
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.074938

ARTICLE

Learning-Based Prediction of Soft-Tissue Motion for Latency Compensation in
Teleoperation

Guangyu Xu1,2, Yuxin Liu1, Bo Yang1, Siyu Lu3,*, Chao Liu4, Junmin Lyu5 and Wenfeng Zheng1,*

1School of Automation, University of Electronic Science and Technology of China, Chengdu, 611731, China
2School of the Environment, The University of Queensland, Brisbane St Lucia 2, Brisbane, QLD 4072, Australia
3Department of Geography, Texas A&M University, College Station, TX 77843, USA
4Department of Robotics, LIRMM, University of Montpellier—CNRS, Montpellier, 34095, France
5School of Artificial Intelligence, Guangzhou Huashang University, Guangzhou, 511300, China
*Corresponding Authors: Siyu Lu. Email: siyulu@tamu.edu; Wenfeng Zheng. Email: winfirms@ieee.org
Received: 21 October 2025; Accepted: 02 December 2025; Published: 29 January 2026

ABSTRACT: Soft-tissue motion introduces significant challenges in robotic teleoperation, especially in medical
scenarios where precise target tracking is critical. Latency across sensing, computation, and actuation chains leads
to degraded tracking performance, particularly around high-acceleration segments and trajectory inflection points.
This study investigates machine learning-based predictive compensation for latency mitigation in soft-tissue tracking.
Three models—autoregressive (AR), long short-term memory (LSTM), and temporal convolutional network (TCN)—
were implemented and evaluated on both synthetic and real datasets. By aligning the prediction horizon with the
end-to-end system delay, we demonstrate that prediction-based compensation significantly reduces tracking errors.
Among the models, TCN achieved superior robustness and accuracy on complex motion patterns, particularly in multi-
step prediction tasks, and exhibited better latency–horizon compatibility. The results suggest that TCN is a promising
candidate for real-time latency compensation in teleoperated robotic systems involving dynamic soft-tissue interaction.

KEYWORDS: Medical robotics; teleoperation; soft tissue tracking; motion prediction; real-time control

1 Introduction
Robotic teleoperation in medical settings such as ultrasound imaging, minimally invasive endoscopy,

and tissue sampling often requires stable and precise target tracking over dynamically moving soft tissue
[1–5]. Inevitably, end-to-end latencies across the perception–computation–execution chain induce response
lag and amplitude distortion relative to the true target, with pronounced peak attenuation and phase
lag around trajectory kinks or high-acceleration segments, thereby compromising safety margins and
positioning accuracy [6–8]. A proven approach is to incorporate motion prediction: using past observations
to forecast near-future target states and feeding these estimates forward to counteract the deleterious effect
of delay on closed-loop performance [9–11]. On our teleoperation platform, system analysis and empirical
observations show that camera acquisition, temporal reconstruction, inverse kinematics, and actuation
jointly determine an effective collaboration. When the prediction horizon is aligned to this lead the system
can suppress biased tracking and improve performance at kinks without altering hardware.

Research on soft-tissue motion prediction and tracking spans both model-driven and data-driven lines.
Tuna et al. [12] proposed two least-squares-based predictors that generate future position estimates via

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
https://doi.org/10.32604/cmes.2025.074938
https://www.techscience.com/doi/10.32604/cmes.2025.074938
mailto:siyulu@tamu.edu
mailto:winfirms@ieee.org


2 Comput Model Eng Sci. 2026;146(1):34

adaptive filters: one assumes a linear system relationship among samples within the prediction window,
while the other parameterizes each point independently over the horizon, highlighting the feasibility—
and limitations—of online recursion and locality assumptions in surgical contexts. To tackle complex
intraoperative deformations, poor imaging conditions, specular reflections, and other dynamics, Yang
et al. [13] devised a 3D tracking scheme composed of two independent recursive processes: inter-frame, they
represent the target region in joint spatial–color space and define a probabilistic similarity measure to derive
a mean-shift iterative localization in the new image; intra-frame, they fit a thin-plate spline surface around
the target and solve for optimal model parameters using an efficient second-order minimization procedure,
coupling appearance and geometry to enhance robustness. While such approaches leverage structural priors
and stable optimization, they still require careful parameter tuning and compute–accuracy trade-offs under
rapid changes and strong noise.

For periodic and quasi-periodic physiological motion, Yang et al. [14] modeled cardiac motion with
a double time-varying Fourier series, estimating frequency parameters and Fourier coefficients via dual
Kalman filters to sidestep limitations from model linearization; the method independently tracks instanta-
neous respiratory and cardiac frequencies and performs well on both synthetic and real data. Building on this,
Yang et al. [15] combined the online measurement of instantaneous frequencies with observed 3D trajectories
of points of interest, exploiting directional differences between respiratory and cardiac motions and extract-
ing an optimal one-dimensional principal component signal to estimate instantaneous frequencies robustly.
These studies underscore the interpretability and effectiveness of spectral/state-estimation models for quasi-
periodic motion, yet their adaptability to abrupt disturbances, occlusions, and local transients remains bound
by prior assumptions.

On the data-driven side, deep sequence models have demonstrated stronger nonlinear fitting capacity
and end-to-end learning potential. Zhang et al. used long short-term memory (LSTM) networks for offline
modeling and prediction of heartbeat signals, confirming neural networks’ accuracy and robustness for time-
series forecasting; by adding auxiliary spatial points, they further improved prediction accuracy, indicating
the benefits of multi-source observations [16]. Nevertheless, many studies still treat the prediction horizon
as a heuristic hyperparameter and lack a unified framework that aggregates latencies from perception,
inference, inverse kinematics, and execution to derive an optimal lead. This misalignment between the
“learned future” and the “past to be canceled,” together with the absence of a common evaluation protocol
across models and data domains, hinders fair comparison and practical integration [17–19].

Against this backdrop, introducing a Temporal Convolutional Network (TCN) is well-motivated. Built
on causal and dilated convolutions, TCNs achieve controllable large receptive fields without violating tempo-
ral causality; their convolutional and parallel nature typically yields more stable inference latency and higher
throughput—well-suited to the fixed-rate, low-jitter demands of real-time teleoperation. Convolutional ker-
nels are inherently sensitive to local shape changes and high-frequency components, aiding responsiveness
and gradient stability near kinks and rapid transients. Moreover, TCNs facilitate multi-step forecasting via
a single forward pass with consistent temporal alignment, making it straightforward to interface with an
end-to-end latency budget [20,21]. In this sense, TCNs complement LSTMs: the former offers potential
advantages for real-time constraints and local transient capture, while the latter is well-established for mixed
long-/short-term dependencies. Evaluating both—alongside a lightweight AR baseline—under a unified
protocol on in vivo and phantom domains not only clarifies each model’s applicability boundaries but also
supplies robust options for latency–horizon alignment [22].

In summary, we target the closed-loop need of “soft-tissue motion prediction → latency alignment
→ motion compensation.” We decompose end-to-end delay into sensing, inference, inverse kinematics,
and actuation, normalize by the sampling period, and obtain an optimal prediction horizon that aligns



Comput Model Eng Sci. 2026;146(1):34 3

the forecasted state with the actual control application time. Across in vivo and phantom datasets, we
systematically evaluate AR, LSTM, and TCN under consistent splits and metrics, with particular attention
to error mechanisms and compensation effectiveness around kinks and high-acceleration segments. Our
results show that an aligned prediction-and-control integration substantially reduces both steady-state and
peak errors, while demonstrating the feasibility and potential advantages of TCNs in real-time teleoperation,
thereby providing methodological and engineering support for deploying predictive compensation in
practical systems.

