
of ta increases the likelihood of tb , suggesting a causal tendency rather than a mere correlation. After adding
the causality factor, the resulting enriched graph becomes:

Gi = (Vi , Eco
i ∪ Ecausal

i , Xi),
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where Eco
i denotes post–tag associations, and Ecausal

i represents directed tag–tag relations. For example: If
mentions of sleep problems are frequently followed by references to anxiety, and the directional PMI exceeds
the threshold δ, an edge vsleep → vanxiety is added. In this way, the representation allows the model to reason
not only about what terms appear together, but also about which factors may act as potential precursors
of others. During the execution of the GCN, the directed causal edges are converted into an undirected
form (with self-loops) so that message passing remains symmetric. Throughout this work, the directed edges
are treated as precedence-aware statistical associations rather than definitive cause–effect links; accordingly,
the term “causal” is used in an operational sense to describe directional risk-tendency patterns observed in
mental-health text.

The proposed CNSGL framework is depicted as an end-to-end architecture in Fig. 1, emphasizing the
left-to-right progression from symbolic/causal structuring to representation learning and, then to sequential
adaptation. The diagram marks where the shared encoder is frozen and where dataset-specific heads are
attached, making clear how prior knowledge is preserved while new tasks are added. The Transformer
Encoder used for graph-level pooling in the encoding stage is described separately in Fig. 2.

Figure 1: Proposed CNSGL framework consisting of three key components: (1) Preprocessing, where a post-tag graph
is built and enriched with directional causal edges (red), and causal tag nodes (green). (2) Encoding, consisting of
two-layer GCN followed by a light-weight Transformer [CLS] pooler, produces a post vector and tag importances.

(Continued)
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Figure 1: (continued) (3) Continual learning (MH-Freeze): the encoder and Head1 were trained on T1, after which
the encoder was frozen; for subsequent datasets, a small linear-sigmoid head was attached and trained, with a dataset
specific threshold calibrated. At inference, a post was encoded once, the appropriate head was selected by dataset, and
the resulting probability was thresholded to yield risky/non-risky posts

Figure 2: Architecture of the encoder-only Transformer used as an attention pooler. The CLS token and tag embeddings
are fed into a single Transformer block, where multi-head attention computes CLS → tag attention scores while
masking tag-to-tag interactions. Residual connections, layer normalization, and a feed-forward network refine the CLS
representation, which becomes the final pooled embedding for classification

3.3 GCN Encoder
The symbolic graphs enriched with causal relations are processed by a two-layer GCN. The GCN

propagates information across connected nodes so that each representation reflects both its own features
and those of neighboring nodes. In this way, a post node aggregates signals from its tags, while tag nodes
incorporate both symbolic and causal context. Eq. (3) shows how the node representations are updated at
layer l [46].

H(l+1) = σ(D̃−
1
2 Ã D̃−

1
2 H(l)W(l)) , (3)
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where Ã = A+ I is the adjacency with self-loops, D̃ is its degree matrix, W(l) are trainable weights, and σ is
an element-wise ReLU activation function. The input is H(0) = Xi , the node-feature matrix of graph Gi . Since
causal edges are directed, their weights are first assembled in a directed matrix W and then symmetrized to
form A (e.g., A = 1

2(W +W⊺)) prior to normalization.
Although the final GCN uses a symmetrized adjacency matrix for stable message passing, the causal

interpretability of the framework is retained because symmetrization occurs only after causal tendencies have
been encoded in the edge-selection stage. Directional PMI determines which tag pairs are connected and the
strength of those connections, thereby shaping the underlying causal structure even if the GCN operates on
an undirected form of the graph. The interpretability comes from this directed edge construction and from
the subsequent analysis of causal paths and attention weights, whereas symmetrization serves primarily as
a computational requirement of the canonical GCN rather than a removal of causal information. After two
layers, the node embeddings H(2) are passed to a learned classification token [CLS] as a global query over the
tag nodes to produce a graph-level representation zi with tag-level importances. This pooled vector zi ∈ Rdz

encodes symbolic, semantic, and causal structure and is used for classification.

3.4 Transformer-Based Attention
While mean pooling provides a simple mechanism for aggregating node embeddings into a graph-level

representation, it treats all nodes equally and fails to highlight which risk factors are more influential in a
particular post. To address this limitation, the node embeddings produced by the GCN are passed through
a Transformer encoder to perform attention-based pooling [47]. Fig. 2 illustrates the Transformer encoder
block employed as an attention pooler over GCN-derived node embeddings. The [CLS] token attends to
tag embeddings to produce a pooled representation while simultaneously providing interpretable tag-level
importance scores through attention weights.

