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ABSTRACT: Weakly Supervised Semantic Segmentation (WSSS), which relies only on image-level labels, has attracted
significant attention for its cost-effectiveness and scalability. Existing methods mainly enhance inter-class distinctions
and employ data augmentation to mitigate semantic ambiguity and reduce spurious activations. However, they often
neglect the complex contextual dependencies among image patches, resulting in incomplete local representations
and limited segmentation accuracy. To address these issues, we propose the Context Patch Fusion with Class Token
Enhancement (CPF-CTE) framework, which exploits contextual relations among patches to enrich feature repre-
sentations and improve segmentation. At its core, the Contextual-Fusion Bidirectional Long Short-Term Memory
(CF-BiLSTM) module captures spatial dependencies between patches and enables bidirectional information flow, yield-
ing a more comprehensive understanding of spatial correlations. This strengthens feature learning and segmentation
robustness. Moreover, we introduce learnable class tokens that dynamically encode and refine class-specific semantics,
enhancing discriminative capability. By effectively integrating spatial and semantic cues, CPF-CTE produces richer and
more accurate representations of image content. Extensive experiments on PASCAL VOC 2012 and MS COCO 2014
validate that CPF-CTE consistently surpasses prior WSSS methods.
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1 Introduction

Semantic segmentation is a fundamental task in computer vision, underpinning numerous appli-
cations such as autonomous driving, medical image analysis, and remote sensing [I1-3]. Among various
paradigms, Weakly Supervised Semantic Segmentation (WSSS) has gained increasing attention due to its cost-
effectiveness and scalability. Unlike fully supervised approaches that rely on dense pixel-level annotations,
WSSS leverages weak labels such as image-level tags [4], scribbles [5], or bounding boxes [6] as alternative
supervision. This substantially reduces annotation costs while maintaining competitive segmentation quality.

Early WSSS methods primarily depend on Class Activation Maps (CAMs) [7] to generate pseudo labels
from image-level supervision. Despite advances through refined CAM expansion strategies and multi-stage
training pipelines [4,8,9], these approaches still suffer from two persistent challenges: incomplete object
localization and limited segmentation accuracy. The core limitation lies in CAM’s tendency to highlight only
the most discriminative regions, resulting in fragmented object representations.
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Recently, the Vision Transformer (ViT) [10] has revolutionized large-scale image understanding by
effectively modeling long-range dependencies across image regions. Leveraging ViT for WSSS has shown
promising potential [11,12], as transformer-based architectures can capture both local and global contextual
relationships. For instance, TOCO [11] mitigates the over-smoothing effect in ViT representations, while
MCTformer+ [12] employ multiple class tokens to enhance class-to-patch attention for improved class-
specific localization. Meanwhile, data augmentation strategies [13] have also proven effective in improving
WSSS robustness [14-16] by diversifying training data and reducing semantic ambiguity. However, despite
these advancements, existing methods still struggle to fully capture the intricate contextual dependen-
cies among image patches, leading to incomplete local representations and suboptimal segmentation
performance.

Although several works explore sequential or recurrent structures to enhance patch dependency
modeling, these methods typically operate at early or intermediate stages of the network and do not explicitly
resolve the spatial discontinuity caused by ViT patchification. Unlike previous transformer-RNN fusion
approaches [17,18], our CF-BiLSTM is explicitly motivated by the patch discontinuity of ViT representations,
and is designed as a post-hoc spatial continuity restoration module acting on globally contextualized features.
This design objective has not been explored in prior WSSS literature.

Moreover, while multi-class token attention mechanisms (e.g., MCTformer+, AVKT) enrich class-
patch interactions inside transformer layers, their early fusion strategy often leads to class competition
and entangled feature aggregation. Furthermore, our class tokens operate at a higher semantic level after
ViT encoding rather than within early attention blocks, enabling cleaner, non-competing class-specific
refinement. This post-hoc semantic enhancement differs fundamentally from the early multi-token attention
schemes used in MCTformer+ and AVKT.

To address these limitations, we propose a novel Context Patch Fusion with Class Token Enhancement
(CPF-CTE) framework that fully exploits spatial and semantic relationships among image patches. At its
core, the proposed Contextual-Fusion Bidirectional LSTM (CF-BiLSTM) module captures bidirectional spa-
tial dependencies between patches, enabling effective inter-patch information flow and contextual reasoning.
In addition, learnable class tokens are introduced after ViT encoding to dynamically refine class-specific
semantics, avoiding early-stage interference and yielding cleaner semantic conditioning. Unlike early class-
token injection strategies, which may dominate the attention process and introduce class competition during
feature learning, our post-hoc design intentionally prevents such early semantic interference. Since the ViT
backbone already provides globally contextualized patch embeddings, the class tokens serve as dedicated
semantic refiners rather than participating in the full-layer attention, enabling cleaner and more disentangled
class-specific enhancement.