2 Methodology
The physiological activities of the human body are generally cyclical, such as breathing and heartbeat.

The movements of body parts affected by such physiological activities also have their own regularity. The
trajectory of the human body’s points of interest affected by physiological activities is actually a set of time
series data, representing the changes along the time axis represented by coordinates in three directions.
Establishing its motion model is essentially completing a time series modeling task. The time series modeling
task can be expressed as follows: Assume that there is an input time series (x0, x1 , . . . , xT), and it is necessary
to predict the corresponding output (y0, y1 , . . . , yT) based on this sequence. Then the sequence modeling
task is to establish the following mapping relationship based on the data, as shown in Eq. (1):

ŷ0, . . . , ŷT = f (x0, . . . , xT) (1)

This study selected three different models to model heartbeat trajectory data and perform predictions
to observe the feasibility of the network model and the accuracy of the predictions. These three models are
autoregressive (AR), LSTM, and TCN.

2.1 Autoregressive Method
Autoregression [23,24] is a method for predicting future data using historical data. Specifically, it uses a

regression equation to predict the time series of a variable based on its dependency on the time series of the
same variable projected a certain amount of time into the past.

Time series data Xt can usually be represented by the superposition of weighted historical data and
random disturbances, as shown in Eq. (2):

Xt = a1 Xt−1 + a2 Xt−2 + ⋅ ⋅ ⋅ + ap Xt−p + εt =
p

∑
i=1

ai Xt−i + εt (2)

where a = (a1 , a2, . . . , ap) is the autoregressive coefficient in the model, and ε represents the random
disturbance.

Forecasting using an autoregressive model requires only sliding a window based on historical exper-
imental data and calculating the weighted sum of the contributions of each historical moment within the
window to the next moment within the sliding window. Assume that the sequence data within a sliding
window of length m is (t1 , p1) , (t2, p2) , . . . , (tm , pm). The parameterization method can be shown in Eq. (3):

a = n∑n
i=1 ti pi −∑n

i=1 ti ∑n
i=1 pi

n∑n
i=1 t2

i − (∑
n
i=1 ti)2

ε = 1
n ∑

n
i=1 pi −

a
n ∑

n
i=1 ti

(3)



4 Comput Model Eng Sci. 2026;146(1):34

The AR model predicts future states as weighted combinations of past observations, with coefficients
estimated by least squares. The computational steps are summarized in Algorithm 1.

Algorithm 1: Autoregressive (AR) model for motion prediction

Step Operation Description
1 Input: Time-series data X = {x1 , x2, . . . , xT}, AR order p

2 Construct regression matrix Φ = [xt−1 , xt−2, . . . , xt−p] for
t = p + 1, . . . , T

Each row corresponds to
lagged samples

3 Estimate coefficients a = (ΦT Φ)−1ΦT x Least-squares estimation
4 Single-step prediction: x̂T+1 = ∑p

i=1 ai xT−i+1 Predict next point
5 Multi-step: For k = 2 to K, x̂T+k = ∑p

i=1 ai x̂T+k−i Recursive prediction
6 Output: Predicted sequence {x̂T+1 , . . . , x̂T+K}

2.2 LSTM Network Training
The LSTM model [25] has relatively few parameters to choose from. The basic network structure is

shown in Fig. 1.

Figure 1: LSTM network structure

After establishing the model structure, the only parameters that need to be determined are the number of
hidden neurons (num_hidden) and the number of hidden layers (l evel s). Then, based on the data format,
the network’s input and output dimensions are determined.

In this study, the number of hidden neurons and the number of hidden layers were set to 600 and 1,
respectively, which achieved good prediction results. The LSTM network training data set does not need
to be divided or integrated into other formats. Simply extract the input data and output data from the
original data and convert them into tensors. The detailed training and prediction procedure is outlined in
Algorithm 2.

Algorithm 2: STM Network for soft-tissue motion prediction

Step Operation Description
1 Input: Sequence X = {x1 , x2, . . . , xT}, window size w

2 Define network with input dim din , hidden units h = 600, layers
L = 1

(Continued)



Comput Model Eng Sci. 2026;146(1):34 5

Algorithm 2 (continued)

Step Operation Description
3 Initialize weights Wf , Wi , Wo , Wc and biases b f , bi , bo , bc
4 For t = 1 to T : Forward propagation
5 ft = σ (Wf [xt , ht−1] + b f ) Forget gate
6 it = σ (Wi [xt , ht−1] + bi) Input gate
7 ot = σ (Wo [xt , ht−1] + bo) Output gate
8 c̃t = tanh (Wc [xt , ht−1] + bc) Candidate memory
9 ct = ft ⊙ ct−1 + it ⊙ c̃t Update cell state
10 ht = ot ⊙ tanh (ct) Hidden output
11 End For

12 Compute loss L = MSE(xt , x̂t), update via Adam (lr = 1 × 10−3) Early stop if 10 epochs no
improvement

13 Prediction: Input last window {xT−w+1 , . . . , xT}, output
x̂T+1 = fLST M(xT−w+1∶T)

14 Multi-step: Use scheduled sampling (teacher-forcing ratio 0.9→
0.5)

Reduces accumulated
error

15 Output: Predicted sequence {x̂T+1 , . . . , x̂T+K}

2.3 TCN Network Training
The network structure of TCN [26] is shown in Fig. 2. The more important parameters in the network

model are the convolution kernel size, the number of convolution hidden layers, the dilation factor, the batch
size, and the window size (hereinafter referred to as w_s).

Figure 2: TCN network structure

In this study, the TCN parameters were set to kernel_size = 3, l evel s = 3 and batch_size = 128. The
convolution kernel size, the number of hidden layers, and the dilation factor collectively determine the range
of historical information available for current predictions: larger parameters increase the reference range. In
this network, the dilation factors for the hidden layers and the final output layer are 20, 21, 22, and 23.

The window size w_s is a crucial parameter when processing datasets to generate training and test sets.
It determines the size of the input data fed into the model. Since two datasets (in vivo and Phantom) are used,



6 Comput Model Eng Sci. 2026;146(1):34

the specific characteristics of each dataset vary, particularly in terms of periodicity and motion regularity.
The POI trajectory data in the in vivo dataset considers both heartbeat and respiration components, while the
Phantom dataset only considers heartbeat components. Since the periods of the two datasets are inconsistent,
different window sizes are used for each dataset to ensure that the model learns the full cycle and the periodic
nature of motion during training.

In subsequent experiments, the window size w_s was 50 for the in vivo dataset and 35 for the Phantom
dataset. Using the determined parameter w_s as the sliding window size, after each sliding window, all data
within the window are arranged in their original order as a new set of inputs, and the next data outside the
window is used as the output corresponding to that set of inputs. The model input data scale of the training
set is (600 −ws , 3, w_s), which is (550, 3, 50) in the in vivo dataset and (565, 3, 35) in the Phantom dataset.
Its main configuration and inference process are presented in Algorithm 3.