Let H(2) = [h1 , . . . , h∣Vi ∣] be the node embeddings (post + tags) for post i after the 2-layer GCN. The
input sequence formed is presented in Eq. (4):

X = [CLS; H(2)] (4)

where [CLS] is a learnable pooling token. The encoder computes linear projections

Q = XWQ , K = XWK , V = XWV ,

with trainable WQ , WK , WV and per-head key dimension dk . We apply a pooler mask so that only the [CLS]
row of Q issues queries (tag↔tag attention is masked). Let qCLS denote the [CLS] query. The attention
weights from [CLS] to all tokens are calculated in Eq. (5):

α = softmax(qCLSK⊺/
√

dk) (5)

These are then used to form a weighted sum of the values for [CLS] (computed per head, concate-
nated, and projected). Each encoder block applies Add&LayerNorm around multi-head attention and a
Feed-Forward Network (FFN). The final [CLS] vector is taken as the pooled embedding

zi ∈ Rd .

The weights α (averaged over heads) serve as tag importances, providing a transparent summary of
which tags influenced the decision. The pooled vector zi is passed to a linear sigmoid head (pi) to obtain
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the risk label, explained in the subsequent section in detail. The attention pooler improves aggregation of
symbolic and causal information while preserving interpretability via tag-level weights.

The pooling module is implemented as a single Transformer-style encoder block with multi-head self-
attention and a position-wise feed-forward network (FFN). In practice, the CLS attention Pooler uses an
embedding dimension of d = 128, four attention heads, and an FFN hidden size of 256 with dropout 0.1. A
learned [CLS] token is prepended to the node embeddings, and its final output vector is used as the graph-
level representation, while the CLS-to-tag attention weights provide interpretable tag importances. The same
configuration is used across datasets to maintain consistency in the continual-learning setup.

To illustrate how the Transformer attention pooler provides qualitative interpretability, two example
posts are shown below. In each case, the model highlights the most influential tags and their causal relations
when producing a risk prediction.

Example 1 (High-risk post): “I have not slept properly for days, and the constant anxiety is
making everything feel overwhelming. Lately I keep thinking that things would be easier if I just disappeared.” The
attention pooler assigns high importance to the tags sleep, anxiety, and suicidal, with a strong causal pathway
sleep → anxiety →suicidal. These attended tags correspond to clinically salient risk indicators, leading the
classifier to assign a high-risk label.

Example 2 (Low-risk post): “Feeling a bit stressed about exams next week, but talking to
friends has helped and I’m trying to stay positive.” The model focuses primarily on stress, with low attention
weights on other tags and no causal escalation toward depression or suicidal. The attention pattern reflects a
non-escalatory emotional state, leading to a low-risk prediction.

3.5 Continual Learning Strategy
In real-world applications, data arrive in stages {T1 , . . . , TK} with evolving language, populations, and

even label definitions. Sequential training on Tk risks catastrophic forgetting of knowledge learned on earlier
datasets. Continual learning is incorporated to address the sequential arrival of mental-health datasets and
the risk of catastrophic forgetting. This ensured that knowledge acquired from earlier domains was preserved
while adaptation to new sources was achieved, thereby enhancing robustness and practical applicability of the
framework. A simple, effective continual learning technique, MH-Freeze is used, which preserves a shared
encoder while adding a small task-specific head per dataset. Let Gi be a post graph and let fθ denote the
encoder mapping Gi to a pooled embedding. The pooled embedding is computed in Eq. (6).

zi = fθ(Gi) ∈ Rd (6)

where fθ comprises causal-aware graph construction, two GCN layers, and the lightweight Transformer
encoder. Thus zi integrates symbolic structure, causal links, and attention-based tag weighting.

For dataset Tk = {(G(k)
i , y(k)

i )} with a single binary risk label y ∈ {0, 1}, the task head gϕk is a linear–
sigmoid classifier unit that produces a probability

p̂(k)
i = gϕk(zi) = σ(w⊺k zi + bk) ∈ [0, 1],

with parameters ϕk = {wk ∈ Rd , bk ∈ R} and sigmoid σ(⋅). A threshold τk (calibrated on a small validation
split) yields the binary decision. At inference, predictions are labeled as positive if p ≥ τ.
MH-Freeze

At first, the shared encoder fθ and the initial linear–sigmoid head gϕ1 are jointly trained on T1 by
minimizing the average BCE loss, which is the negative log-likelihood of a Bernoulli target and directly trains
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calibrated probabilities p̂ ∈ [0, 1] from the sigmoid head. Eq. (7) presents formulation of BCE for a single
label y ∈ {0, 1} and predicted probability p̂ ∈ [0, 1] is [48]:

BCE(y, p̂) = −[ y log p̂ + (1 − y) log(1 − p̂) ]. (7)

The shared encoder fθ and the initial linear–sigmoid head gϕ1 are then jointly trained on T1 by
minimizing the average BCE, as shown in Eq. (8):

min
θ ,ϕ1

1
∣T1∣

∑
(G , y)∈T1

BCE(y, p̂(1)(G)),

p̂(1)(G) = σ(w⊺1 fθ(G) + b1). (8)

After convergence, the encoder parameters θ are frozen, so that zi = fθ(Gi) provides a fixed represen-
tation for all subsequent heads. Freezing is applied after Task 1 because the first dataset provides the broadest
and most diverse distribution of symbolic tags, allowing the encoder to learn generalizable representations
before domain-specific heads are introduced. We also examined variants where the encoder is frozen after
Task 2 or Task 3. These alternatives showed higher forgetting on earlier datasets and reduced overall stability,
as the encoder continued adapting toward the later-task distributions and drifted away from the symbolic-
causal structure learned initially. Freezing after Task 1 therefore offered the best balance between preserving
prior knowledge and supporting effective multi-head adaptation.

