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ABSTRACT: The rapid proliferation of Internet of Things (IoT) devices in critical healthcare infrastructure has
introduced significant security and privacy challenges that demand innovative, distributed architectural solutions.
This paper proposes FE-ACS (Fog-Edge Adaptive Cybersecurity System), a novel hierarchical security framework
that intelligently distributes AI-powered anomaly detection algorithms across edge, fog, and cloud layers to optimize
security efficacy, latency, and privacy. Our comprehensive evaluation demonstrates that FE-ACS achieves superior
detection performance with an AUC-ROC of 0.985 and an F1-score of 0.923, while maintaining significantly lower
end-to-end latency (18.7 ms) compared to cloud-centric (152.3 ms) and fog-only (34.5 ms) architectures. The system
exhibits exceptional scalability, supporting up to 38,000 devices with logarithmic performance degradation—a 67×
improvement over conventional cloud-based approaches. By incorporating differential privacy mechanisms with
balanced privacy-utility tradeoffs (ε = 1.0–1.5), FE-ACS maintains 90%–93% detection accuracy while ensuring strong
privacy guarantees for sensitive healthcare data. Computational efficiency analysis reveals that our architecture achieves
a detection rate of 12,400 events per second with only 12.3 mJ energy consumption per inference. In healthcare risk
assessment, FE-ACS demonstrates robust operational viability with low patient safety risk (14.7%) and high system
reliability (94.0%). The proposed framework represents a significant advancement in distributed security architectures,
offering a scalable, privacy-preserving, and real-time solution for protecting healthcare IoT ecosystems against evolving
cyber threats.
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1 Introduction
The contemporary healthcare industry is undergoing a paradigm shift, which is preconditioned by

the omnipresent spread of the Internet of Things (IoT) [1–4]. The proliferation of interrelated health
products, such as wearable biosensors and implantable devices, and sophisticated ambient environmental
sensors has also provoked a new paradigm in patient care [5–8]. This healthcare IoT (H-IoT) system allows
tracking patient vital signs in real time [9–11], enables remote diagnostics and personalities treatment,
thus challenging the quality, accessibility, and effectiveness of healthcare delivery considerably. The core of
this revolution is the huge stream of data delivered by these heterogeneous devices continuously, which is
normally sent to cloud data centres to be stored, aggregated, and undergo complex analytical processing
[12–15]. Yet, it is the data-centric feature and the extremely important life-sustaining roles of H-IoT devices
that make them a highly desirable and highly vulnerable target of the cyber-attackers. The merging of the
real world of the physical patient with the digital space of cyberspace implies that the breach of cybersecurity
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is not a simple problem of data confidentiality anymore [16–18]; it may also translate directly to extreme
effects on patient safety, such as misdiagnosis, therapeutic intervention mistakes, and even fatal outcomes.
The rising rate and complexity of the attacks, including the data exfiltration, accessing patient portals without
authorization, and ransomware attacks that disable hospital networks [19], emphasis the necessity of tough,
smart, and reactive security solutions that are specifically crafted to the pressures and demands of high-stakes
and unique situations of H-IoT systems.

1.1 Role of AI in Healthcare IoT Security
The conventional, signature-based, cybersecurity solutions used in this dynamic and multifaceted threat

scenario, which utilize established patterns of familiar malware and attacks, are turning out to be inherently
insufficient [20,21]. The traditional approaches do not cope with the emergent and advanced zero-day
attacks and exploits, as they keep changing [22,23], polymorphic attacks with the ability to be targeted at
medical device firmware [24] or communication protocols [25,26]. Therefore, the Artificial Intelligence (AI),
specifically its sub-units of machine learning (ML) and deep learning (DL), has proven to be one of the pillars
of proactive cybersecurity [27,28]. The strength of AI is that it can learn and mimic the normal behavior
of a system, whether it is the normal network traffic pattern among devices and the gateways [29], the
normal working conditions of an infusion pump, or the anticipated trends of physiological data of a cardiac
monitor [30,31].

Recent works include decision-making strategies for feature selection in IoT security [32], and fog-based
distributed IDS [33]. With these incredibly dimensional behavioral standards in place, AI-based anomaly
detection systems will be able to detect minor, hitherto unnoticed inconsistencies and anomalies that could
indicate the emergence of a security event. This feature of unsupervised or semi-supervised learning enables
it to detect new threats without knowing the signature of these threats [34,35], hence, changing the security
paradigm to a predictive and preventive position. More so, AI models can be trained to evolve with time,
constantly upgrading their perception of normality as devices are introduced to the network or conditions
of a patient evolve [36,37], in such a way that it offers a dynamic defense mechanism that is highly important
in the ever-changing H-IoT infrastructure.

1.2 Problem Statement
Although AI has proven to be effective, the existence of an underlying architectural issue remains

that essentially restricts its effectiveness in practice in the implementation of H-IoT: the intensive use of
a centralized cloud-computing paradigm of security analytics. The traditional method of transmitting all
encoded data by the myriad edge devices to a distant cloud to perform analysis presents several unsolvable
problems. First, it incurs significant communication latency, as data must traverse multiple network hops
before being processed; this delay is unacceptable in healthcare scenarios where a millisecond-level response
to a detected anomaly could be the difference between a mitigated incident and a catastrophic outcome [38].
Second, the transfer of the high-quality physiological information into the cloud continuously occupies
significant bandwidth and causes network overload and higher operational expenses [39]. Third and most
importantly, this model poses a serious privacy threat, since the sensitive patient information is exposed
over the network and collected in a central storage, which in turn is a high-value target to intruders. In
addition, the data generated by H-IoT devices is also enormous and might overwhelm cloud services, scaling
the problem of scalability issues arises, respectively [40].

As such, although AI is giving the intelligent ability to detect potential threats, the centralized cloud-
based system is a bottleneck, which weakens the very features, low latency, high efficiency, and solid privacy,
which are the most important to ensure the safety of mission-critical healthcare applications. This disparity
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prompts the need to adopt a distributed model of computation that can utilise the potential of AI, to take
advantage of the limitations that are inherent in the cloud-centric model.

1.3 Research Objectives
To deal with the problem identified, the following are the main objectives to be followed in this research.

The former one is to plan and design a new, distributed AI-based anomaly detection system that is inherently
developed in a Fog-Edge computing system of H-IoT networks. This entails a strategic decision-making
process among the most effective division of security analytics processing activities among the three levels
of hierarchy of Edge node (located on or close to the medical devices), Fog node (local network gateways or
servers), and the Cloud. The latter is to design and deploy a suite of lightweight machine learning and deep
learning models uniquely tailored to resource-constrained Fog and Edge devices and able to do real-time
data traffic and device behavior analysis with a limited computational footprint. The third goal is to design
an adaptive reaction scheme that may induce localized response actions at the Fog-Edge layer when danger
is found, like isolating a devoted apparatus or denying malicious traffic, yet not necessarily involving the
cloud. The ultimate goal is to critically compare the work of the proposed framework to the conventional
cloud-based security structures in a holistic set of metrics, such as accuracy of the detection, false-positive
rate, end-to-end latency, bandwidth use, and general system resource usage, to present empirical evidence
of superiority.

1.4 Contributions of the Study
The study’s contributions are multi-dimensional and important and can be summarized as follows:

• Superior Security Performance: FE-ACS achieves outstanding detection capabilities with an AUC-
ROC of 0.985 and an F1-score of 0.923, outperforming traditional cloud-centric (0.972 AUC-ROC) and
fog-only (0.951 AUC-ROC) approaches while maintaining significantly lower latency (18.7 ms compared
to 152.3 ms for cloud-centric architectures).

• Enhanced Scalability: Our architecture demonstrates remarkable scalability, supporting up to 38,000
devices with logarithmic performance degradation, representing a 67.3× improvement over conventional
cloud-based systems that struggle beyond 565 devices due to linear scalability constraints.

• Computational Efficiency: The hierarchical task distribution in FE-ACS enables efficient resource
utilization, achieving a high detection rate of 12,400 events/second with minimal energy consumption
(12.3 mJ per inference), making it suitable for resource-constrained environments.

• Privacy-Preserving Capabilities: By incorporating differential privacy mechanisms with balanced
parameters (ε = 1.0–1.5), FE-ACS maintains 90%–93% detection accuracy while providing strong pri-
vacy guarantees for sensitive healthcare data, reducing membership inference attack success from
84% to 23%.

• Practical Viability and Risk Mitigation: The healthcare risk assessment confirms FE-ACS’s suitability
for critical applications, demonstrating low patient safety risk (14.7%) and high system reliability
(94.0%), ensuring trustworthy operation in medical environments under real-world constraints.

These efforts are a big step in the right direction of building resilient, intelligent, and scalable
cybersecurity systems that will support the next generation of connected healthcare systems.

1.5 Preliminaries and Notation
This section prepares the foundation of the mathematical notation and symbols that will be used

in this paper. The complex and dynamic relations between the healthcare IoT devices and Fog-Edge
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computing layers, and AI-based security processes ought to have a standardized notation to help with the
interpretation. The most significant mathematical symbols, along with their descriptions and applications
area are represented in the formal framework of the study as presented in Table 1.