Algorithm 3: Temporal convolutional network (TCN) for latency compensation

Step Operation Description
1 Input: Time-series X = {x1 , . . . , xT}, window size w

2 Define causal convolution layers: kernel k = 3, dilations
d = {1, 2, 4, 8}, layers L = 4

Receptive field =
k × Σdl

3 For each layer l : hl = ReLU(Conv1D(hl−1 , k, dl) + bl)
4 Apply residual connection: hl = hl + hl−1 Stabilizes gradients
5 Output layer: x̂ = Conv1D(hL , kernel = 1)

6 Compute loss L = MSE(x̂ , xtrue)
Adam optimizer,
lr = 1 × 10−3

7 Repeat until convergence or early stop

8 Multi-step prediction: For k = 1 to K:
x̂T+k = TCN(xT−w+k∶T+k−1)

9 Latency alignment: H = round(τtotal /Δt) Align to
end-to-end delay

10 Output: Compensated trajectory {x̂T+1 , . . . , x̂T+H} For robotic control

2.4 Loss Functions
During the training process, the loss function is calculated using the mean square error (MSE) and is

defined as the square of the Euclidean distance between the actual coordinates of the interest point and the
predicted coordinates. MSE penalizes large errors, meeting the safety requirements of ‘avoiding significant
deviations’ in medical scenarios. It is shown in Eq. (4):

loss = 1
n

n
∑
i=1
(pointpre − pointac t)2 (4)

Among them, pointpre represents the predicted coordinates of the interest point; pointac t represents
the true value of the coordinates of the interest point.

For multi-step prediction, an iterative multi-step learning strategy was employed. During training, each
model first predicts one-step ahead pointpre , and the resulting prediction is then recursively fed into the
network to generate subsequent steps. The total multi-step loss is computed as the average of the MSE values



Comput Model Eng Sci. 2026;146(1):34 7

over the entire prediction horizon np, as shown in Eq. (5):

lossmul t i =
1

np

n p

∑
i=1

1
n

n
∑
i=1
(pointpre − pointac t)2 (5)

3 Experimental Setting
This research focuses on implementing motion compensation when a teleoperation platform tracks the

motion of a point of interest. Therefore, a binocular camera is used as a motion signal collector, and the
spatial position of the tracking target is analyzed based on the motion image. In subsequent simulations, a
data set is sampled at a fixed frequency to simulate the binocular camera’s signal acquisition and positioning
operations. Based on the established teleoperation platform, only the robotic arm is controlled to complete
motion compensation simulations. The simulation flow is shown in Fig. 3, where a, b, c, and d represent the
key steps in motion compensation teleoperation.

Figure 3: Schematic diagram of the simulation experiment platform

In process (a), a camera observes the motion of a point of interest in the workspace, spatially localizes
the point of interest, and obtains its three-dimensional coordinates. In process (b), the camera transmits the
coordinates of the point of interest to the robotic arm host computer as part of the control command.

In process (c), the proximal (control handle) host computer issues a query command to the handle,
querying the current position of the handle end in the handle base coordinate system. The handle reads
the end state Btouch x0 and sends it to the distal (robotic arm) host computer as another part of the
control command.

In process (d), the target poses information collected in processes (b) and (c) is combined to perform an
inverse kinematic solution, obtaining the states Q = (q1 , q2, q3, q4, q5, q6) of each joint of the robotic arm.
q1 , q2, q3, q4, q5, q6 represent the six joint rotation angles (in radians) of the Elite EC63 six-axis robotic arm.
These are then issued as control commands to the robotic arm, causing it to move to the target pose.

The target pose information in process d comprises both the target pose information for teleoperation,
and the target pose information for motion tracking of the point of interest. The former completes the
teleoperation task, and the latter realizes the motion tracking effect and compensates for the movement of
the point of interest.

The hardware and software environment used in the simulation experiments in this study are shown
in Table 1.



8 Comput Model Eng Sci. 2026;146(1):34

Table 1: Experimental environment

Name Model
Operating system Windows 10 Pro 21H2

CPU Intel(R) Xeon(R) CPU E3-1226 v3 @ 3.30 GHz
RAM 32 G

6-axis robotic arm Elite EC63
Python Version 3.8
Pytorch 1.13.1

3.1 Experimental Dataset
The robotic arm’s motion instructions are still based on quasi-periodic physiological motion. According

to studies such as [15,27,28], physiological motion affecting relevant points on the heart surface can be
decomposed into heartbeat motion and respiratory motion. Both are periodic, and their trajectory functions
can be decomposed into sinusoidal motions of varying orders. In the experiment, heartbeat and respiratory
motions were simulated using sinusoidal function signals of varying periods and then verified using a
real-world dataset.

3.1.1 Simulated Signal Dataset
In the simulated signal, the heartbeat component of the motion of the point of interest has a period

of 4 s and an amplitude of 1 mm. The respiratory component has a period of 0.875 s and an amplitude of 1
mm. These values align with the normal human physiological range: a heart rate of 60–100 beats per minute
corresponds to a cycle of 0.6–1 s. The respiratory component is the primary interfering factor in the heartbeat
component. Other interference (noise) is not considered. This is because during training, the neural network
learns the main patterns in the data; noise is not generally regular and is automatically filtered out. The motion
trajectories of the simulated physiological motion components and the synthesized motion trajectory image
are shown in Fig. 4.

3.1.2 Phantom Heart and Real Heart Datasets
This experiment used a real-world dataset based on the motion trajectories of points of interest on

the surfaces of phantom and real hearts, captured by a da Vinci robot [29,30]. The dataset contains the 3D
coordinates of 750 points, each corresponding to the position of the same point of interest in 750 frames
of cardiac motion images sampled at a 25 Hz rate. These are continuous samples from one subject. Region
of Interest (ROI) annotation was independently conducted by two senior surgeons, with an inter-annotator
agreement of Kappa = 0.92.

The trajectories in the phantom dataset only account for heartbeat motion and do not include respi-
ratory motion. The in vivo dataset, collected from the motion of points of interest on the surface of a real
heart, considers both heartbeat and respiratory motion. Fig. 5 show the displacement changes of the points
of interest trajectories in three different directions in the in vivo and phantom datasets.



Comput Model Eng Sci. 2026;146(1):34 9

Figure 4: Simulated signal heartbeat component (blue), respiratory component (red), and synthetic motion (yellow)

Figure 5: Displacement changes of interest point trajectory: (a) In vivo; (b) Phantom datasets

3.2 Model Prediction Performance Analysis
Before applying the model to motion compensation, we first conducted preliminary offline performance

testing. In the experimental setup, we used the first 600 points from both the in vivo and Phantom
datasets as the training set, and the subsequent 150 points in this section as the test set to test the model’s
prediction performance. For autoregressive models, the prediction result is only the solution to the fitted
local linear equation at a certain point in the future, so only single-step predictions are performed to
observe performance. For both TCN and LSTM, both single-step and multi-step prediction performance
tests were performed.

For single-step prediction, the model input is a ground-truth sequence of appropriate length. The output
prediction result is compared with the next ground-truth data in the input sequence to obtain the trajectory
tracking performance and error of the single-step prediction.