For each subsequent dataset Tk (k≥2), a lightweight head is instantiated and only its parameters are
optimized while keeping the encoder fixed, as mentioned in Eq. (9):

min
ϕk

1
∣Tk ∣

∑
(G , y)∈Tk

BCE(y, p̂(k)(G)),

p̂(k)(G) = σ(w⊺k fθ(G) + bk), ∇θ Lk = 0. (9)

As θ is fixed, adaptation reduces to fitting task-specific linear separators in the common embedding
space z, which avoids cross-task interference and sharply limits forgetting. Intuitively, the shared encoder
captures domain-general structure (symbolic and causal relations plus attention-based tag weighting), while
each head accounts for dataset-specific prevalence, wording, or scope. Given dataset, the corresponding head
gϕk is selected and its probability p̂(k) is thresholded to yield the label:

risky ifp̂(k)≥τk , non-risky otherwise.

4 Experimental Results
The experiments were conducted on a high-performance workstation equipped with an AMD Ryzen

Threadripper 2950X (16 cores, 3.50 GHz) and 32 GB RAM. The experiments were implemented in Python
3.11 using key libraries such as PyTorch 2.2, PyTorch Geometric 2.5, NumPy, Scikit–learn, and Matplotlib. All
codes were executed in a Jupyter Notebook environment configured on Windows 11, ensuring a consistent
and reproducible experimental setup.

4.1 Dataset Description
To evaluate the effectiveness and generalizability of the proposed Continual Neuro-Symbolic Graph

Learning framework, six diverse datasets were used spanning Reddit-based mental health discourse and
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clinician-guided interviews. A brief summary is provided in Table 2. These corpora differ in annotation
protocols, linguistic style, and risk indicators, enabling a comprehensive assessment of both the symbolic
reasoning components and the graph-based learning modules.

Table 2: Summary of datasets used as continual-learning tasks, showing source, text type, and size

Dataset Source Type Size
DASH-2020 Zenodo Reddit posts 3151

Dereaddit Kaggle Reddit posts 3553

Kaggle MH Kaggle Reddit posts 5957

SWMH Zenodo Reddit posts (split) 54,412

Go_emotions Kaggle Reddit posts 58,011

E-DAIC USC-ICT Clinical dialogues 418 transcripts

• Data Analytics for Smart Health (DASH-2020) [49]: It consists of reddit posts annotated for substance
use, addiction, and recovery. For our binary setup, we merged all recovery-related categories into a single
non-addicted class, while posts explicitly labeled as addicted are retained as the positive class.

• Go_emotions [50]: It is a reddit-based dataset annotated with 27 fine-grained emotion categories plus
neutral. It contains about 58,000 unique comments collected from diverse subreddits. For binary mental-
health risk classification in our work, all emotion categories associated with distress (e.g., sadness, anger,
fear, anxiety) were grouped as risky, while the rest were treated as non-risky.

• Kaggle Mental Health [51]: This dataset sourced from Kaggle repository, contains Reddit posts labeled
across five mental health conditions. For binary classification, all risk-associated categories were merged
into a single risky class, while the remaining category was treated as non-risky.

• Dreaddit [52]: This dataset also sourced from Kaggle, consists of reddit corpus for stress detection across
five community categories. The authors collected around 190 K posts and crowd-sourced stress labels for
around 3.5 K text segments. The public release provides official splits (≈2838 train/715 test) with roughly
balanced stress vs. non-stress. In our setup, we used the provided binary label (1 = stressful/risky), and
the official train/test.

• Reddit SuicideWatch and Mental Health Collection (SWMH) [53]: This is a Reddit-derived dataset
released via Zenodo, combining posts from the SuicideWatch subreddit and other mental health
communities. Posts from SuicideWatch are categorized as the risky class, while those from broader
mental health forums are assigned to the non-risky class.

• Extended DAIC (E-DAIC) [54]: E-DAIC is an extended version of the original Distress Analysis
Interview Corpus with Wizard-of-Oz (DAIC-WOZ) corpus [55]. The dataset, sourced from University
of Southern California-Institute for Creative Technologies (USC-ICT), includes semi-structured inter-
views conducted by a virtual agent named Ellie, controlled either by a human wizard or an autonomous
AI system. It contains transcribed clinical interviews annotated using PHQ-8 scores.