Table 1: Table of mathematical symbols and descriptions

Symbol Description Domain/Type
G(t) Dynamic network graph at time t Graph G = (V , E)
V Set of all vertices/nodes in the network V = Ved ge ∪ V f o g ∪ Vc l oud
E Set of communication links/edges Edge set of graph G

X(d) Multivariate time series from device d R
Nraw×T

st Feature vector at time t R
N f eat

R f i Resource vector of Fog node fi (CPUi , MEMi , BWi , STOi)
Ltotal End-to-end system latency R

+ (milliseconds)
AE(st) Edge-level anomaly score R

AF(S[w]t ) Fog-level anomaly score R

ε Privacy budget in differential privacy R
+

δ Failure probability in (ε, δ)-DP R
+

Φ(v , t) Security function for vertex v at time t {0, 1}
Tattack Attack transformation function R

N f eat → R
N f eat

θ Model parameters in AI frameworks R
D

L Loss function for model training R
+

TP, TN, FP, FN Confusion matrix components Z
+

F1-Score Harmonic mean of precision and recall [0, 1]
AUC-ROC Area under ROC curve [0, 1]

The mathematical framework employs several key conventions: vectors are denoted by bold lowercase
letters (e.g., st), matrices by bold uppercase letters (e.g., X), sets by calligraphic fonts (e.g., V), and scalar
variables by italic letters (e.g., N). Time-dependent quantities are explicitly indicated with subscript t (e.g.,
st), while superscripts typically denote specific instances or devices (e.g., X(d)).

We constitute our notation system to be hierarchical, and each element of the notation is defined
separately as an edge, a fog, or a cloud layer. Such a reasoning approach would offer the coherence of the
interpretation of the complex interrelation between the cybersecurity measures, AI model parameters, and
healthcare IoT constraints in the course of our analysis. The mathematical basis, as cited in Table 1, allows
one to come up with accurate equations, which represent the distributed anomaly detection algorithms and
privacy-preserving mechanisms, which are the main contributions of this work.

1.6 Paper Organization
The remainder of this article is structured as follows. Section 3 delineates the high-level design and core

components of our proposed system. Section 4 then details the specific algorithms and data flow of our AI-
powered anomaly detection engine. In Section 5, we describe the practical implementation, software stack,
and experimental setup used for validation. The results from these experiments are presented and critically
discussed in Section 6. Finally, Section 7 summarizes the key findings, acknowledges the study’s limitations,
and suggests potential avenues for future research.
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2 Related Work
The intersection of IoT, AI, and distributed computing has motivated the development of much research

on Fog-Edge security architectures. This background puts FE-ACS into perspective in the field of current
distributed intrusion detection systems (IDS) in healthcare IoT.

2.1 Cloud-Centric vs. Distributed IDS
Traditional cloud-based IDS centralizes data processing, leading to latency and privacy bottlenecks.

While effective for batch analysis, they fail to meet real-time healthcare demands. Recent shifts toward edge
computing [15] mitigate latency but often lack sophisticated AI due to resource constraints.

2.2 Fog-Edge IDS Architectures
Several studies have explored distributed AI for IoT security. Baucas et al. [33] proposed a federated

learning and blockchain-enabled fog-IoT platform for wearables, ensuring data privacy but introducing
significant consensus latency. Ullah et al. [32] developed an IoT feature selection strategy for attack detection,
though their work remains simulation-based and lacks multi-tier anomaly scoring.

2.3 AI-Powered Anomaly Detection in Healthcare IoT
Recent AI-driven approaches include DAGMM [41] for unsupervised anomaly detection and LSTM-

Autoencoders for sequential data [42]. However, these are typically deployed in monolithic settings.
Baker and Xiang [36] surveyed AIoT for healthcare but noted a gap in hierarchical, real-time threat
response systems.

2.4 Privacy-Preserving Distributed Learning
Differential Privacy (DP) and Federated Learning (FL) are emerging as standards for privacy-aware

analytics [33]. While effective, their integration into low-latency, multi-tier detection pipelines remains
underexplored, particularly under rigorous threat models.

2.5 Positioning of FE-ACS
As summarized in Table 2, FE-ACS distinguishes itself through:

• Hierarchical AI distribution (Edge SVM, Fog LSTM-AE, Cloud iForest)
• Integrated privacy (DP + FL with formal guarantees)
• Real-time adaptive response (tiered containment)
• Proven scalability (logarithmic latency growth)

Unlike prior works, FE-ACS holistically addresses detection accuracy, latency, privacy, and scalability
within a single, deployable framework.

Table 2: Comparison of FE-ACS with recent fog-edge IDS systems

System/Study Architecture Detection
method

Privacy
mechanism

Key limitations vs.
FE-ACS

Baucas
et al. [33]

Fog-IoT +
Blockchain Federated ML Blockchain, FL High latency, no

edge-level filtering

(Continued)
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Table 2 (continued)

System/Study Architecture Detection
method

Privacy
mechanism

Key limitations vs.
FE-ACS

Ullah et al. [32] Cloud-centric
Feature

selection +
SVM

None No fog-layer analysis,
high bandwidth use

DAGMM [41] Centralized Deep GMM None Not distributed, high
cloud dependency

MedGuard [24] Device-level Compiler
polymorphism None

Device-specific, no
network-level

detection
FE-ACS

(Proposed)
Fog-Edge-

Cloud
Hierarchical

AI
DP + FL +

Encryption N/A (Baseline)

2.6 Fault Tolerance and Resilience
FE-ACS incorporates several mechanisms to withstand node failures and attacks:

2.6.1 Fog Node Redundancy

Each edge device e j is assigned a primary fog node f pr imar y
i and backup fog node f backu p

i .
The assignment follows:

f backup
i = arg min

fk∈F/{ f primary
i }

∥loc(e j) − loc( fk)∥ (1)

Upon primary failure (heartbeat timeout > 50 ms), automatic failover to f backu p
i occurs.

2.6.2 Byzantine-Resilient Aggregation
For federated updates, we employ Krum aggregation [43] to tolerate up to f < N/3 malicious fog nodes:

θr+1 = Krum ({θr
fi
}K

i=1) (2)

where Krum selects the parameter vector with minimal sum of distances to its K − f − 2 nearest neighbors.

2.6.3 Local Fallback Mode
During network disconnections where fog-cloud links are severed, fog nodes transition into a degraded

operation mode to maintain essential functionality. In this state, they continue performing local anomaly
detection using cached models θcached, store generated anomaly profiles as locally for later synchronization
once connectivity is restored, and maintain edge connectivity and basic containment actions to ensure
continued operation and security at the network edge.

2.6.4 Progressive Degradation
In situations of resource depletion, FE-ACS places critical device monitoring, e.g., life-support systems,

ahead of all other considerations, then fulfils core anomaly detection functionality over optional model
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retraining whilst scaling privacy mechanisms such as differential privacy noise in response to the available
computational resources.

3 System Architecture and Design

3.1 Threat Model and Security Assumptions
We adopt a multi-layered threat model encompassing semi-honest and malicious adversaries targeting

Edge, Fog, and Cloud tiers.

3.1.1 Attacker Capabilities
Edge layer attacks attack specific IoT devices and the local communication space, such as eavesdropping

on device messages, physical damage, or device spoofing, attacking with data injections of a counterfeit
sensor reading, or attacking with battery depletion. Fog-layer attacks target computing nodes in between
with the risk of node compromise resulting in Byzantine behavior, data poisoning in federated learning
models, network-level DDoS attacks on fog gateways, and man-in-the-middle attacks on fog-edge com-
munication links. The objectives of cloud-layer attacks are aggregation attacks to poison global models
centrally, membership inference of aggregated data to break privacy, and exfiltration of data in centralized
storage systems.

3.1.2 System Assumptions
We assume that edge devices are resource-constrained yet tamper-resistant, while fog nodes possess

greater computational capacity but remain susceptible to compromise. The cloud is considered trustworthy
for maintaining data integrity but not for preserving data privacy. Although communication links between
different tiers may be intercepted, they are secured through authentication mechanisms such as TLS/Ed25519.
Finally, the network is assumed to be generally well-connected, with only occasional partitioning events.

3.1.3 Formal Adversarial Model
We model attackers using the Dolev-Yao network adversary (can intercept, inject, replay messages) and

the Byzantine node adversary (can arbitrarily deviate from protocols). Privacy adversaries are modeled as
honest-but-curious for DP analysis and malicious for membership inference evaluations.

3.1.4 Attack Simulations in This Work
The following attacks are explicitly simulated in Section 5.
Ransomware/DoS attacks are simulated through traffic flooding at 10× the normal packet rate, while

spoofing involves injecting synthetic Gaussian noise (μ = 0, σ = 0.1) into sensor streams. Zero-day attacks
are modeled as behavioral anomalies using unseen attack patterns generated via Wasserstein GANs, and
data exfiltration is represented through covert channel detection in ECG signals. Finally, model poisoning is
implemented via malicious gradient updates in federated learning processes.

3.2 Overview of Proposed Framework
The proposed framework in Fig. 1, which is named Fog-Edge AI Cyber Shield (FE-ACS), is a hierarchi-

cal, multi-layered security framework that will be used to offer robust, low-latency, and privacy-preserving
anomaly detection to Healthcare IoT (H-IoT) ecosystems.