To minimize the impact of different starting points on the prediction results and the randomness of
model training, 20 models were trained on the same training set. For each model, single-step prediction was



10 Comput Model Eng Sci. 2026;146(1):34

initiated using points 600 to 649 in the dataset as the prediction starting point, and prediction results for the
next 100 steps were obtained. Based on the above experimental setup, prediction results for 20 × 50 × 100
points were obtained.

For all single-step prediction experiments, the root mean square error (RMSE) of the model’s single-
step prediction was calculated as shown in Eq. (5). Compared to MSE, RMSE better reflects the overall
performance of the model.

For all single-step prediction experiments, the Root Mean Square Error (RMSE unit: mm) was used
as the primary evaluation metric to quantify the model’s prediction accuracy, as defined in Eq. (6). During
network training, the Mean Square Error (MSE, unit: mm2) served as the loss function to penalize large
deviations and ensure convergence stability. For evaluation and comparison, the RMSE obtained as the
square root of MSE—was adopted because it shares the same physical unit as the predicted displacement,
thereby offering more intuitive interpretation of spatial tracking accuracy.

RMSE =



���� 1

1000

20
∑
i=1

50
∑
j=1
(P pre

k , i , j − Pac t
k , i , j)

2
(6)

where k represents the k-th point in the dataset for each prediction; i represents the i-th model used for
prediction; and j represents the j-th prediction starting point when the same model is used for prediction.

In the model’s multi-step prediction experiments, the 600th point in the original dataset was still used
as the first prediction point, and the prediction length was still 100 steps. Furthermore, to explore the model’s
prediction performance at different prediction step sizes, prediction experiments were conducted with 5, 10,
and 20 steps. Including the single-step prediction described above as a special case of multi-step prediction,
a total of four multi-step prediction experiments with different step sizes were conducted.

3.3 Model Training and Statistical Analysis
All learning-based models were trained and evaluated under consistent data preprocessing and

partitioning procedures to ensure comparability.
The LSTM network was composed of two stacked LSTM layers, each containing 600 hidden units. The

batch size was set to 256, and the maximum number of training epochs was 100. The learning rate was
0.01, with a weight decay of 1 × 10−6. The network was trained using the Adam optimizer and the Mean
Square Error (MSE) loss function. Training was terminated early if the validation loss did not improve for
10 consecutive epochs. The model was trained in both single-step and multi-step prediction modes, with
one-step output and a prediction horizon of 50 frames. All predictions were subsequently transformed back
to real coordinates (mm) using the inverse of the normalization parameters.

The TCN comprised four residual blocks with causal dilated convolutions (kernel size = 3; dilation
factors = [1, 2, 4, 8]). Each block contained 64 hidden channels, and a dropout rate of 0.05 was applied
for regularization. The input and output channel dimensions were both 3, corresponding to the 3D spatial
motion components. Sequence window lengths were set to 50 for the in vivo dataset and 35 for the phantom
dataset. The model was trained using the Adam optimizer (learning rate= 1× 10−3) and the MSE loss function,
retaining the model with the lowest validation loss.

Each model was trained 20 times under identical conditions to account for stochastic variations from
random initialization. The mean ± standard deviation (SD) of the evaluation metrics was calculated to assess
stability. A two-tailed Student’s t-test with a significance level of α = 0.05 was performed on the RMSE values
to evaluate statistical significance. Differences were considered statistically significant when p < 0.05 and



Comput Model Eng Sci. 2026;146(1):34 11

highly significant when p < 0.01. All reported results in Section 4 represent the mean ± SD across the 20
independent runs. These standardized training and analysis procedures ensure reproducibility and statistical
rigor. Table 2 shows the detailed parameter settings for the above model.

Table 2: Summary of model training hyperparameters

Parameter LSTM TCN
Hidden units 600 × 2 layers 64 × 4 residual blocks

Batch size 256 128
Maximum epochs 100 100 (in vivo)/20 (phantom)

Learning rate 0.01 0.001
Weight decay 1 × 10−6 —

Optimizer Adam Adam
Dropout — 0.05

Kernel size — 3
Dilation factors — [1, 2, 4, 8]
Input channels 3 3

Output channels 3 3
Sequence window length 50 50 (in vivo)/35 (phantom)

Repetitions 20 20

4 Experimental Results and Analysis

4.1 Autoregressive Model Prediction Results
Fig. 6 demonstrates the performance of single-step predictions on a real dataset.

Figure 6: Single-step prediction effect with AR: (a) In vivo; (b) Phantom datasets

As can be seen from Fig. 6, due to the very small sliding window value of the autoregressive model,
the model effectively predicts the next position when the trajectory changes smoothly across the entire test
set. However, due to the principle of local linear fitting, the prediction results will have large errors at the
inflection points of the trajectory.



12 Comput Model Eng Sci. 2026;146(1):34

Fig. 7 shows the single-step prediction error, MSE. As can be seen from Fig. 7, across the entire test set,
the prediction error for the in vivo dataset ranges from 0 to 6.8 mm2, and for the Phantom dataset, from 0 to
8 mm2.

Figure 7: Single-step prediction error (MSE) with AR: (a) In vivo; (b) Phantom datasets

A simple autoregressive model performing only single-step predictions already performs poorly and is
not suitable for practical use in fine motion prediction. However, it can serve as a baseline for comparison
with other models to determine whether the model has effectively learned the sequence patterns in
the dataset.

Statistically, the RMSE of the single-step predictions for the autoregressive model over a 100-step predic-
tion range for the in vivo and Phantom datasets (to three decimal places) is 0.676 and 1.325 mm, respectively.

4.2 LSTM Model Prediction Results
The single-step prediction effect of the LSTM network is shown in Fig. 8, and the single-step prediction

error is shown in Fig. 9.
Fig. 8 shows that the LSTM network performs well for single-step predictions of time series data with

objective patterns. Meanwhile, at inflection points in the trajectory, the prediction performance is relatively
poor, with the prediction error being greater than when the trajectory is smoothed.

Fig. 9 shows that the LSTM network performs well for single-step predictions of regular time series
data, confirming that datasets with stronger regularity exhibit better prediction performance. The MSE range
for the in vivo dataset is 0 to 0.68 mm2, and for the Phantom dataset is 0 to 0.038 mm2. Furthermore, the
moments of high error in this figure correspond precisely to inflection points in the trajectory. However,
when the original trajectory smooths out, the model’s prediction error quickly returns to a lower level.



Comput Model Eng Sci. 2026;146(1):34 13

Figure 8: Single-step prediction effect with LSTM: (a) In vivo; (b) Phantom datasets

Figure 9: Single-step prediction error (MSE) with LSTM: (a) In vivo; (b) Phantom datasets

Furthermore, statistics show that for the in vivo and Phantom datasets, the LSTM model achieved a
single-step RMSE of 0.222 and 0.111 mm, respectively, over a 100-step prediction range. It significantly reduces
the prediction error compared to the autoregressive model. For the Phantom dataset, where the data is more
regular, the RMSE is less than 9% of that of the autoregressive model.

The multi-step prediction errors of the LSTM network with different step sizes under two data sets are
shown in Fig. 10.