4.2 Continual Learning Baselines
The proposed MH-Freeze framework is compared with several representative continual learning

techniques, each reflecting a distinct strategy for mitigating catastrophic forgetting in sequential task
scenarios.
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• Elastic Weight Consolidation (EWC) [56]: EWC addresses catastrophic forgetting in sequential learning
by estimating the importance of each parameter for previously learned tasks (via a Fisher-based
approximation) and selectively slowing changes to those important weights when learning a new task.
This preserves prior expertise while allowing plasticity on less critical parameters.

• Gradient Episodic Memory (GEM) [57]: GEM uses an episodic memory of past tasks and projects the
current gradient to satisfy inequality constraints that do not increase loss on stored past-task examples.
This enforces update compatibility with earlier tasks and can yield positive backward transfer when
gradients align. In our experiments, we adopt the efficient A-GEM variant with the same memory
protocol as ER and apply projection at every step before the optimizer update.

• Learning without Forgetting (LWF) [58]: LWF adapts a network to new tasks using only new-task data
while preserving prior capabilities via knowledge distillation: the current model is trained to match the
frozen previous model’s outputs on the new data, alongside the new-task loss. This avoids storing old
datasets, competes with multitask training that has access to old data, and often outperforms plain feature
extraction or finetuning when old and new tasks are similar.

• Experience Replay (ER) [59]: It mitigates forgetting by maintaining a small episodic memory of past-
task examples and interleaving them with current-task batches during training. This simple rehearsal
stabilizes prior decision boundaries while preserving plasticity on new data, yielding a strong, low-
complexity baseline. We have kept a fixed-size, class-balanced buffer. Each minibatch mixes current-task
samples with buffer samples at a fixed ratio. Buffer size and ratio are tuned on validation.

• Finetuning: The finetuning (Sequential Learning) across tasks without any anti-forgetting mechanism
serves as a lower-bound baseline [60]. In this work, a single shared head and encoder are updated
sequentially across tasks under the same optimizer/schedule and validation-based thresholding; no
replay or regularization terms are added.

• Synaptic Intelligence (SI) [61]: This CL technique assigns an ‘importance’ score to each weight based on
how much it contributed during training on a task. At the end of a task, those importance scores are
retained as a summary of what mattered most. When the next task arrives, SI adds a lightweight penalty
that discourages large changes to previously important weights while leaving the others free to adapt. We
applied SI to the encoder (and pooler), snapshot parameters at each task boundary, and tune the overall
regularization strength and a small stabilizer constant on the validation split.

4.3 Evaluation Metrics
The effectiveness of the proposed framework and the baseline continual learning techniques is eval-

uated using multiple performance metrics. These metrics capture not only classification accuracy but also
robustness under class imbalance and calibration of probabilistic outputs.

4.3.1 Accuracy
Accuracy measures the proportion of correctly classified instances, as computed in Eq. (10). It reflects

how effectively each continual-learning method distinguishes risky posts from non-risky ones across
sequential mental-health datasets:

Accuracy = TP + TN
TP + TN + FP + FN

(10)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative
instances, respectively.
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4.3.2 F1-Score
It is the harmonic mean of precision and recall, rewarding models that balance both low false positives

and low false negatives, as shown in Eq. (11). Precision is the proportion of predicted positives that are
correct, recall is the proportion of actual positives that are correctly identified. F1 score reflects how well each
continual-learning method maintains balanced risky vs. non-risky decisions across sequential datasets.:

F1-Score = 2 × Precision × Recall
Precision + Recall

(11)

4.3.3 Area under ROC Curve (AUROC)
The AUROC evaluates the trade-off between true positive rate (TPR) and false positive rate (FPR) across

varying thresholds. It is defined as the probability that a randomly chosen positive is ranked higher than a
randomly chosen negative.

4.3.4 Area under Precision-Recall Curve (AUPRC)
The AUPRC integrates the precision- recall curve, which is more informative under class imbalance. It

summarizes the trade-off between precision and recall across thresholds.

4.3.5 Brier Score
The Brier score evaluates the accuracy of probabilistic predictions by measuring the mean squared error

between predicted probabilities pi and true labels yi . It can be computed using Eq. (12):

Brier = 1
N

N
∑
i=1
(pi − yi)2. (12)

4.3.6 Expected Calibration Error (ECE)
ECE measures the alignment between predicted probabilities and observed accuracy. Predictions are

partitioned into M bins according to confidence, and the weighted average gap between accuracy and
confidence is reported. It can be computed using Eq. (13). In our work, ECE is computed per task (dataset)
to assess whether MH-Freeze and the baselines produce well-calibrated risk probabilities after threshold
calibration in the continual-learning sequence.

ECE =
M
∑
m=1

∣Bm ∣
N
∣acc(Bm) − conf(Bm)∣ (13)

where Bm is the set of samples in bin m, acc(Bm) the empirical accuracy, and conf(Bm) the mean confidence.