8 Comput Model Eng Sci. 2026;146(1):45

Figure 1: System architecture and design

The essence of the philosophy is to spread the computational intelligence throughout the network
spectrum, between the source of the data and the cloud, to reduce the inherent constraints of a centralized
model. The FE-ACS framework is officially broken down into three integrative thought levels:

• Edge Tier (E): Comprises the H-IoT devices themselves (e.g., smart pills, ECG patches, infusion pumps)
and lightweight Edge Aggregators (e.g., smartphones, dedicated hubs). This tier is responsible for initial
data filtering, ultra-low-latency local inference, and executing immediate containment actions.

• Fog Tier (F): Consists of decentralized computing nodes (e.g., local servers, routers, micro-data
centers) in close proximity to the Edge Tier. This level does the main heavy-lifting of AI-based anomaly
detection, coordinates the local responses, and handles information obfuscation before any eventual
cloud transfer.

• Cloud Tier (C): The remote data center that performs long-term, global analytics, model re-training,
and archival storage. It operates on abstracted or federated learning updates rather than raw patient data.

Let the entire H-IoT network be represented as a dynamic graph G(t) = (V(t), E(t)), where V(t) is
the set of vertices (devices, fog nodes, cloud) and E(t) is the set of communication links at time t. Our
framework defines a security function Φ(v , t) for each vertex v ∈ V .

3.3 Fog-Edge Layer Integration
The integration between the Fog and Edge layers is governed by a resource-aware orchestration policy.

We model each Fog Node fi ∈ F with a resource vector R f i = (CPUi , MEMi , BWi , STOi), and each Edge
Aggregator e j ∈ E with a resource vector Re j = (cpu j , mem j , energ y j).

The assignment of an AI model Mk (with a computational demand vector DMk ) to a node is determined
by an optimization problem. Let xi jk be a binary decision variable that is 1 if model Mk for device data from
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e j is deployed on fi . One of the points is to reduce the overall latency of the system in terms of processing
time and transmission time.

The total latency Ltotal for a detection task is given by:

Ltotal = Lproc(Mk , Rnod e) + Ltrans(de j→ f i , BW) (3)

where Lproc is the processing latency, a function of the model complexity and node resources, and Ltrans is
the transmission latency, a function of the data payload size d and available bandwidth BW.

The orchestration problem can be formulated as:

minimize ∑
i , j ,k

xi jk ⋅ Ltotal(i , j, k) (4)

subject to ∑
k

xi jk ⋅DMk ⪯ R f i ∀i (Resource Capacity)

∑
i

xi jk = 1 ∀ j, k (Single Assignment)

xi jk ∈ {0, 1}

This makes sure that tasks are distributed such that a Fog node is not overloaded due to the existence
of a high number of tasks.

3.4 Data Flow and Communication Model
The data flow in FE-ACS is stateful and context-aware. Let a raw data stream from an H-IoT device s

be a multivariate time series Xs(t) = {x1 , x2, . . . , xt}, where each vector xi ∈ Rd represents physiological and
device telemetry readings.

The data undergoes a transformation at each tier:

1. At Edge (E): A lightweight model ME performs initial screening. It calculates an Anomaly Score SE(xt).

SE(xt) = fE(xt ; θE) (5)

If SE(xt) > τE (a pre-defined threshold), the raw data xt is immediately forwarded to the assigned Fog
node fi . Otherwise, only a periodic heartbeat signal or a compressed representation zt = g(xt) is sent,
where g(⋅) is a compression or feature extraction function.

2. At Fog (F): The Fog node receives either xt or zt . It maintains a contextual buffer Bs = {xt−w , . . . , xt}
for a window size w. A more complex model MF (e.g., an LSTM autoencoder) computes a contextual
anomaly score:

SF(Bs) = ∥Bs −Dec(Enc(Bs))∥2
2 (6)

Here, Enc and Dec are the encoder and decoder of the autoencoder, respectively. The reconstruction
error serves as the anomaly score. If SF > τF , an alert is triggered, and an Anomaly Profile Vector as is
generated and sent to the cloud. as contains metadata about the anomaly (type, time, device ID, severity)
but not the raw physiological data.

3. At Cloud (C): The cloud aggregates Anomaly Profile Vectors {as} from all Fog nodes. It uses these for
global threat intelligence and to perform federated learning to update the models ME and MF without
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centralizing raw data. The global model update in round r + 1 is:

θr+1 ← ∑
f i∈F

ni

n
θr

fi
(7)

where θr
fi

is the model parameter from Fog node fi , ni is the number of data samples on fi , and n is the
total number of samples.

3.5 Security Components and Mechanisms
The FE-ACS incorporates multiple, layered security mechanisms.

Definition 1 (Anomaly Detection Function): The core AI-based detection at the Fog layer is a function Ψ ∶
R

d×w → {0, 1}, where 1 denotes an anomaly. This is realized by:

Ψ(Bs) = I[SF(Bs) > τF] (8)

where I is the indicator function. The score SF is computed using a Deep Auto-Encoding Gaussian Mixture
Model (DAGMM) [41], which jointly optimizes deep autoencoder reconstruction and density estimation in a
low-dimensional latent space.

The DAGMM model consists of two main components:

1. Compression Network: Maps the input Bs to a low-dimensional representation.

zc = [Enc(Bs), ∥Bs −Dec(Enc(Bs))∥2
2]

z =
zc − μzc

σ zc
(Batch Normalization)

2. Estimation Network: A Gaussian Mixture Model (GMM) takes z and estimates mixture membership
and sample energy.

p(z) =
K
∑
k=1

ϕ̂kN (z; μ̂k , Σ̂k) (9)

The anomaly score is derived from the sample energy E(z) = − log p(z). A higher energy indicates a
higher probability of being an outlier.

Furthermore, we employ a Cross-Tier Consensus Protocol to prevent false positives/negatives from a
single compromised tier. An alert is only considered confirmed if at least m out of n tiers report a correlated
anomaly within a time window ΔT . This can be modeled as:

Final Alert = I

⎡⎢⎢⎢⎢⎣
∑

i∈{E ,F ,C}
I[Alerti = True] ≥ m

⎤⎥⎥⎥⎥⎦
(10)

3.6 Privacy Preservation and Data Management
Privacy is a first-class citizen in the FE-ACS design. We employ Differential Privacy (DP) and Federated

Learning (FL) as core principles.
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Theorem 1 (ε-Differential Privacy at Fog Layer): The query function Q(Bs) that releases the Anomaly Profile
Vector as to the cloud satisfies ε-differential privacy if, for all datasetsD1 andD2 differing on at most one element,
and for all S ⊆ Range(Q):

Pr[Q(D1) ∈ S] ≤ eε ⋅ Pr[Q(D2) ∈ S] (11)

This is achieved by adding calibrated noise to the as vector or to the gradients during federated learning updates.
Specifically, for a function f with L2-sensitivity Δ2 f , the mechanism:

M(X) = f (X) +N (0, σ 2I), where σ =
Δ2 f

√
2 ln(1.25/δ)

ε
(12)

satisfies (ε, δ)-differential privacy.
For data-at-rest, all sensitive data on Fog nodes is encrypted using Authenticated Encryption (AE)

schemes like AES-GCM. Let K be the key space. The encryption of a data block m is:

c = Enck(m, AD), k ∈ K (13)

where AD is associated data (e.g., device ID, timestamp) that is authenticated but not encrypted.
The data lifecycle is managed via a Progressive Data Degradation policy. Let Ted ge , Tf o g , and Tcl oud be

the data retention periods at each tier, with Ted ge < Tf o g ≪ Tcl oud . Raw data Xs(t) is purged from the Edge
after Ted ge and from the Fog after Tf o g , while only the anodized Anomaly Profile Vectors as are retained
long-term in the Cloud. Additional details of Algorithm 1 are explained.

Algorithm 1: Federated learning with differential privacy in FE-ACS
Input: Initial global model θ0, Fog nodes F, privacy parameters (ε = 1.2, δ = 10−5), clipping norm C = 1.0
Output: Final global model θ50

1 Function Federated_Learning_DP (θ0, F , ε, δ, C):
2 for r ← 1 to 50 do

/* Cloud sends current global model */
3 Send θr to all Fog nodes fi ∈ F;
4 foreach fi ∈ F in parallel do

/* Local training on Fog node */
5 Train local model on Bs, compute update Δθi ;

/* Clip update */
6 ¯Δθi = Δθi/max(1, ∥Δθi∥2/C);

/* Add Gaussian noise (σ via moments accountant) */
7 ˜Δθi = ¯Δθi +N (0, σ 2C2I);

/* Secure aggregation of noisy updates */
8 θr+1 ←∑( ˜Δθi/∣F∣);

/* Total privacy loss across rounds */
9 Composition via RDP accountant;
10 return θ50;

The mechanism uses (ε, δ)-DP against honest-but-curious adversaries, with noise calibrated via a
moments accountant for composition over 50 rounds.
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4 AI-Powered Anomaly Detection Framework

4.1 Data Preprocessing and Feature Extraction
The raw data stream from H-IoT devices is inherently noisy, high-dimensional, and non-stationary.

Let the multivariate time series from a device d be X(d) = {x1 , x2, . . . , xT}, where each vector xt ∈ RNraw

contains Nraw raw sensor readings (e.g., ECG voltage, SpO2, blood glucose) at time t. The data processing
pipeline, illustrated in the framework diagram, begins with raw sensor data and progresses through edge-
based filtering and feature extraction. Then, the cloud layer computes abnormality scores by employing
federated learning and anomaly detector models to instigate countermeasures in Fig. 2.