As can be seen from the figure, the model’s prediction error is smaller on the more regular Phantom
dataset than on the in vivo dataset under the same experimental settings. For both the in vivo and Phantom
datasets, the LSTM network’s multi-step prediction performance generally deteriorates with increasing
prediction steps. The model achieves better prediction results with fewer prediction steps, which is also
related to the model’s error accumulation during multi-step predictions.



14 Comput Model Eng Sci. 2026;146(1):34

Figure 10: Multi-step prediction error (RMSE) with LSTM: (a) In vivo; (b) Phantom datasets

4.3 TCN Model Prediction Results
Regarding the prediction performance of the model, we first conducted a single-step prediction test. The

model prediction trajectory results are shown in Fig. 10; the average prediction error of each step is shown
in Fig. 11.

Figure 11: Single-step prediction effect with TCN: (a) In vivo; (b) Phantom datasets

Fig. 11 shows that, across different datasets, the TCN performs well in single-step predictions, effectively
learning the magnitude and patterns of motion in all directions. However, at some inflection points in
the trajectory, the prediction performance is relatively poor, with errors greater than those observed for
smooth motion.

As shown in Fig. 12, the MSE range for the Phantom dataset is 0 to 0.068 mm2, while the MSE range for
the in vivo dataset is 0 to 0.77 mm2. The prediction error peak for the Phantom dataset is smaller, indicating
that the network’s prediction accuracy is higher on more regular motion trajectories. Furthermore, within
the respective error ranges for different datasets, the points with larger prediction errors correspond to the
trajectory inflection points shown in Fig. 11. The more dramatic the trajectory changes, the larger the model’s
prediction error. At other points where the trajectory changes more smoothly, the model’s prediction error
is relatively stable and approaches 0.



Comput Model Eng Sci. 2026;146(1):34 15

Figure 12: Single-step prediction error (MSE) with TCN: (a) In vivo; (b) Phantom datasets

Furthermore, statistical calculations show that the average single-step RMSE of the TCN model over
a 100-step prediction range is 0.343 and 0.239 mm for the in vivo and Phantom datasets, respectively. This
value is significantly lower than the statistical data for the autoregressive model, but higher than that of the
LSTM network.

Fig. 13 shows the multi-step prediction errors of the TCN network for different step sizes on two
datasets. This figure shows that for both the in vivo and Phantom datasets, the prediction error of the TCN
network’s multi-step cyclic prediction is significantly greater than that of single-step prediction, and the
RMSE increases significantly with increasing prediction steps (number of cycles). This is particularly evident
in the in vivo dataset. In the more regular Phantom dataset, this change is less pronounced when the number
of cycles increases from 5 to 20.

Figure 13: Multi-step prediction error (RMSE) with TCN: (a) In vivo; (b) Phantom datasets

Combined with the model’s single-step prediction results, because cyclic prediction uses predicted
values rather than true values as model input, the prediction results obtained after each cycle will have
cumulative error. On datasets with more regularity, the model’s single-step prediction error is smaller, and
error accumulation is slower.



16 Comput Model Eng Sci. 2026;146(1):34

4.4 Prediction Phase Prediction Time Measurement
4.4.1 Prediction Time Statistics

The statistical process is consistent with the method used to inversely solve the kinematics of target
points during tracking. By increasing the number of samples, the total time required to input all samples into
each model and obtain a prediction result is calculated. The average value is used as the time required for the
model’s single-step prediction to increase the reliability of the results.

The prediction time of each model is shown in Table 3. The data are all measured under the data scale
of 650 ∗ 4, which means 650 4-step predictions are performed.

Table 3: Prediction time statistics of each model on the in vivo/Phantom dataset

Model name Timetotal (s) Timestep (s)
AR 0.4061/0.4062 0.00001/0.00001

TCN 2.8899/2.8274 0.0011/0.0011
LSTM 2.8418/2.9813 0.0011/0.0011

As shown in Table 3, the single-step inference time of the TCN and LSTM models was approximately
1.1 ± 0.1 ms, indicating negligible computational overhead relative to the system’s 25 Hz sampling period
(40 ms).

To construct a complete latency profile of the teleoperation system, additional timing measure-
ments were performed for the inverse-kinematics (IK) computation and mechanical actuation response
stages. Table 4 shows the IK solving time represents the average computation required for forward and
inverse joint transformations of the robot manipulator during each control cycle, whereas the response time
(Table 5) quantifies the delay between command issuance and end-effector motion tracking.

Table 4: Inverse kinematics computation time

Model name Total IK time (s) Average IK time (s)
Simulated signal 2.3987 0.0032

In vivo 2.6246 0.0034
Phantom 2.4792 0.0033

Table 5: Manipulator motion response time

Dataset Simulated signal In vivo Phantom
Response time t (ms) 132 140 136

The results show that the average IK computation time was approximately 3.3 ms, while the mechanical
actuation response ranged between 132–140 ms depending on the dataset. Together with the vision-based
sensing delay (~18–20 ms) and model inference time (~1.1 ms), these measurements yield a total end-to-end
latency of roughly 160 ± 5 ms, corresponding to about four sampling intervals at 25 Hz. Accordingly, the
prediction horizon for all experiments was set to four discrete steps, ensuring complete compensation for
the sensing-to-actuation delay of the teleoperation loop.



Comput Model Eng Sci. 2026;146(1):34 17

4.4.2 Compensation Time Calculation
After modeling the dynamic soft environment, the learned model can be used to predict the future target

position during the robotic arm tracking process to compensate for tracking errors caused by time delays
introduced by various links in the system. A schematic diagram of trajectory tracking is shown in Fig. 14,
where the dotted line I represents the displacement after simulated camera positioning, the dashed line II
represents the actual displacement of the point of interest, and the solid line III represents the displacement
of the robotic arm end tracking the point of interest.

Figure 14: Schematic diagram of motion compensation teleoperation system delay

Using sensors to locate a point of interest (POI) takes a certain amount of time, τ1. The target pose is
obtained by inverse kinematics to determine the joint target state, and motion commands are issued to move
the robotic arm to the target point. These two processes take time τ3 and τ4, respectively. Therefore, as the
robotic arm follows the POI, the position signal transmitted directly by the camera is actually the historical
position of the POI. To achieve good tracking results, it is necessary to compensate for the system’s latency,
which requires predicting the received signal. Assume that the network model takes time τ2 to predict the
target point’s position.

When compensating for the lag in the movement of the robotic arm through model prediction, the
calculation can be performed based on the single prediction time of the model. The calculation process is
shown in Eq. (7).

⎧⎪⎪⎨⎪⎪⎩

τal l = τ1 + τ2 + τ3 + τ4 = τc yc l e ⋅ τste p

τ2 = step ⋅ τc yc l e
(7)

where τal l is the sum of the lags introduced by each step in the control process. τste p is the time advance
corresponding to the position predicted at each step in the prediction phase. τc yc l e is the time it takes the
model to make one prediction. step is the number of prediction steps required in the prediction phase.

According to the above formula, the number of prediction steps for the in vivo and Phantom datasets is
4.71 and 4.61, respectively. If the required prediction step size is not an integer, you can use loop prediction to
obtain integer-step prediction results (steps 4 and 5) around the ideal prediction step size. Then, interpolation
processing is performed based on the actual situation to obtain prediction results for non-integer steps.