4.3.7 Matthews Correlation Coefficient (MCC)
MCC quantifies how well the classifier balances positive/negative decisions across sequential tasks and

shifting, imbalanced class distributions, penalizing asymmetric error patterns that F1 or accuracy may hide.
A higher value of MCC indicates better predictive performance. The MCC is computed in Eq. (14) [62].

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(14)
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4.4 Results and Discussions
The proposed MH-Freeze framework demonstrates strong continual-learning behavior across het-

erogeneous datasets as seen in Table 3. MH-Freeze performs continual learning by freezing a shared
GCN-Transformer encoder and training lightweight, task-specific heads as new tasks arrive. MH-Freeze
is compared against six continual-learning baselines across six tasks, where each task corresponds to a
different dataset in a fixed sequential order. The six tasks correspond to distinct datasets: T1 = DASH,
T2 = Dreaddit, T3 = SWMH, T4 = Go_emotions, T5 = DAIC-WOZ, and T6 = Kaggle-MH. For brevity
and consistency, these datasets are referenced as T1-T6 throughout the remainder of the paper. In all
experiments, tasks are encountered in the fixed order T1-T6; balanced mini-batches are used to counter
dataset-level imbalance, and the MH-Freeze architecture prevents dominance by any single dataset due to
differing label distributions. The discriminative capability remains uniformly high, with AUPRC ≥ 0.934
and AUROC ≥ 0.942 throughout the task sequence, indicating robust separability between risk and non-
risk classes. Both Accuracy (0.898 to 0.925) and F1-Score (0.886 to 0.923) follow a steady upward trajectory
from T1 (DASH) to T6 (Kaggle-MH), reflecting positive forward transfer without degradation of earlier
competencies. The MCC also improves from 0.829 to 0.873, confirming balanced predictive behavior
under label imbalance. In parallel, Brier and ECE scores decline from 0.069 to 0.060 and 0.023 to 0.014,
respectively, demonstrating progressive improvement in probability calibration. These metrics affirm that
MH-Freeze effectively preserves prior knowledge while adapting to new domains, achieving well-calibrated,
generalizable predictions with minimal catastrophic forgetting. It maintains a clear advantage in both
discrimination and calibration.

Table 3: Continual learning performance of MH-Freeze across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.898 0.886 0.934 0.942 0.829 0.069 0.023

T2 (Dreaddit) 0.906 0.893 0.94 0.949 0.836 0.065 0.020

T3 (SWMH) 0.912 0.898 0.939 0.948 0.841 0.066 0.021

T4 (Go_emotions) 0.918 0.905 0.947 0.955 0.849 0.061 0.016

T5 (DAIC-WOZ) 0.923 0.911 0.945 0.954 0.852 0.062 0.018

T6 (Kaggle-MH) 0.925 0.923 0.947 0.965 0.873 0.060 0.014

Among the CL baselines used for comparison, GEM performs better, attaining moderately high AUROC
(0.94–0.95) and balanced MCC values, though it gains plateau beyond mid-sequence tasks. LWF exhibits
reasonable F1-scores but suffers from high calibration error and inconsistent reliability across datasets.
Experience Replay and Synaptic Intelligence provide stable yet lower performance, with AUROC typically
below 0.91 and limited robustness to domain shifts. EWC achieves comparable mid-range results but shows
greater sensitivity to task transitions, while Finetuning performs worst overall, displaying rapid accuracy
decay (0.73–0.76) and high Brier/ECE values indicative of severe forgetting. In contrast, MH-Freeze sustains
near-optimal metrics across all six tasks, confirming that its frozen encoder with task-specific heads yields
superior retention, adaptation, and calibration in continual-learning environments. The detailed results
for each continual-learning baseline are presented in Tables 4–9, providing a comprehensive comparison
across all tasks. Experience Replay and Synaptic Intelligence show early performance saturation, as seen
in Tables 6 and 7, respectively. This likely reflects limited forward transfer and calibration instability under
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domain shift. A plausible cause is that ER’s small replay buffer cannot adequately represent later datasets,
while SI’s weight-importance penalty restricts the flexibility needed to adapt. Consistently higher Brier and
ECE on the final tasks (T4-T6) reinforce this interpretation, indicating less reliable probabilities and weaker
calibration as the data distribution changes. While MH-Freeze exhibits a monotonic increase in MCC from
T1 to T6, GEM stabilizes at a slightly lower range (Table 4). Brier and ECE generally decline for MH-Freeze,
indicating progressively better calibration, whereas replay and regularization-based baselines (ER, EWC, SI)
show smaller or inconsistent reductions.