Figure 2: AI-powered anomaly detection framework for H-IoT

1. Missing Value Imputation and Noise Filtering: State estimation and smoothing are done by using a
Kalman filter. The model of the state-space can be defined as:

zt = Azt−1 +wt , wt ∼ N (0, Q) (State Equation)
xt = Hzt + vt , vt ∼ N (0, R) (Observation Equation) (14)

where zt is the hidden state, A is the state transition matrix, and H is the observation matrix. The process and
observation noises are Gaussian with covariances Q and R, respectively. The Kalman gain Kt is computed
recursively to provide the optimal estimate ẑt∣t .

2. Normalization: To mitigate the effects of varying scales, we apply Z-score normalization per feature
channel, making the model invariant to baseline shifts and scale variations:

x̃(i)
t = x(i)

t − μ(i)

σ(i) (15)

where μ(i) and σ(i) are the running mean and standard deviation for the i-th feature, estimated online to
adapt to gradual physiological changes.

3. Feature Extraction: Beyond raw data, we extract a set of N f eat discriminative features, ft ∈ RN f eat ,
forming the final feature vector st = [x̃T

t , fT
t ]T . These features include:

• Statistical Features: Rolling window mean, variance, skewness, kurtosis.
• Spectral Features: Bandpower in specific frequency bands (e.g., for EEG/ECG) obtained via Short-Time

Fourier Transform (STFT):

P(t, f ) = ∣
∞

∑
n=−∞

st[n]w[n − τ]e− j2π f n∣
2

(16)

• Non-Linear Dynamics: Approximate Entropy (ApEn) and Sample Entropy (SampEn) to quantify
signal complexity.
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The final processed data stream for a device is S(d) = {s1 , s2, . . . , sT}.

4.2 Machine Learning and Deep Learning Models
It is our hierarchy of a collection of models, which is strategically spread throughout the Fog-

Edge spectrum.

4.2.1 Lightweight Edge Model (Binary Classifier)
On the constrained resource end, we use a small Support Vector Machine (SVM) having a linear kernel.

This is aimed at identifying the hyperplane that optimises both normal and anomalous classes. Given training
data {(si , yi)}M

i=1, where yi ∈ {−1,+1}, the primal problem is:

min
w,b ,ξ

1
2
∥w∥2 + C

M
∑
i=1

ξi

subject to yi(wT ϕ(si) + b) ≥ 1 − ξi ,
ξi ≥ 0, i = 1, . . . , M

(17)

where ϕ(⋅) is the feature mapping function, C is the regularization parameter, and ξi are slack variables. For
real-time inference, the decision function fedge(st) = wT st + b is computed efficiently.

4.2.2 Fog-Based Deep Sequential Model (LSTM-Autoencoder)
At the Fog layer, we utilize a Long Short-Term Memory (LSTM) based Autoencoder to model temporal

dependencies and detect contextual anomalies. The model learns a compressed representation of normal
sequential behavior.

Let S[w]t = [st−w , . . . , st] be a window of w consecutive feature vectors. The LSTM encoder processes
this sequence:

iτ = σ(Ws i sτ +Whi hτ−1 + bi) (18)
fτ = σ(Ws f sτ +Wh f hτ−1 + b f ) (19)
oτ = σ(Wsosτ +Whohτ−1 + bo) (20)
c̃τ = tanh(Wscsτ +Whchτ−1 + bc) (21)
cτ = fτ ⊙ cτ−1 + iτ ⊙ c̃τ (22)
hτ = oτ ⊙ tanh(cτ) (23)

where i, f, o, c are the input, forget, output, and cell state gates, σ is the sigmoid function, and ⊙ denotes the
Hadamard product. The final hidden state ht is the encoded representation: zt = ht .

The decoder, another LSTM network, reconstructs the input sequence from zt : Ŝ[w]t = Decoder(zt). The
model is trained to minimize the reconstruction error:

LAE =
1
w

t
∑

τ=t−w
∥sτ − ŝτ∥2

2 (24)

4.2.3 Cloud-Based Global Model (Isolation Forest)
In the cloud, we employ an Isolation Forest (iForest) for final, high-confidence analysis on aggregated,

abstracted data. iForest isolates anomalies instead of profiling normal points. It builds an ensemble of T
binary trees. The anomaly score for a point s is derived from the path length h(s):
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s(s, ψ) = 2−
E[h(s)]

c(ψ) (25)

where E[h(s)] is the average path length from the ensemble of trees, ψ is the sub-sampling size, and c(ψ)
is the average path length of an unsuccessful search in a Binary Search Tree. A score close to 1 indicates a
clear anomaly.

4.3 Real-Time Anomaly Detection Algorithms
Anomaly detection is a continuous process. The Edge Anomaly Score AE(st) is the signed distance

from the SVM hyperplane: AE(st) = fedge(st).

The Fog Anomaly Score AF(S[w]t ) is based on the reconstruction error of the LSTM-AE, normalized
using a rolling window of recent errors to account for concept drift:

AF(S[w]t ) = LAE(S[w]t ) − μL
σL

(26)

where μL and σL are the mean and standard deviation of the reconstruction errors in a recent window.
A Fused Anomaly Score Afused(t) is computed by combining the scores from different tiers using

Dempster-Shafer theory for evidence fusion, providing a robust final decision.
The final anomaly decision D(t) is given by:

D(t) =
⎧⎪⎪⎨⎪⎪⎩

1 (Anomaly), if Afused(t) > τglobal

0 (Normal), otherwise
(27)

The threshold τglobal is dynamically adjusted using the Peaks-Over-Threshold (POT) method from
Extreme Value Theory to maintain a constant false positive rate.

4.4 Model Training, Validation, and Deployment at Fog-Edge
1. Federated Training: The Fog-level LSTM-AE models are trained using a Federated Averaging

(FedAvg) approach. Let K be the number of Fog nodes. The global model parameters θ are updated as:

θt+1 ←
K
∑
k=1

nk

n
θk

t+1 (28)

where θk
t+1 are the parameters from the k-th Fog node after local training on its nk samples, and n = ∑k nk .

2. Loss Function: The loss for the LSTM-AE includes a reconstruction term and a regularization term
to encourage sparse representations:

Ltotal = LAE + λ∥zt∥1 (29)

3. Validation and Concept Drift Detection: We use the Paired Classifier Two-Sample Test (PC2ST) [42]
to detect concept drift. A binary classifier is trained to distinguish between a recent window of data
and a reference window. High classification accuracy implies that there is a high drift that will result in
model retraining.

4. Deployment via Knowledge Distillation: Knowledge distillation is to be used to deploy updated
cloud models to Fog nodes without causing a serious downtime. A small, efficient “student” model (the
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deployed Fog model) is trained to mimic the predictions of a large, accurate “teacher” model (the cloud
model) by minimizing:

LKD = α ⋅LCE(ystudent , ytrue) + (1 − α) ⋅LMSE(Astudent , Ateacher) (30)

where LCE is the cross-entropy loss and LMSE is the mean squared error between the anomaly scores.

4.5 Adaptive Threat Response Mechanism
Upon a confirmed anomaly (D(t) = 1), a tiered, adaptive response R is triggered, modeled as a finite-

state machine.

1. Level 1 (Edge): Immediate, localized response. The edge device d is instructed to enter a safe mode:
R(d)edge ∶ State → Safe Mode. Concurrently, traffic from d is quarantined.

2. Level 2 (Fog): Context-aware containment. The Fog node generates a risk propagation vector that is
denoted by the symbol rp. It isolates all devices j for which r( j)

p > τpropagate.
3. Level 3 (Cloud): Strategic countermeasures and forensics. The cloud analyzes the anomaly profile as

across the entire network to identify the attack signature and pushes a patch or a new detection rule P
to all affected Fog nodes: Rcloud ∶ Update Rule → θmodel ∪ {P}.

The overall response is a function of the anomaly score and its context:

R(t) =
⎧⎪⎪⎨⎪⎪⎩

Redge ∪Rfog, if Afused(t) ∈ (τlow, τhigh]
Redge ∪Rfog ∪Rcloud, if Afused(t) > τhigh

(31)

This guarantees a reasonable and resource-effective defense, which reduces the threats without causing
major disturbances to the legitimate healthcare services.

5 Implementation and Experimental Setup

5.1 Simulation Environment and Datasets
To empirically prove the proposed FE-ACS framework, we developed a high-fidelity simulation model

based on the synergistic use of tools. OMNeT++ was used to simulate the network topology and Fog-Edge
computing layers with the help of INET and SimuLTE (LTE/5G connectivity). The AI models and data
processing processes were developed in Python 3.8 on top of Tensorflow 2.9 and Scikit-learn and connected
with the simulation in OMNeT++ through a custom-made socket-based co-simulation architecture.

Latency/energy measured via NS-3 simulation and hardware (RPi4: edge, 4 GB RAM; i7-10700: fog).
Sampling: 10 Hz on 1000-sample workloads (ECG data). Values are averages over 50 runs with std dev (e.g.,
latency 18.7 ± 1.5 ms).

Hardware-in-the-loop: RPi4 firmware (Raspberry Pi OS 2023), TensorFlow 2.12. API: REST endpoints.
Message schema: JSON {“device_id”: int, “timestamp”: str, “data”: [float]}. Traffic: 10 packets/s. Replay script:
Python with pandas for data loading.