18 Comput Model Eng Sci. 2026;146(1):34

4.5 Model Motion Compensation Simulation Experiment
4.5.1 Experimental Procedure

Because the delays introduced by data processing/transmission, the robot’s motion to the target pose,
and other stages vary with the specific setup, we adopt an online workflow that alternates data acquisition,
model training, and model-based predictive control. The procedure is as follows:

Step 1: Read the ROI/target position data x0 at the dataset’s sampling frequency f = 25 Hz to reproduce
the original trajectory sampling rate.

Step 2: Add a reasonable artificial delay τc to emulate the time cost of binocular-camera observation
and image processing of the ROI motion in the workspace; in our experiments, τc = 40 ms.

Step 3: On the manipulator side, while receiving the ROI motion information, record the current end-
effector position xe .

Step 4: Branching: if the collected data are fewer than N = 600 samples, skip to Step (7). If enough data
have been collected, execute Step (5). If the model has already been trained, execute Step (6).

Step 5: Train the model; once training is completed, return to Step (1).
Step 6: With the trained model, feed the received motion data into the predictor to obtain the model

output x′e .
Step 7: Perform data processing on the manipulator side; compute the inverse kinematics for the point

position to obtain the joint rotation angles and send the motion command to the robot.
Step 8: If the experiment has not finished, return to Step (1).
The overall tracking accuracy was evaluated using the cumulative root-mean-square tracking error

(RMSE), defined as the square root of the mean squared Euclidean distance between the predicted and actual
positions of the point of interest over N sampling steps, as shown in Eq. (8):

error =


��� 1

N

n
∑
i=1
(pointi , pre − pointi ,ac t)2 (8)

where pointi , pre represents the i-th target position of the end of the robot arm; pointi ,ac t represents the i-th
actual position of the end of the robot arm

4.5.2 Analysis of the Results of Motion Compensation Using LSTM Model
Fig. 15 shows the robotic arm tracking performance using an LSTM model for motion compensation

prediction. The blue line in the figure represents the change of target displacement over time, and the red
line represents the change of displacement of the robotic arm end effector after motion compensation. As
can be seen from the figure, achieving better motion compensation results with the LSTM model relies
more on the regularity of the dataset itself. While the prediction performance on the Phantom dataset is
acceptable, it performs poorly on the in vivo dataset. While some trends can be learned, there are still
significant prediction errors.

Fig. 16 shows the cumulative average error curve for robotic arm tracking using the LSTM model
for motion compensation prediction. As can be seen from the figure, during the motion compensation
experiment, the error range for the in vivo dataset was 0 to 2.5 mm. The error range for the Phantom dataset
was 0 to 1.9 mm, with the vast majority of data points falling between 0 and 1 mm. The motion compensation
errors for most points were significant across different datasets.



Comput Model Eng Sci. 2026;146(1):34 19

Figure 15: Motion compensation effect with LSTM: (a) In vivo; (b) Phantom datasets

Figure 16: Motion compensation error (RMSE) with LSTM: (a) In vivo; (b) Phantom datasets

4.5.3 Analysis of the Results of Motion Compensation Using TCN Model
Fig. 17 shows the robotic arm tracking performance using the TCN model for motion-compensated

prediction. The blue line in the figure represents the change of target displacement over time, and the red
line represents the change of displacement of the robotic arm end effector after motion compensation. The
figure shows that the TCN model has a strong learning ability for time series data with a certain regularity.
It maintains relatively good prediction results in multi-step predictions with a short number of steps, with
prediction performance far exceeding that of the autoregressive model.

Fig. 18 shows the cumulative average error curve for robotic arm tracking using the TCN model for
motion-compensated prediction. The figure shows that the prediction performance is good at most times
across different data sets, as evidenced by low error values and when the error is decreasing. The curve
indicates that the cumulative average error mostly falls within a small range of 0 to 1 mm.

Combining Figs. 17 and 18, we can see that the largest errors occur when the trajectory in the dataset
changes dramatically, requiring the robotic arm to accelerate and decelerate at high speeds. After these
moments, the robotic arm’s motion compensation performance recovers, and the prediction error returns to
a lower level.



20 Comput Model Eng Sci. 2026;146(1):34

Figure 17: Motion compensation effect with TCN: (a) In vivo; (b) Phantom datasets

Figure 18: Motion compensation error (RMSE) with TCN: (a) In vivo; (b) Phantom datasets

5 Discussion
Soft-tissue motion prediction plays a crucial role in robotic teleoperation, particularly in medical

scenarios such as ultrasound-guided interventions and beating-heart surgeries. Latency induced by percep-
tion, inference, and actuation pipelines introduces phase delays and position errors that significantly affect
the safety and accuracy of closed-loop control systems. To address this, learning-based motion prediction
methods, particularly sequence models like LSTM networks and TCN, have been widely explored in recent
literature. LSTM networks are capable of capturing long-term temporal dependencies and have demon-
strated effectiveness in modeling quasi-periodic physiological motion such as heartbeat and respiration.
However, their inherent sequential structure limits inference speed, posing challenges for real-time teleoper-
ation systems where rapid response is required. In contrast, TCNs leverage dilated and causal convolutions to
achieve large receptive fields with faster, parallelizable computation. This makes TCNs attractive candidates
for motion compensation in systems that demand both low-latency and high-throughput performance.

Our experimental findings align with this trend. Among the three models tested the autoregressive
baseline demonstrated limited applicability due to its linear assumptions and poor adaptability to nonlinear
or high-frequency motion. LSTM performed significantly better than auto regressive model, particularly
on the phantom dataset with its more regular and periodic trajectories. However, in the more complex



Comput Model Eng Sci. 2026;146(1):34 21

in vivo dataset, where heartbeat and respiration overlapped and introduced abrupt motion changes, the
LSTM exhibited error accumulation and reduced stability. TCN consistently achieved better performance in
both single-step and short-horizon multi-step predictions, effectively capturing local trajectory patterns and
delivering faster inference. These attributes are particularly beneficial when the prediction must compensate
for a fixed system delay across sensing, inverse kinematics, and execution.

Despite its advantages, the proposed TCN-based approach presents several limitations. First, the model’s
predictive performance depends heavily on the temporal regularity of the input data. While this is suitable
for controlled phantom environments, it may not generalize well to scenarios involving arrhythmias, sudden
occlusions, or irregular surgical manipulations, which frequently occur in real clinical practice. This was
reflected in the increased prediction errors observed at trajectory inflection points in the in vivo dataset.
Second, although TCNs are designed to capture local variations, they still struggle to maintain accuracy
at kinks or high-acceleration segments, where motion dynamics change rapidly. These regions consistently
showed higher error peaks across all models.

Another limitation lies in the exclusive use of positional trajectory data. The model does not use
multimodal inputs such as visual textures, force feedback, or depth information, which are increasingly
recognized as important cues in understanding soft-tissue deformation. Studies have shown that combining
RGB imagery and depth data improves model robustness under complex lighting conditions, occlusions,
and specular reflections. Additionally, the latency compensation mechanism in this study assumes a fixed
prediction horizon, statically derived from offline measurements of system delay. In real deployments,
however, delays can fluctuate due to varying computational loads or network latency. The absence of
adaptive latency tracking may lead to horizon mismatch and degraded control performance in practice.
Since multimodal data requires additional noise handling and synchronization, it would involve entirely
different experiments and other research issues, causing this paper to deviate from its core focus. Therefore,
the research on multimodal inputs will serve as a crucial direction for future work.