Table 4: Continual learning performance of GEM across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.888 0.876 0.929 0.937 0.819 0.072 0.025

T2 (Dreaddit) 0.896 0.883 0.935 0.944 0.826 0.068 0.022

T3 (SWMH) 0.902 0.888 0.934 0.943 0.831 0.069 0.023

T4 (Go_emotions) 0.908 0.895 0.942 0.950 0.839 0.064 0.018

T5 (DAIC-WOZ) 0.913 0.902 0.940 0.949 0.842 0.065 0.02

T6 (Kaggle-MH) 0.913 0.903 0.942 0.955 0.863 0.063 0.016

Table 5: Continual learning performance of LWF across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.865 0.854 0.906 0.915 0.791 0.181 0.172

T2 (Dreaddit) 0.889 0.877 0.926 0.934 0.821 0.17 0.129

T3 (SWMH) 0.875 0.864 0.921 0.928 0.809 0.273 0.23

T4 (Go_emotions) 0.882 0.87 0.928 0.935 0.816 0.191 0.127

T5 (DAIC-WOZ) 0.895 0.883 0.932 0.941 0.829 0.172 0.123

T6 (Kaggle-MH) 0.902 0.888 0.931 0.94 0.834 0.112 0.091

Table 6: Continual learning performance of Experience Replay across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.845 0.835 0.887 0.895 0.77 0.199 0.139

T2 (Dreaddit) 0.858 0.845 0.893 0.905 0.782 0.195 0.136

T3 (SWMH) 0.864 0.848 0.892 0.908 0.784 0.184 0.123

T4 (Go_emotions) 0.872 0.857 0.902 0.913 0.795 0.182 0.119

T5 (DAIC-WOZ) 0.875 0.862 0.902 0.915 0.792 0.171 0.117

T6 (Kaggle-MH) 0.867 0.852 0.895 0.912 0.783 0.182 0.121
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Table 7: Continual learning performance of Synaptic Intelligence across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.866 0.845 0.891 0.905 0.785 0.085 0.038

T2 (Dreaddit) 0.845 0.833 0.878 0.892 0.776 0.088 0.042

T3 (SWMH) 0.851 0.843 0.877 0.911 0.795 0.085 0.035

T4 (Go_emotions) 0.848 0.832 0.851 0.895 0.772 0.087 0.039

T5 (DAIC-WOZ) 0.858 0.842 0.887 0.903 0.781 0.083 0.037

T6 (Kaggle-MH) 0.851 0.839 0.877 0.901 0.762 0.081 0.036

Table 8: Continual learning performance of EWC across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.856 0.841 0.863 0.902 0.780 0.173 0.126

T2 (Dreaddit) 0.854 0.839 0.886 0.907 0.785 0.084 0.138

T3 (SWMH) 0.859 0.852 0.885 0.918 0.803 0.081 0.132

T4 (Go_emotions) 0.859 0.848 0.895 0.921 0.771 0.167 0.133

T5 (DAIC-WOZ) 0.866 0.851 0.895 0.910 0.792 0.179 0.124

T6 (Kaggle-MH) 0.874 0.854 0.898 0.927 0.793 0.151 0.135

Table 9: Continual learning performance of Finetuning across all datasets

Task Accuracy F1-Score AUPRC AUROC MCC Brier ECE
T1 (DASH) 0.725 0.775 0.765 0.775 0.645 0.311 0.265

T2 (Dreaddit) 0.763 0.741 0.797 0.805 0.681 0.267 0.251

T3 (SWMH) 0.755 0.739 0.785 0.803 0.677 0.263 0.257

T4 (Go_emotions) 0.735 0.735 0.775 0.799 0.665 0.325 0.311

T5 (DAIC-WOZ) 0.748 0.745 0.781 0.785 0.655 0.322 0.255

T6 (Kaggle-MH) 0.731 0.722 0.745 0.798 0.672 0.326 0.267

Methods that incorporate explicit memory mechanisms or parameter regularization, such as GEM and
EWC, demonstrate better retention than Finetuning or LWF across all six tasks, confirming that constraining
weight drift mitigates forgetting. However, these approaches still exhibit limited calibration stability, as
indicated by elevated Brier and ECE values across late tasks. Synaptic Intelligence achieves moderate balance
between accuracy and calibration, but its adaptation saturates beyond mid-sequence datasets, revealing
difficulty in scaling to domain shifts. In contrast, MH-Freeze consistently maintains high discriminative
accuracy while achieving the lowest calibration errors.
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From T1 (DASH) to T6 (Kaggle-MH), most baselines show mild fluctuations in F1-Score and AUROC
due to changing dataset characteristics and label imbalance. However, MH-Freeze exhibits smooth perfor-
mance progression, achieving improvements in accuracy and F1-Score compared with the strongest baseline
(GEM). This trend demonstrates strong forward transfer and minimal backward interference. Moreover, the
consistently low Brier (≈0.06) and ECE (≈0.014) values emphasize its reliability in producing well-calibrated
probabilities, critical in sensitive applications such as mental-health risk prediction, where overconfident
misclassifications can have severe consequences.