The simulated network topology was defined as a connected graph G = (V , E), where the vertex set is
partitioned as V = Ved ge ∪ V f o g ∪ Vc l oud .

• Ved ge : 150 H-IoT devices, including 50 synthetic patients, each with an ECG monitor, a blood glucose
sensor, and a pulse oximeter.

• V f o g : 5 Fog nodes, strategically placed with a connectivity degree δ( fi) ≥ 25 to ensure robust coverage.
• Vc l oud : 1 central cloud data center.
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The link latencies between tiers were modeled as random variables: Led ge- f o g ∼ U(5, 25)ms, L f o g-c l oud ∼
U(45, 100) ms.

5.2 Experimental Protocol
The experiments use the PTB-XL dataset [44], from PhysioNet (21,837 ECG records from 18,885

patients). Data is split patient-wise into 80% train, 10% validation, 10% test to prevent identity leakage. We
employ 5-fold cross-validation with stratified sampling. Anomalies are synthesized by injecting Gaussian
noise (mean = 0, std = 0.1) to simulate spoofing/ransomware attacks, enforcing 20% anomaly class balance
via oversampling. No temporal leakage is allowed; sequences are grouped by patient/device ID.

Attack Simulation Details
To comprehensively evaluate FE-ACS, we simulate the following attack scenarios derived from our

threat model (Section 3.1):

• Ransomware/DoS: Modeled by increasing packet rate from compromised devices from 10 to 100
packets/second for 60-second bursts.

• Data Spoofing: Gaussian noise injection x′t = xt +N (0, 0.12) applied to 20% of sensor streams
randomly.

• Zero-Day Attacks: Unseen anomaly patterns generated via Wasserstein GANs trained on attack
signatures from the UNSW-NB15 dataset [45], then adapted to medical sensor patterns.

• Data Exfiltration: Covert channels simulated as low-bitrate (1 bps) QAM modulation embedded in ECG
signals:

ECG′(t) = ECG(t) + α ⋅ sin(2π fc t + ϕdata) (32)

where fc = 60 Hz (hidden in ECG spectrum) and α = 0.05 mV.
• Model Poisoning: In federated learning rounds, 10% of fog nodes inject malicious gradients scaled by

η ∼ U(−10, 10).

5.3 System Parameters and Performance Metrics
The system parameters were carefully calibrated to reflect real-world Fog-Edge constraints. The

resource vectors for Fog nodes were set to R f o g = (CPU ∶ 8 cores, RAM ∶ 16 GB, BW ∶ 1 Gbps), and for Edge
aggregators as Red ge = (CPU ∶ 4 cores, RAM ∶ 4 GB, BW ∶ 100 Mbps).

A comprehensive set of metrics was employed to evaluate the system holistically.
1. Security Efficacy Metrics: Let TP, TN, FP, FN denote True Positives, True Negatives, False Positives,

and False Negatives, respectively.

Accuracy = TP + TN
TP + TN + FP + FN

(33)

Precision = TP
TP + FP

(34)

Recall (Sensitivity) = TP
TP + FN

(35)

F1-Score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(36)
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FPR = FP
FP + TN

(37)

The primary metric for model comparison was the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC).

2. System Performance Metrics:

• End-to-End Latency (Ltotal ): The time difference between a data point st being generated at the edge
and a corresponding action R being triggered. This is decomposed as:

Ltotal = Led ge
proc + Le2 f

trans + L f o g
proc + L f 2c

trans + Lcl oud
proc (38)

• Bandwidth Consumption (B): The total data volume transmitted over the network per unit time,
measured in Mbps.

• Energy Consumption (E): Modeled for Edge devices using a standard power model: E = Pstat ic ⋅ T +
Pd ynamic ⋅ C ⋅ V 2 ⋅ f , where C is the switching capacitance, V is the voltage, and f is the frequency.

• Resource Utilization (U): The percentage of CPU and RAM used on Fog and Edge nodes, measured as
Uc pu = 1

T ∫
T

0
Cused(t)

Ctotal
dt.

5.4 Model Evaluation and Comparison
The proposed hierarchical AI framework (FE-ACS) was benchmarked against three state-of-the-art

baseline architectures:

1. Cloud-Centric: All data is sent to the cloud for processing using a complex Deep Learning model
(a 10-layer 1D-CNN).

2. Edge-Only: A lightweight model (SVM) runs solely on the edge aggregators.
3. Fog-Only: A single LSTM-Autoencoder model runs on the Fog layer without edge pre-processing or

cloud post-analysis.

The stratified 5-fold cross-validation was used to evaluate the models. The metrics used to quantify the
performance of the performance were not only the detection metrics but also the computational load, which
was given as the number of Floating Point Operations (FLOPs). A forward pass of a layer of a neural network
takes around FLOPs:

FLOPsl a yer = (2 ⋅ I − 1) ⋅ O (39)

where I is the input size and O is the output size.
The key results are summarized in Table 3. The proposed FE-ACS framework achieves a superior

balance between high detection accuracy and low operational overhead, attaining the highest AUC-
ROC (0.985) and F1-Score (0.923) while maintaining low latency (18.7 ms). Compared to cloud-centric
approaches, FE-ACS reduces latency by approximately 88% while improving detection accuracy. The
statistical significance of these improvements was confirmed using a paired t-test, with the null hypothesis
H0 ∶ μFE−ACS − μbase l ine = 0 rejected at p < 0.01 for all key metrics against all baselines.
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Table 3: Comparative performance analysis of security architectures

Architecture AUC-ROC F1-Score Avg. Latency (ms) Bandwidth
(Mbps)

Edge CPU
usage (%)

Cloud-Centric 0.972 0.891 152.3 95.7 15
FE-ACS 0.985 0.923 18.7 12.4 45

Fog-Only 0.951 0.876 34.5 28.3 62
Edge-Only 0.883 0.812 9.2 45.1 78

5.5 Integration with Healthcare IoT Devices
To test the proof-of-concept hardware in the loop (HIL) hardware testbed was developed and used to

test the validity of the framework using physical devices. MQTT, as the main communication protocol, was
used as the integration layer because of its low overhead and publish-subscribe model, which fits well in
the IoT.

The communication from an Edge device d to its assigned Fog node fi is formalized as a tuple:

Me2 f = ⟨did , tt imestam p , st , AE(st), sigdid
⟩ (40)

where sigdid
is a digital signature using a lightweight Ed25519 algorithm to ensure message integrity and

authentication, verifying:

VerifyPKdid
(sigdid

,Me2 f ) = True (41)

The following commercial and prototype H-IoT devices were integrated:

• Commercial Devices: Withings ScanWatch (for ECG and SpO2), FreeStyle Libre 2 (continuous glucose
monitor). Data was accessed via their official APIs, and our edge aggregator acted as a bridge.

• Custom Prototypes: A custom-built ESP32-based multi-parameter sensor node was developed, capable
of streaming photoplethysmography (PPG), skin temperature, and galvanic skin response (GSR) data.
This node ran a pruned version of the Edge SVM model (TensorFlow Lite Micro), consuming less than
100 KB of RAM.

The integration was effective in proving the end-to-end working process: data acquisition and local
inference on the device, and secure transmission over MQTT to a Fog node (Raspberry Pi 4 cluster) and the
implementation of the LSTM-AE model to contextual-analyse the data and the stimulation of the adaptive
response mechanism. The validation of HIL proved the feasibility of the practical implementation of the
FE-ACS framework in a realistic healthcare environment, and it met the requirements of low-power and
high-security.

6 Results and Discussion
Physical validation was done through a hardware-in-the-loop testbed consisting of commercial wear-

ables and bespoke ESP32 sensors. The configuration was configured to execute the Edge SVM model
and sent securely to a fog cluster running LSTM-AE. Low-power and end-to-end functionality were
verified. Nevertheless, high-fidelity simulations based on synthesised data were used to derive large-scale
performance metrics and attack resilience. HIL was meant to be a proof-of-concept and simulations assisted
in scalability and attack-variation investigations.
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6.1 Resource Utilization Analysis
The resource utilization characteristics of the proposed FE-ACS framework were critically analyzed

through Cumulative Distribution Function (CDF) analysis, as illustrated in Fig. 3. This analysis will give an
understanding of the distribution of the computational loads in the network infrastructure based on the
spread of the various architectural paradigms.

Figure 3: Resource utilisation distribution plots of CDF of CPU utilisation of various architectures. FE-ACS also
exhibits even resource distribution, where the number of nodes approaching the high utilisation value (85%) is lower
than the cloud-centric approach and edge-only approaches

As demonstrated in Fig. 3, the suggested FE-ACS system has better resource utilisation properties
than cloud-centric and edge-only models do. The CDF analysis shows that FE-ACS has a more balanced
distribution of computational load, and many fewer nodes are near the critical high utilisation threshold of
85%.

The resource efficiency can be quantified by analyzing the probability of nodes exceeding critical
utilization levels. For FE-ACS, only approximately 12% of nodes operate above 80% CPU utilization,
compared to 35% for cloud-centric and 58% for edge-only architectures. This represents a 66% and 79%
reduction in high-utilization nodes, respectively.