Finally, while the experiments employed real surgical datasets from the Da Vinci system, they were
conducted entirely in an open-loop manner. The predictive models were evaluated offline, where recorded
trajectories served as input and no real-time feedback from the robotic manipulator was involved. Conse-
quently, the current validation primarily reflects the algorithm’s prediction accuracy rather than its dynamic
control behavior. In contrast, a closed-loop or hardware-in-the-loop (HIL) framework would allow the
predictive model to directly interact with the robotic system, enabling assessment of stability and robustness
under real-time latency and jitter conditions. Although such validation has not yet been implemented, the
present open-loop design reproduces the full sensing–inference–actuation delay chain (approximately 160
ms) and provides a functionally equivalent analysis of compensation accuracy.

Future work will extend this framework to real-time closed-loop testing with injected delay jitter to
further evaluate the model’s robustness under dynamic teleoperation conditions. In addition, an adaptive
delay monitoring module based on Kalman filtering, integration of multimodal sensory feedback, and eval-
uation under human-in-the-loop teleoperation will be pursued. Moreover, exploring hybrid architectures
that combine TCNs with attention mechanisms or transformer-based encoders may enhance the capacity to
handle temporal discontinuities and improve generalization across variable motion patterns.

6 Conclusions
In this work, we addressed the critical problem of latency-induced tracking errors in soft-tissue motion

during robotic teleoperation by proposing a learning-based prediction framework. We decomposed the end-
to-end system delay into distinct components—sensing, inference, inverse kinematics, and actuation—and
derived an optimal prediction horizon to align the predicted target position with the actual control execution



22 Comput Model Eng Sci. 2026;146(1):34

time. To achieve robust motion prediction, we evaluated three models on both synthetic and real-world
datasets that capture heartbeat and respiratory dynamics.

Comprehensive experiments demonstrated that while the AR model is computationally efficient, it
lacks the flexibility to model nonlinear or irregular motion. LSTM networks showed improved accuracy,
particularly on regular trajectories, but suffered from error accumulation in multi-step forecasting. TCN
models outperformed both baselines in terms of prediction accuracy, inference speed, and robustness
to local trajectory changes, making them well-suited for real-time latency compensation in dynamic
surgical environments.

Furthermore, we validated the proposed framework within a simulated teleoperation platform and
demonstrated its capacity to reduce steady-state and peak tracking errors, especially in the presence of
physiological motion. The integration of prediction and control under a latency-aware architecture offers a
practical and effective solution for real-time soft-tissue tracking.

Acknowledgement: We would like to express our gratitude to Yakun Sun, Jiawei Tian for their support and assistance
in aspects such as data organization, data preprocessing, experiments, and inspections.

Funding Statement: Support by Sichuan Science and Technology Program [2023YFSY0026, 2023YFH0004] and
Guangzhou Huashang University [2024HSZD01, HS2023JYSZH01].

Author Contributions: Conceptualization: Bo Yang and Wenfeng Zheng; methodology: Siyu Lu and Guangyu Xu;
software: Bo Yang and Siyu Lu; validation: Guangyu Xu and Yuxin Liu; formal analysis: Siyu Lu and Junmin Lyu;
investigation: Guangyu Xu and Junmin Lyu; resources: Wenfeng Zheng and Bo Yang; data curation: Chao Liu and
Yuxin Liu; writing—original draft preparation: Guangyu Xu, Wenfeng Zheng and Siyu Lu; writing—review and editing:
Guangyu Xu, Wenfeng Zheng and Siyu Lu; visualization: Chao Liu, Guangyu Xu and Junmin Lyu; supervision: Bo
Yang; project administration: Wenfeng Zheng; funding acquisition: Wenfeng Zheng. All authors reviewed the results
and approved the final version of the manuscript.

Availability of Data and Materials: The datasets are explained and referenced in Sections 3.1.1 and 3.1.2.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Mehrdad S, Liu F, Pham MT, Lelevé A, Atashzar SF. Review of advanced medical telerobots. Appl Sci. 2021;11(1):209.

doi:10.3390/app11010209.
2. Patel RV, Atashzar SF, Tavakoli M. Haptic feedback and force-based teleoperation in surgical robotics. Proc IEEE.

2022;110(7):1012–27. doi:10.1109/jproc.2022.3180052.
3. Rahman MM, Balakuntala MV, Gonzalez G, Agarwal M, Kaur U, Venkatesh VLN, et al. SARTRES: a semi-

autonomous robot teleoperation environment for surgery. Comput Meth Biomech Biomed Eng Imag Vis.
2021;9(4):376–83. doi:10.1080/21681163.2020.1834878.

4. Dupont PE, Degirmenci A. The grand challenges of learning medical robot autonomy. Sci Robot.
2025;10(104):eadz8279. doi:10.1126/scirobotics.adz8279.

5. Fu J, Maimone G, Iovene E, Zhao J, Redaelli A, Ferrigno G, et al. Human-inspired active compliant and
passive shared control framework for robotic contact-rich tasks in medical applications. IEEE Trans Robot.
2025;41:2549–68. doi:10.1109/tro.2025.3548493.

6. Noguera Cundar A, Fotouhi R, Ochitwa Z, Obaid H. Quantifying the effects of network latency for a teleoperated
robot. Sensors. 2023;23(20):8438. doi:10.3390/s23208438.

https://doi.org/10.3390/app11010209
https://doi.org/10.1109/jproc.2022.3180052
https://doi.org/10.1080/21681163.2020.1834878
https://doi.org/10.1126/scirobotics.adz8279
https://doi.org/10.1109/tro.2025.3548493
https://doi.org/10.3390/s23208438


Comput Model Eng Sci. 2026;146(1):34 23

7. Farajiparvar P, Ying H, Pandya A. A brief survey of telerobotic time delay mitigation. Front Robot AI.
2020;7:578805. doi:10.3389/frobt.2020.578805.

8. Yang B, Zhou Y, Tian J, Zhang X, Guo F, Liu S. A computational modeling approach for joint calibration of low-
deviation surgical instruments. Comput Model Eng Sci. 2025;145(2):2253–76. doi:10.32604/cmes.2025.072031.

9. Luo J, Huang D, Li Y, Yang C. Trajectory online adaption based on human motion prediction for teleoperation.
IEEE Trans Autom Sci Eng. 2022;19(4):3184–91. doi:10.1109/TASE.2021.3111678.

10. Cheng L, Tavakoli M. Neural network-based physiological organ motion prediction and robot impedance control
for teleoperated beating-heart surgery. Biomed Signal Process Control. 2021;66(2):102423. doi:10.1016/j.bspc.2021.
102423.

11. Moniruzzaman MD, Rassau A, Chai D, Islam SMS. Long future frame prediction using optical flow-informed
deep neural networks for enhancement of robotic teleoperation in high latency environments. J Field Robot.
2023;40(2):393–425. doi:10.1002/rob.22135.

12. Tuna EE, Franke TJ, Bebek O, Shiose A, Fukamachi K, Cavuşoğlu MC. Heart motion prediction based on adaptive
estimation algorithms for robotic assisted beating heart surgery. IEEE Trans Robot. 2013;29(1):261–76. doi:10.1109/
TRO.2012.2217676.