Fig. 3 shows accuracy trends for all methods across the six datasets in sequence. The accuracy curves
show a clear and persistent margin for the proposed MH-Freeze approach on every task. From T1 to T6,
the accuracy of MH-Freeze rises from 0.898 to 0.925 (an increase of 3.0%), which indicates that knowledge
gained on earlier tasks is retained while useful information from later tasks is added. In contrast, Finetuning
changes only slightly (0.725 to 0.731; 0.8% increase) and shows signs of forgetting as new tasks are introduced.
Regularization methods yield smaller gains, EWC improves by 2.1% and SI decreases by 1.7%, suggesting
limited ability to adapt to the domain shifts in this sequence. Replay (ER), distillation (LWF), and gradient-
projection (GEM) make training more stable, but they still perform worse than the proposed method. The
highest final accuracy of 0.925 and the steady rise across datasets suggest that freezing the shared GCN-
Transformer encoder and using separate heads for each dataset reduces interference and supports reliable
forward transfer.

Figure 3: Performance comparison of Continual Learning techniques in terms of Accuracy

Similarly, a comparison based on F1-Score is presented in Fig. 4. This metric is informative under
class imbalance and helps assess whether decisions remain balanced as new datasets are introduced. The
F1-Score of MH-Freeze increases from 0.886 at T1 to 0.923 at T6, a 4.2% increase, indicating that earlier
decision boundaries are preserved while new patterns are learned. The baselines follow a consistent ordering:
Finetuning decreases from 0.775 to 0.722 (a 6.8% decrease), reflecting forgetting; EWC shows a small
improvement of 1.5%; SI decreases slightly by 0.7%; ER and LWF achieve moderate increases of 2.0% and
4.0%, respectively; and GEM improves by 3.1% but remains below MH-Freeze. These results suggest that the
multi-head freeze strategy maintains balanced predictions across datasets while enabling steady gains, which
is the intended behavior in a continual-learning environment.
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Figure 4: Performance comparison of Continual Learning techniques in terms of F1-Score

In addition, ROC curves are presented to provide an intuitive visualization of classification trade-offs
across varying decision thresholds. Unlike single-value metrics, ROC curves reveal how each model balances
the true-positive and false-positive rates, offering a deeper understanding of their discriminative behavior.
The ROC curves shown in Fig. 5 illustrates the comparative classification performance of all continual-
learning baselines and the proposed MH-Freeze model across six sequential tasks (T1–T6). Each subplot
corresponds to a specific task, where the x-axis represents the False Positive Rate (FPR) and the y-axis
represents the True Positive Rate (TPR). The ROC trajectories of all models are plotted within each panel,
while only the area under the ROC curve (AUC) of the MH-Freeze model, representing the top-performing
method, is explicitly annotated. The solid black curve corresponds to MH-Freeze and demonstrates its
consistently superior separability across all tasks. In contrast, baseline models such as Finetuning, EWC,
and SI are depicted with thinner colored curves to provide visual benchmarking and highlight relative
performance differences. This visualization clearly demonstrates that MH-Freeze maintains stable and near-
optimal discriminative capability across all incremental tasks, confirming its strong resistance to catastrophic
forgetting and enhanced adaptability in continual-learning environments.

4.5 Computational Efficiency and Model Complexity
The CNSGL framework is designed to remain computationally efficient while still using the same

encoder as the continual-learning baselines. The shared encoder, comprising a two-layer GCN (hidden
size 128) and a single Transformer attention block with four heads (dmod e l = 128, FFN size 256), contains
approximately 482 k learnable parameters, which are used in all models, including the proposed MH-Freeze.
Each task also has a linear–sigmoid classifier head with 129 parameters, giving a total of about 482 k+129
parameters per model. The major difference is not in how many parameters exist, but in how many are
updated during each new task. In the proposed framework, MH-Freeze freezes the encoder after first task
(T1), and trains only the 129-parameter head, whereas baseline models continue to update all 482 k+129
parameters for every new task. Training on T1, where the encoder and head are jointly optimized, takes about
19 min, while training on subsequent tasks (T2–T6), where only the head is updated, completes in roughly
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2 to 4 min per task. A single forward pass requires approximately 1.47 ms per post and about 1.37 million
floating point operations per second (FLOPs).

Figure 5: ROC curves across six sequential tasks (T1–T6) for continual-learning baselines and the proposed MH-Freeze
model. Each task corresponds to a distinct dataset used in the continual-learning sequence

All continual-learning baselines use the same encoder architecture for a fair comparison, so their
inference FLOPs are identical to CNSGL. However, they differ substantially in how many parameters are
updated during each new task and in the resulting training time. CNSGL (MH-Freeze) updates only 129
parameters per new task, yielding the lowest per-task training time, whereas baselines must update the full
encoder (≈ 482 k+129 parameters), leading to longer training times despite identical inference complexity.