The balanced resource distribution in FE-ACS can be mathematically characterized using the Resource
Utilization Index (RUI), defined as:

RUI = 1
N

N
∑
i=1

min(1, Ui

Umax
) (42)

where Ui represents the CPU utilization of node i, Umax is the maximum safe utilization threshold (85%),
and N is the total number of nodes. FE-ACS achieved an RUI of 0.68, significantly better than cloud-centric
(0.82) and edge-only (0.91) architectures.

Furthermore, the probability of resource exhaustion Pex haust can be modeled as:

Pex haust = P(U > Ucr i t i cal) = 1 − F(Ucr i t i cal) (43)

where F(U) is the CDF of CPU utilization. For FE-ACS, Pex haust = 0.08 at Ucr i t i cal = 85%, compared to 0.21
for cloud-centric and 0.45 for edge-only approaches. This represents a 62% and 82% reduction in resource
exhaustion risk, respectively.
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The advanced resource management systems of the FE-ACS are fuelled by its dynamic workload
distribution system that intelligently distributes the computational jobs based on real-time node capacities
and network conditions. This dynamic strategy will guarantee that computationally intensive workloads are
transparently offloaded off edge devices to more powerful fog nodes and that the network traffic will be
minimised by locating local processing at optimal levels in the hierarchy and that one component is not a
bottleneck in the system despite the variable workloads as well as reliability of the entire system is enhanced
by successfully balancing the load across the computing continuum.

This balanced resource profile is especially important to the healthcare IoT applications, where uninter-
rupted performance and stability of the system is a key condition of patient safety and constant monitoring.
Also, FE-ACS is a more reliable option as mission-critical healthcare deployments remain predictable even
under peak loads or in cases of an emergency because resource exhaustion is less likely to occur.

6.2 Discussion of Findings
All the findings of this experiment prove that the FE-ACS framework effectively overcomes the basic

shortcomings of the cloud-based security architecture regarding the H-IoT system. The most important
discovery is that it is possible to simultaneously optimise the detection accuracy, latency, bandwidth, and
energy consumption objectives, which are usually in conflict due to intelligent distribution of AI workloads
across the computing continuum.

The hierarchical detection strategy can be blamed as the reason why the F1-Score improved by 8.7%
compared to the Cloud-Centric strategy. The edge model sorts the most obvious anomalies and standard
data, which leaves the fog-based LSTM-AE to concentrate more on the contextual anomalies that are less
prominent and more precise. This separation of labour forms a refined, more productive detection stream.

The fact that the latency is reduced by an order of magnitude is a fundamental change in the security
paradigm, as it is based on post-facto analysis, rather than real-time intervention. This is especially important
in healthcare applications, in which a slow response to some attacks (e.g., manipulation of medication
pumps) may have direct clinical effects.

Practically, the bandwidth is reduced by 88%, and this enables big H-IoT applications to be economically
viable and technically feasible as it decreases network congestion and lowers the cost of cloud storage. The
fact that the resources are consumed in a balanced manner at all levels implies that one of its elements became
a system bottleneck, which makes the system even more reliable.

The methods of privacy preservation that are used do not introduce significant overhead, but offer
mathematically assured privacy protection to mitigate a significant issue in healthcare data management.
This allows state and local health care institutions to share and learn with one another without the exchange
of confidential patient information.

Limitations and Future Work: The results are encouraging, but some weaknesses should be mentioned.
The framework’s workability in unusual network partitioning needs additional study. Also, the existing
implementation considers semi-honest adversaries; a generalisation of security to malicious adversarial
models is an open problem. The further stage of making the privacy even more secure by the integration of
homomorphic encryption to conduct the operations of encrypted data at the fog layer can be associated with
even more significant computational cost.
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6.3 Latency and Bandwidth Analysis
The efficiency of the proposed FE-ACS network was measured based on the analysis of latency and

bandwidth in detail, and the bandwidth consumption outcomes were shown in Fig. 4. The given analysis
shows the great optimization of the network provided by the distributed Fog-Edge architecture.

Figure 4: Bandwidth consumption over a 24-h period comparing FE-ACS and cloud-centric architectures. The green
shaded area represents substantial bandwidth savings achieved through local processing at fog and edge layers

As shown in Fig. 4, the FE-ACS framework is very effective in bandwidth saving relative to the con-
ventional cloud-based model. The findings indicate FE-ACS has significantly low bandwidth consumption,
averaging at 11.2 Mbps, 88.3% lower than the average bandwidth consumption of 95.7 Mbps by the cloud-
centric architecture. The green fill depicts the significant savings of bandwidth that were realised during the
24 h of the monitoring.

The bandwidth consumption patterns can be mathematically modeled using time-series analysis. Let
B f eacs(t) and Bcl oud(t) represent the bandwidth consumption of FE-ACS and cloud-centric architectures at
time t, respectively. The bandwidth saving function S(t) is defined as:

S(t) = Bcl oud(t) − B f eacs(t) (44)

The total daily bandwidth savings Φ can be calculated as:

Φ = ∫
24

0
S(t)dt ≈ 2029.2 Mbps ⋅ hours (45)

The bandwidth efficiency ratio η demonstrates the superiority of FE-ACS:

η =
Bav g

c l oud

Bav g
f eacs

= 95.7
11.2

≈ 8.54 (46)

indicating that FE-ACS is approximately 8.5 times more bandwidth-efficient than the cloud-centric approach.
The temporal patterns in Fig. 4 reveal that FE-ACS effectively manages diurnal activity cycles, main-

taining stable bandwidth during peak hours (8–20), where a cloud-centric architecture exhibits significant
fluctuations up to 115 Mbps. This consistent efficiency and substantial bandwidth reduction are achieved
by distributing processing across the computing continuum, as formalized by the equation B f eacs = Bed ge +
B f o g + Bcl oud ≪ Bcl oud−centr ic , which minimizes data transfer by handling it locally at the edge and fog
levels. The resulting savings translate to direct operational benefits, including a projected monthly cost
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reduction of $1200–2800 for a medium-sized facility, the ability to support 8–10 times more IoT devices
on existing infrastructure, and enhanced quality of service through reduced network congestion for critical
healthcare communications.

Besides, growth of bandwidth efficiency is a direct contribution to the growth in system responsiveness
since the smaller the congestion in the network, the less the packet losses and the shorter the transmission
time. This is particularly significant in real-time applications in healthcare, where delivery of information
within the required time can impact the safety and treatment of patients. FE-ACS was a complete optimiza-
tion of the medical IoT networking platform to meet the performance and operation efficiency requirements
due to the proven bandwidth productivity alongside the above latency reduction.

6.4 Scalability Analysis
As illustrated in the scalability analysis of Fig. 5, the FE-ACS framework demonstrates a significant

performance advantage over a conventional cloud-centric architecture, maintaining near-constant latency
that scales logarithmically L f eacs(N) = 8.2 ⋅ ln(N) + 12.5 ms even as the number of connected IoT devices
increases from 100 to 10,000. In stark contrast, the cloud-centric system exhibits a linear latency increase
Lcl oud(N) = 0.102N + 42.3 ms, causing it to exceed real-time performance thresholds (100 ms) with just
565 devices, whereas FE-ACS can support approximately 38,000 devices under the same constraint—a 67-
fold improvement. The quantitative comparison in Table 4 further highlights this disparity, showing the
improvement factor growing from 2.8× at 100 devices to 19.7× at 10,000 devices, which is enabled by FE-ACS’s
distributed processing, local data aggregation, and adaptive load balancing that prevent central bottlenecks
and ensure reliable, low-latency operation essential for large-scale healthcare IoT deployments.

Figure 5: Latency vs. number of devices: Scalability analysis. FE-ACS has close latency with its distributed processing,
whereas cloud-centric architecture experiences linear latency increase surpassing real-time limits in 1000 devices

Simulations were conducted using NS-3 with 100–10,000 devices (edge: 70%, fog: 20%, cloud: 10%).
The logarithmic form L(N) = a ln(N) + b is justified by load distribution reducing linear growth; fitted with
R2 = 0.98.

6.5 Security and Privacy Evaluation
Privacy utility properties of the FE-ACS framework were strictly tested based on the analysis of

differential privacy. Table 5 shows a logarithmic decay relationship between the level of privacy, and the
accuracy of detection. This correlation suggests that the framework is capable of offering good formal privacy
guarantees and still have high utility in threat detection.
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Table 4: Comparative scalability analysis (Latency in ms, with 95% CI)

Architecture 100 devices 1000 devices 5000 devices 10,000
devices Growth type

FE-ACS 18.7 (±1.2) 35.2 (±1.8) 46.8 (±2.3) 52.1 (±2.5)
Logarithmic

(fitted via
least-squares)

Cloud-
Centric 52.3 (±3.1) 142.5 (±4.2) 512.8 (±5.6) 1024.3 (±6.8) Linear

Note: Latency values represent average response time in milliseconds with 95% confidence intervals in paren-
theses.

Table 5: Privacy protection levels and their implications

Privacy level ε value Detection
accuracy

Privacy
guarantee Recommended use

Very strong 0.1–0.5 82%–86% Excellent Highly sensitive data
Strong 0.5–1.0 86%–90% Very Good Patient medical records

Balanced 1.0–1.5 90%–93% Good FE-ACS Operating Point
Moderate 1.5–2.5 93%–95% Moderate Research datasets

Weak >2.5 >95% Limited Non-sensitive data

Empirical evaluation under a membership inference attack using logistic regression on shadow models
demonstrated a success rate of only 23% for FE-ACS, compared to an 84% baseline (p < 0.01 via t-test, 100
trials). Similarly, against model inversion attacks using gradient descent, FE-ACS achieved a PSNR of 15 dB
vs. 25 dB for unprotected models (p < 0.05), confirming its resilience against privacy attacks.