13. Yang B, Wong WK, Liu C, Poignet P. 3D soft-tissue tracking using spatial-color joint probability distribution and
thin-plate spline model. Pattern Recognit. 2014;47(9):2962–73. doi:10.1016/j.patcog.2014.03.020.

14. Yang B, Liu C, Poignet P, Zheng W, Liu S. Motion prediction using dual Kalman filter for robust beating heart
tracking. In: Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC); 2015 Aug 25–29; Milan, Italy. p. 4875–8. doi:10.1109/embc.2015.7319485.

15. Yang B, Liu C, Zheng W, Liu S. Motion prediction via online instantaneous frequency estimation for vision-based
beating heart tracking. Inf Fusion. 2017;35(10):58–67. doi:10.1016/j.inffus.2016.09.004.

16. Zhang W, Yao G, Yang B, Zheng W, Liu C. Motion prediction of beating heart using spatio-temporal LSTM. IEEE
Signal Process Lett. 2022;29:787–91. doi:10.1109/lsp.2022.3154317.

17. Noroozi F, Daneshmand M, Fiorini P. Conventional, heuristic and learning-based robot motion planning:
reviewing frameworks of current practical significance. Machines. 2023;11(7):722. doi:10.3390/machines11070722.

18. Han L, Cheng L, Li H, Zou Y, Qin S, Zhou M. Hierarchical optimization for personalized hand and wrist
musculoskeletal modeling and motion estimation. IEEE Trans Biomed Eng. 2025;72(1):454–65. doi:10.1109/TBME.
2024.3456235.

19. Liu Z, Wu S, Jin S, Ji S, Liu Q, Lu S, et al. Investigating pose representations and motion contexts modeling for 3D
motion prediction. IEEE Trans Pattern Anal Mach Intell. 2023;45(1):681–97. doi:10.1109/TPAMI.2021.3139918.

20. Hutchinson K, Reyes I, Li Z, Alemzadeh H. Evaluating the task generalization of temporal convolutional networks
for surgical gesture and motion recognition using kinematic data. IEEE Robot Autom Lett. 2023;8(8):5132–9. doi:10.
1109/lra.2023.3292581.

21. Andrade-Ambriz YA, Ledesma S, Ibarra-Manzano MA, Oros-Flores MI, Almanza-Ojeda DL. Human activity
recognition using temporal convolutional neural network architecture. Expert Syst Appl. 2022;191(6):116287. doi:10.
1016/j.eswa.2021.116287.

22. Lin CL, Lin FY, Huang CY, Ho YH, Chiu WC, Sung PS. Classification of gaits with a high risk of falling using
a head-mounted device with a temporal convolutional network. IEEE Sens Lett. 2024;8(5):1–4. doi:10.1109/lsens.
2024.3389675.

23. Jiang Y, Peng B, Tian K, Wang L, Yuan Z. Visual autoregressive modeling: scalable image generation via next-
scale prediction. In: Proceedings of the Advances in Neural Information Processing Systems 37; 2024 Dec 10–15;
Vancouver, BC, Canada. San Diego, CA, USA: Inc. (NeurIPS); 2024. p. 84839–65. doi:10.52202/079017-2694.

24. Staffini A, Svensson T, Chung UI, Svensson AK. Heart rate modeling and prediction using autoregressive models
and deep learning. Sensors. 2021;22(1):34. doi:10.3390/s22010034.

25. Al-Selwi SM, Hassan MF, Abdulkadir SJ, Muneer A, Sumiea EH, Alqushaibi A, et al. RNN-LSTM: from applications
to modeling techniques and beyond—systematic review. J King Saud Univ Comput Inf Sci. 2024;36(5):102068.
doi:10.1016/j.jksuci.2024.102068.

https://doi.org/10.3389/frobt.2020.578805
https://doi.org/10.32604/cmes.2025.072031
https://doi.org/10.1109/TASE.2021.3111678
https://doi.org/10.1016/j.bspc.2021.102423
https://doi.org/10.1016/j.bspc.2021.102423
https://doi.org/10.1002/rob.22135
https://doi.org/10.1109/TRO.2012.2217676
https://doi.org/10.1109/TRO.2012.2217676
https://doi.org/10.1016/j.patcog.2014.03.020
https://doi.org/10.1109/embc.2015.7319485
https://doi.org/10.1016/j.inffus.2016.09.004
https://doi.org/10.1109/lsp.2022.3154317
https://doi.org/10.3390/machines11070722
https://doi.org/10.1109/TBME.2024.3456235
https://doi.org/10.1109/TBME.2024.3456235
https://doi.org/10.1109/TPAMI.2021.3139918
https://doi.org/10.1109/lra.2023.3292581
https://doi.org/10.1109/lra.2023.3292581
https://doi.org/10.1016/j.eswa.2021.116287
https://doi.org/10.1016/j.eswa.2021.116287
https://doi.org/10.1109/lsens.2024.3389675
https://doi.org/10.1109/lsens.2024.3389675
https://doi.org/10.52202/079017-2694
https://doi.org/10.3390/s22010034
https://doi.org/10.1016/j.jksuci.2024.102068


24 Comput Model Eng Sci. 2026;146(1):34

26. Zhao Y, Ren J, Zhang B, Wu J, Lyu Y. An explainable attention-based TCN heartbeats classification model for
arrhythmia detection. Biomed Signal Process Control. 2023;80(7):104337. doi:10.1016/j.bspc.2022.104337.

27. Ginhoux R, Gangloff J, De Mathelin M, Soler L, Sanchez MMA, Marescaux J. Active filtering of physiological
motion in robotized surgery using predictive control. IEEE Trans Robot. 2005;21(1):67–79. doi:10.1109/tro.2004.
833812.

28. Liang B, Gong G, Tong Y, Wang L, Su Y, Wang H, et al. Quantitative analysis of the impact of respiratory state
on the heartbeat-induced movements of the heart and its substructures. Radiat Oncol. 2024;19(1):18. doi:10.1186/
s13014-023-02396-0.

29. Stoyanov D, Scarzanella MV, Pratt P, Yang GZ. Real-time stereo reconstruction in robotically assisted min-
imally invasive surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010.
Berlin/Heidelberg, Germany: Springer; 2010. p. 275–82. doi:10.1007/978-3-642-15705-9_34.

30. Stoyanov D, Mylonas GP, Deligianni F, Darzi A, Yang GZ. Soft-tissue motion tracking and structure estimation for
robotic assisted MIS procedures. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI
2005. Berlin/Heidelberg, Germany: Springer; 2005. p. 139–46. doi:10.1007/11566489_18.

https://doi.org/10.1016/j.bspc.2022.104337
https://doi.org/10.1109/tro.2004.833812
https://doi.org/10.1109/tro.2004.833812
https://doi.org/10.1186/s13014-023-02396-0
https://doi.org/10.1186/s13014-023-02396-0
https://doi.org/10.1007/978-3-642-15705-9_34
https://doi.org/10.1007/11566489_18

	Learning-Based Prediction of Soft-Tissue Motion for Latency Compensation in Teleoperation
	1 Introduction
	2 Methodology
	3 Experimental Setting
	4 Experimental Results and Analysis
	5 Discussion
	6 Conclusions
	References