5 Ablation Study
An ablation study was performed to examine individual contribution of each component in the

proposed CNSGL framework, where symbolic reasoning, causal enrichment, GCN-based message passing,
Transformer attention pooling, and the continual-learning mechanism are removed one at a time. Table 10
summarizes the performance of these variants.
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Table 10: Ablation study evaluating the contribution of each component in the CNSGL framework

Model Accuracy F1-Score AUPRC AUROC MCC Brier ECE
No Symbolic & Causal

(GCN+Transformer+CL) 0.919 0.911 0.924 0.932 0.851 0.073 0.021

No GCN (Symbolic-Causal+
Transformer+CL) 0.872 0.861 0.892 0.893 0.824 0.173 0.152

No Transformer
(Symbolic-Causal+GCN+CL) 0.893 0.887 0.913 0.911 0.885 0.085 0.023

No Continual Learning
(Symbolic-Causal+GCN+

Transformer)
0.831 0.829 0.853 0.861 0.811 0.195 0.141

Full CNSGL
Symbolic-Causal+GCN+

Transformer+MH-Freeze)
0.925 0923 0.947 0.965 0.873 0.060 0.014

Removing symbolic tags and causal edges (“No Symbolic & Causal”) yields a model that operates
purely on GCN + Transformer embeddings without structured risk concepts. While performance remains
reasonably strong (F1 = 0.911, AUPRC = 0.924), a noticeable drop appears compared to the full system,
particularly in calibration (Brier = 0.073 vs. 0.060). This confirms that symbolic grounding provides clinically
meaningful structure that enhances predictive reliability. When the GCN encoder is removed (“No GCN”),
performance declines sharply across all metrics (F1 = 0.861, AUPRC = 0.892), and calibration degrades
significantly (ECE = 0.152). This indicates that graph-based message passing is essential for leveraging
symbolic–causal structure; replacing it with flat representations harms both accuracy and stability. Removing
the Transformer attention pooler (“No Transformer”) further demonstrates the role of attention in extracting
concept-level importance. Although the model still performs moderately well due to symbolic–causal
structure (F1 = 0.887), it shows lower AUROC (0.911) and poorer calibration relative to the full framework.

The performance degrades drastically when continual learning is removed (“No Continual Learning”),
where sequential fine-tuning leads to catastrophic forgetting (F1 = 0.829, AUPRC = 0.853, Brier = 0.195).
This highlights the necessity of the MH-Freeze strategy; without it, performance on earlier tasks collapses,
and calibration becomes unstable. At last, the full CNSGL model, integrating symbolic tags, directional
associations, GCN encoding, Transformer pooling, and MH-Freeze, achieves the strongest and most
consistent performance across all metrics (F1 = 0.923, AUROC = 0.965, Brier = 0.060, ECE = 0.014). These
results confirm that each component contributes meaningfully and that the full architecture offers the best
balance of predictive accuracy, stability, and interpretability.

6 Conclusion and Future Work
The proposed Continual Neuro-Symbolic Graph Learning framework successfully integrates symbolic

reasoning, causal inference, and continual learning to address the evolving nature of mental-health risk
detection. By constructing symbolic graphs enriched with directional causal edges, the framework enables
interpretable reasoning about risk factors and their interrelations. The hybrid encoder, comprising a two-
layer GCN and a Transformer-based attention pooler, effectively captures both structural and contextual
dependencies, producing discriminative yet interpretable graph-level embeddings. The MH-Freeze strategy,
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which freezes the shared encoder and attaches task-specific heads, ensures strong retention of prior
knowledge while allowing efficient adaptation to new datasets. Experimental results across six tasks (datasets)
validate its robustness, showing that MH-Freeze consistently achieves the highest AUROC and F1-Score
values, alongside superior calibration metrics (Brier and ECE), compared to all other continual-learning
baselines. These findings confirm that MH-Freeze mitigates catastrophic forgetting and sustains stable,
generalizable decision boundaries across diverse domains. Ablation analysis further confirms that each
component contributes meaningfully to overall performance and calibration, and that the MH-Freeze
continual-learning scheme is particularly critical for preserving performance and stability as new tasks
are introduced.

Despite its advantages, this work also has a few limitations. The symbolic tag vocabulary is kept
intentionally small and manually curated to ensure clarity and cross-dataset consistency. This focused design
works well for the current scenario, but future extensions could incorporate richer or domain-specific tags to
capture more subtle risk cues in broader clinical or social media data. In addition, the directional PMI module
models precedence-based associations rather than fully validated causal relations. Future work can address
these points by learning richer tag sets in a data-driven way and by integrating stronger causal discovery or
longitudinal validation to refine the directed edges.

Future extensions will broaden the scope of the framework in several ways. Integrating multimodal
signals, such as speech, facial expressions, and physiological markers can enrich early detection by comple-
menting text with non-textual cues. Enhancing causal graph enrichment with temporal and counterfactual
reasoning can deepen interpretability and strengthen the reliability of causal claims. Adopting federated or
other privacy-preserving continual learning schemes can enable secure training across distributed mental-
health datasets without direct data sharing. These advances would move CNSGL toward a more explainable,
adaptive, and ethically deployable system for real-world mental-health risk assessment.
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