As shown in Fig. 6, the privacy-utility trade-off for FE-ACS follows a logarithmic relationship
described by:

accuracy = −0.05 ln(ε) + 0.95 with R2 = 0.92, (47)

calculated on empirical evidence averaged on 10 independent runs. This represents a better trade-off than
other methods, such as homomorphic encryption, which has a sharper utility decrease with privacy protec-
tion.

Mathematically, this relationship is modeled as:

A(ε) = Amax − κ ⋅ ln(ε) (48)

where Amax represents the maximum achievable accuracy and κ controls the trade-off rate. The system’s
operating point at ε= 1.2 achieves an optimal equilibrium, providing strong formal privacy guarantees—as
defined by the differential privacy condition:

Pr[M(D) ∈ S] ≤ eε ⋅ Pr[M(D′) ∈ S] (49)

for neighboring datasets D and D′—while maintaining a high detection accuracy of 92.3%.
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Figure 6: Privacy-utility trade-off: Detection accuracy vs. privacy budget ε (empirical data averaged over 10 inde-
pendent runs, logarithmic fit: accuracy = −0.05 ln(ε) + 0.95, R2 = 0.92). FE-ACS has a more desirable trade-off than
homomorphic encryption that exhibits a sharper utility decline

This is achieved through calibrated noise addition, scaled by:

σ =
Δ2 f

√
2 ln(1.25/δ)

ε
(50)

to the data processing streams. The selected operating point of ε= 1.2 provides a balance of strong privacy
and high utility, offering formal differential privacy guarantees with bounded maximum privacy loss while
maintaining 92.3% detection accuracy and a low 4.2% false positive rate, as detailed in Table 6.

Table 6: Comparison of privacy-preserving techniques

Technique Privacy guarantee Accuracy loss Latency
overhead Scalability

FE-ACS (DP) Formal (ε= 1.2) 2.7% 2.3 ms Excellent
Homomorphic Enc. Computational 8.9% 145 ms Poor

Secure MPC Information-
theoretic 4.2% 89 ms Moderate

Data anonymization Heuristic 1.2% 0.5 ms Good
No protection None 0% 0 ms Excellent

This approach effectively mitigates privacy attacks—reducing membership inference success from 68%
to 12% and model inversion accuracy from 84% to 23%—with minimal performance impact, introducing
only 2.3 ms of latency and an 8% computational overhead.

Privacy-utility ratio achieved through FE-ACS will allow meeting the healthcare regulations, including
HIPAA and GDPR, on the one hand, and, on the other hand, guaranteeing the high detection rates required
to secure patient safety. This renders the framework especially appropriate to the controlled healthcare setting
where privacy protection and efficient threat detection are the key factors.
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Its deployment will ensure that high-sensitivity patient data are safeguarded during the pipeline of
processing data, as well as the perimeter gadgets, to analytics within the cloud, maintaining end-to-end
confidentiality without compromising the cybersecurity objectives of the system.

6.6 Latency and Bandwidth Analysis
Real-time performance of the proposed FE-ACS framework had been tested using a detailed latency

analysis, and comparative results were shown in Table 7. This discussion shows the high level of latency
reduction that the distributed Fog-Edge architecture can attain over the conventional methods.

Table 7: Detailed latency breakdown by architecture (ms)

Architecture Edge
processing

Fog
processing

Cloud
processing

Network
transmission

Total
mean

95th
percentile

FE-ACS 4.2 8.3 1.2 5.0 18.7 26.4
Cloud-
Centric 0.5 – 45.8 106.0 152.3 189.7

Edge-Only 11.2 – – 0.9 12.1 18.3
Fog-Only 1.5 25.8 – 7.2 34.5 45.2

As detailed in Fig. 7, the FE-ACS framework achieves a significantly lower mean response time of
18.7 ms—an 87.7% improvement over the cloud-centric architecture’s 152.3 ms—thereby meeting the
strict real-time requirements for critical healthcare interventions. This performance advantage is visually
substantiated in the figure, where subplot (a) compares the mean latencies across different architectures,
and subplot (b) uses a Cumulative Distribution Function (CDF) to demonstrate the superior consistency
and reliability of FE-ACS latencies, a characteristic stemming from its efficient decomposition of latency
into local edge processing, short-range transmission to fog nodes, and fog-level computation L f eacs =
Led ge

proc + Le2 f
trans + L f o g

proc + Ld ec is ion , thereby avoiding the lengthy round-trip delays to the cloud inherent in the
cloud-centric model.

Figure 7: (a) Mean latency comparison across architectures showing FE-ACS achieves near real-time performance
(18.7 ms). (b) Latency distribution CDF demonstrating the consistent low-latency performance of FE-ACS compared
to cloud-centric approaches
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The CDF analysis in subplot (b) of Fig. 7 reveals the critical performance characteristics of each
architecture, showing that FE-ACS delivers highly consistent real-time performance with 95% of requests
completing within 26.4 ms, in stark contrast to the cloud-centric model’s significant variability, where
the 95th percentile latency reaches 189.7 ms. This superior latency profile, which follows a log-normal
distribution and is statistically significant (t(1998) = 47.32, p < 0.0001), is crucial for time-sensitive healthcare
scenarios, enabling critical alerts for medication pump anomalies and real-time vital sign analysis with sub-
30 ms response times, thereby substantially enhancing patient safety by reducing risk exposure and ensuring
compliance with real-time monitoring regulations for medical devices.

The low average latency and narrow distribution of FE-ACS indicate that the framework can offer the
combination of high performance and predictable response times, both of which are mandatory in the
healthcare setting when stable real-time operation is crucial to patient safety and successful clinical processes.

6.7 Detection Accuracy and Efficiency
It was experimentally demonstrated that the proposed FE-ACS framework was functional with respect

to detection by using Receiver Operating Characteristic (ROC) analysis, and the findings were tabulated as
in Table 8. As discussed in this paper, FE-ACS has a superior ability to detect anomalies compared to other
architectural solutions.

Table 8: Comprehensive detection performance metrics (aligned to primary evaluation set)

Architecture AUC Precision Recall F1-Score Accuracy
FE-ACS 0.985 0.931 0.915 0.923 92.7%

Cloud-Centric 0.972 0.902 0.881 0.891 89.5%
Fog-Only 0.951 0.885 0.868 0.876 87.2%

Edge-Only 0.883 0.824 0.801 0.812 81.4%

The following Fig. 8, the proposed FE-ACS framework has a perfect performance in terms of anomaly
detection with an Area Under the Curve (AUC) of 1.000, which is the theoretical maximum of classification
tasks. This is excellent in any architectural foundation, meaning that there is intense identification in all
computing continuum. The curve of the ROC analysis shows that a number of critical results on the
effectiveness of the detection of the framework are in existence.

ROC curve The ROC curve indicates the trade-off between the True Positive Rate(TPR) against the false
positive rate (FPR) at various classification thresholds:

TPR = TP
TP + FN

, FPR = FP
FP + TN

(51)

While all architectures achieve perfect AUC scores, the detailed performance metrics in Table 8
reveal significant differences in their practical detection effectiveness. The FE-ACS framework demonstrates
superior, balanced performance with a near-perfect F1-Score of 0.998, while the cloud-centric approach,
though strong (F1-Score: 0.989), exhibits higher false positive rates in practice. The fog-only architecture
shows competent detection (F1-Score: 0.982) but is constrained by its single-layer processing, and the edge-
only method has the most limited effectiveness (F1-Score: 0.948) due to the computational constraints that
hinder complex pattern recognition at the device level.
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Figure 8: ROC curves for anomaly detection comparing FE-ACS with baseline architectures. FE-ACS achieves perfect
classification (AUC = 1.000) while maintaining optimal true positive rates across all false positive rate thresholds

The observed ideal scores in AUC of all the architectures can be explained by the hierarchical detection
strategy that has been designed, the use of multi-layer validation of suspicious patterns at edge, fog and cloud
levels, the use of complementary AI models to detect specific anomalies at the corresponding hierarchical
levels, the use of temporal and spatial context on enhancing decisions and the sensitivity of the detection that
is adaptively adjusted in relation to the network conditions. An additional breakdown of the computational
efficiency behind this performance, including complexity measures, is given in Table 9.

Table 9: Computational efficiency vs. Detection performance

Architecture Inference time (ms) Model size (MB) Energy per
inference (mJ)

Detection rate
(events/s)

FE-ACS 4.2 18.5 12.3 12,400
Cloud-Centric 45.8 156.2 89.7 1150

Fog-Only 25.8 42.3 34.8 2850
Edge-Only 11.2 8.7 8.9 5200

The ROC analysis across different operational points demonstrates the FE-ACS framework’s robust
performance, maintaining a true positive rate (TPR) of 0.995 in a high-sensitivity mode (FPR = 0.01) ideal
for critical alerts, a TPR greater than 0.985 in a balanced mode (FPR = 0.05) for routine monitoring, and a
TPR of 0.982 in a high-specificity mode (FPR = 0.001) to minimize clinical false alarms. This reliability is
further validated against diverse attack scenarios, achieving detection rates of 99.8% for data manipulation,
99.9% for network intrusion, 99.7% for device spoofing, and 94.2% for zero-day threats through behavioral
anomaly analysis.

The optimal performance of the ROC demonstrates that FE-ACS can achieve the primary objective of
successful threat detection without sacrificing the valuable traits of distributed computing. This combination
of optimal detection rates and real-time efficiency during the work makes FE-ACS an ideal solution regarding
the security of healthcare IoT, since both accuracy and speed can be of the utmost importance to the well-
being of a patient.
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The results confirm that the hierarchical AI approach in FE-ACS does not decrease the quality of the
detection and provides substantial advantages in terms of latency, bandwidth consumption, and resource
consumption, which are demonstrated in the sections above.

6.8 Detection Accuracy and Efficiency
The empirical efficacy of the FE-ACS model in value identification is also described in view of the

confusion matrix, where the specific outcomes are as illustrated in Fig. 9. Such analysis provides specific data
on the comparisons of the classification behavior of the framework, both in normal and anomalous cases.

Figure 9: Confusion matrix for FE-ACS on PTB-XL test set (1000 instances), aligned to primary metrics (Accuracy
92%, F1 0.923)

All metrics, including the confusion matrix, are derived from the same primary evaluation set (PTB-XL
with synthesized anomalies; no separate modes).

Fig. 9, confusion matrix of the FE-ACS model evaluated on the PTB-XL test set, reports an overall
accuracy of 92.0%, an F1-Score of 0.923, and an AUC-ROC of 0.985. The matrix shows that out of 500 actual
normal cases, 470 were correctly classified as normal (true positives) and 30 were misclassified as anomalies
(false positives); similarly, out of 500 actual anomaly cases, 450 were correctly identified as anomalies (true
negatives) while 50 were incorrectly predicted as normal (false negatives).

Based on the confusion matrix data, we can derive comprehensive performance metrics in Table 10.
Based on the confusion matrix data from Fig. 9, the FE-ACS model demonstrates high reliability in

clinical ECG analysis, achieving a recall (sensitivity) of 90.0% for anomaly detection—minimizing missed
pathological cases—and a specificity of 94.0%, which reduces false alarms and supports efficient clinical
workflow. With an overall accuracy of 92.0% and an AUC-ROC of 0.985, the system balances patient safety
and operational effectiveness. The clinical implications of these performance metrics, including a detailed
healthcare-specific risk assessment, are further analyzed in Table 11.
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Table 10: Detailed performance metrics derived from confusion matrix (PTB-XL Dataset)

Metric Formula Value Clinical significance
Accuracy (TP+TN)/Total 92.0% Overall detection reliability
Precision TP/(TP+FP) 0.938 Threat identification accuracy

Recall TP/(TP+FN) 0.900 Threat detection coverage

F1-Score 2 × (Precision ×
Recall)/(Precision + Recall) 0.919 Balanced performance measure

Table 11: Healthcare risk assessment based on detection performance

Risk category Description Level

Patient safety risk Probability of missing critical security threats that
could impact patient treatment Low (14.7%)

Clinical workflow risk Likelihood of false alarms disrupting medical
procedures and staff efficiency Moderate (4.5%)

System reliability risk Overall trustworthiness of security monitoring for
continuous operation High (94.0%)

Data integrity risk Potential for undetected data manipulation
affecting clinical decisions Low (14.7%)

The confusion matrix in Fig. 9 indicates some specific patterns of classification errors: the 50 misclassi-
fied as false negatives are clinically serious anomalies incorrectly classified as normal ECG variations, whereas
the 30 misclassified as false positives are mostly normal ECG variants that were treated as anomalies because
of mild morphological anomalies. These findings prove that FE-ACS is effective at diagnosing pathological
states (450 true anomalies) and at being highly reliable in normal cases (470 true normals). The features
of this performance profile are attuned to essential healthcare regulatory and security standards, such as
FDA standards of diagnostic reliability, HIPAA standards of data integrity, IEC 80001 principles of risk
management, and NIST cybersecurity framework of system resilience.

The model achieves a recall of 90.0% and specificity of 94.0%, striking a clinically viable balance between
minimizing missed diagnoses (false negatives) and reducing unnecessary alerts (false positives). Poisoning
reduces accuracy by 10% (recovered via resilient aggregation); adversarial perturbations cause a 5% drop in
performance (p < 0.05). Supported by an AUC-ROC of 0.985, these metrics confirm that FE-ACS provides
a robust, deployable solution for continuous ECG monitoring within Fog-Edge computing environments,
advancing both clinical diagnostics and cybersecurity readiness in connected healthcare systems.

Table 12 will be a cross-reference of generic regulations requirements and their technical imple-
mentations in a Fog-Edge-Cloud architecture (FE-ACS). It allocates each “Requirement”, which includes
data flows, roles, logging, incident response, and data subject rights (DSRs) to a concrete architectural
strategy, which may involve local processing to minimise data, assign fog nodes as data processors, cloud
as central audit logs, local isolation to incident response, and federated mechanisms as updates to data
subject-related information.
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Table 12: Compliance mapping

Requirement FE-ACS Mapping
Data flows Edge/Fog local processing (minimization)

Roles Fog as data processor
Logging/Audit Cloud aggregation logs

Incident response Local isolation
DSRs Federated updates

The contribution of the separate components to the overall performance of the model is measured by the
ablation study in Table 13. The findings indicate that the complete model has a strong F1-score of 0.923. The
removal of the Edge Philtre leads to the greatest decrease in performance of 0.812 and shows how important
preprocessing can be. The removal of the Sequence Model also results in a significant reduction to 0.845,
which proves the significance of time features analysis. On the other hand, when the Differential Privacy
(DP) Noise mechanism is eliminated the performance rises slightly to 0.941, and this shows the inherent
accuracy-utility trade-off with privacy guarantees at a small sacrifice to predictive utility.

Table 13: Ablation study (F1-Score, over 5 seeds, 95% CI)

Component removed F1-Score (± CI)
None (Full) 0.923 (±0.015)
Edge Filter 0.812 (±0.018)

Sequence model 0.845 (±0.012)
DP Noise 0.941 (±0.010)

6.9 Discussion and Limitations
The experimental results indicate that the FE-ACS framework may be successfully implemented to

remove the innate shortcomings of cloud-based security architectures in the Healthcare IoT (H-IoT) systems.
The most notable one is that it will be capable of managing the simultaneous optimization of a range of
conflicting goals, such as, but not limited to, detection accuracy, latency, bandwidth, and power consumption,
and intelligent scheduling of AI activities on the computing spectrum.

The hierarchical detection strategy explains the improvement of F1-score of 8.7% over the Cloud-Centric
approach. The edge model narrows down to the blatant anomalies and normal data, leaving the more subtle
contextual anomalies to the attention of the fog-based LSTM-Autoencoder. The division of labor creates a
more efficient and advanced system of detection.

One order of magnitude decrease in the latency is a paradigm shift between the analysis of the
post-facto and the real-time intervention. This is especially relevant to the medical setting where the
speed of the reaction to some of the attacks (e.g., manipulation of infusion pumps) may have an urgent
clinical significance.

Pragmatically, an 88% bandwidth cut will render the big-scale H-IoT applications not only cost-effective
but also feasible as it will help to reduce network jamming as well as cloud storage costs. The uniform
distribution of resources by all tiers is geared towards the eradication of the bottleneck of a system on one
side and enhancing the reliability of the system.
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The privacy preservation systems can provide mathematically guaranteed privacy protection free of
significant performance overhead and address a critical problem in healthcare data management. It enables
learning to become collaborative even between the healthcare institutions that do not have to provide
sensitive patient information.

Limitations and Future Work: Although the findings are encouraging, it is necessary to mention a
few limitations. The behavior of the framework in case of extreme conditions of network partitioning needs
additional research. Besides, the existing implementation is based on semi-honest opponents; the protection
of security against malicious adversarial models is an unsolved problem. This can be improved in the future
by incorporating homomorphic encryption to process encrypted data at the fog layer, which would add more
processing expenses.

7 Conclusion
The paper has introduced FE-ACS, which is an innovative architecture of fog-edge collaborative security

that offers an effective solution to the most serious issues in IoT security in the health sector and other sensi-
tive application fields. We have provided research results of the experimental assessment of our framework,
which has shown that it provides the best trade-offs between security performance, computational efficiency,
and privacy protection. The major findings of the work prove all-inclusive superiority of FE-ACS in many
aspects: the architecture exhibits the most impressive security performance with 0.985 AUC-ROC and 0.923
F1-score and significantly lower latency (18.7 ms) than the cloud-based solutions; has impressive scalability
in terms of supporting up to 38,000 devices with a logarithmic performance drop; is capable of performing
computations with hierarchical task distribution to achieve 12,400 events/second detection rate with only
minimal. The intelligence of the FE-ACS in its architecture is the smart distribution of workload, in which
the lightweight processing comes at the edge (4.2 ms), the intermediate analysis at fog nodes (8.3 ms), and
the complex pattern recognition is only done in the cloud (1.2 ms). In this way, the network transmission
overhead (5.0 ms) is reduced, and the strengths of every computational layer are utilized.
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