Comprehensive experiments on the PASCAL VOC 2012 [19] and MS COCO 2014 [20] benchmarks
demonstrate that CPF-CTE consistently outperforms state-of-the-art (SOTA) WSSS methods. Extensive
ablation studies further validate the effectiveness of each component. As summarized in Fig. 1, our main
contributions are as follows:

o We design a Contextual-Fusion Bidirectional LSTM (CF-BiLSTM) module that explicitly models
spatial dependencies among image patches, significantly improving inter-patch information exchange
and contextual understanding.

«  Weintroduce learnable class tokens that dynamically encode class-specific semantics through post-hoc
refinement, enabling more precise and discriminative patch representations.

«  Wedevelop a ViT-based CPF-CTE framework that jointly leverages spatial context fusion and semantic
enhancement, achieving superior performance over existing SOTA WSSS methods on PASCAL VOC
2012 [19] and MS COCO 2014 [20].
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Figure 1: Comparison between traditional WSSS pipeline and the proposed CPF-CTE framework. (a) Traditional
WSSS relies solely on ViT patch embeddings, which often suffer from fragmented and class-ambiguous activations.
(b) Our CPF-CTE explicitly incorporates image-level class semantics through learnable class tokens and enhances
spatial continuity using the context fusion module, leading to more coherent and discriminative feature representations
for pseudo-label generation

2 Related Work
2.1 Weakly Supervised Semantic Segmentation

Most existing Weakly Supervised Semantic Segmentation (WSSS) methods typically follow a three-stage
pipeline: First, an initial classification model is trained using image-level labels to generate Class Activation
Maps (CAMs) [7] for training images. Subsequently, these coarse CAMs are iteratively refined through
various regularization techniques to produce enhanced pseudo-labels. Finally, a fully supervised semantic
segmentation model is trained under the supervision of these refined pseudo-labels. A common drawback of
CAMs is that they usually only activate the most discriminative regions of objects. To address this limitation,
many works have focused on improving the quality of CAMs to achieve accurate semantic segmentation.
Some existing WSSS methods obtain high-quality CAMs through post-processing techniques, such as
dense Conditional Random Fields (denseCRF) [21], AffinityNet [22], or AdvCAM [4]. Additionally, some
approaches enhance WSSS performance through data augmentation [16] outside the model architecture.
However, these refinement strategies are susceptible to noise and imprecise activations and heavily rely
on the initial quality of CAMs. References [23,24] leverage auxiliary saliency maps to reduce background
interference and accurately locate non-salient object parts. Furthermore, ref. [25] propose a simple yet
effective method to refine CAMs by integrating an unsupervised sub-category identification task. The
CAM mechanism generates class-specific localization maps by leveraging pixel-wise associations between
class-related weights and image features. However, the limitations of CAMs stem from insufficient class
representations. Recent methods aim to address this: IS-CAM [26] learns image-specific prototypes by
aggregating structure-aware seed regions determined by CAM maps and pixel feature similarities. Ref. [27]
constructs class prototypes by aggregating pixel features with Top-K CAM scores, enhancing discriminative
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visual representations by aligning pixels with their class prototypes. Unlike these feature aggregation
methods, the proposed approach explicitly learns class representations using multiple class tokens. Trans-
former attention between class tokens and patch tokens captures multi-level semantic correlations, thereby
improving class-specific localization maps.

Some methods refine CAMs using pairwise semantic affinities. AffinityNet [22] learns pixel affinities
from CAM pseudo-labels, enabling CAM propagation via random walk. Ref. [28] uses segmentation-based
pseudo-labels for affinity learning. Other works [29,30] leverage feature affinities from classification net-
works, while ref. [31] explores multi-task affinities for saliency and segmentation. AFA [32] predicts affinities
using transformer attention between patches, guided by segmentation pseudo-labels. Ref. [33] introduces
class-aware affinity, applying class-specific masks to transformer attention maps. These approaches enhance
CAMs by leveraging semantic affinities for better localization. Although existing methods improve CAM
generation mechanisms through image augmentation and specific network architectures, they often overlook
the impact of additional class information and contextual information on the network. The proposed method
fully exploits these aspects to further enhance WSSS performance.

2.2 Transformers for Visual Tasks

Transformers, originally developed for sequential natural language processing (NLP) tasks, have been
successfully adapted to visual data, demonstrating remarkable performance across a wide range of computer
vision tasks [23,34-36]. A significant advancement in this domain is the Vision Transformer (ViT) [10],
a pioneering visual model that leverages the Transformer architecture by processing image patches. In a
notable study, ref. [37] trained a self-supervised ViT and discovered that the attention mechanisms between
the class token and patch tokens effectively capture the structural layout of scenes. Furthermore, ref. [31]
enhanced the ViT by integrating a CAM module, enabling class-discriminative localization within the ViT
framework. To address sample efficiency and improve distillation performance, DeiT [38] introduced a
data-efficient training strategy for image transformers, demonstrating that carefully designed Transformer
training pipelines can achieve competitive results even with limited data. In addition, SegFormer [39]
proposed a simple yet powerful hierarchical Transformer architecture tailored for semantic segmentation,
showing that lightweight Transformers with efficient token mixing can achieve strong performance without
relying on complex decoder designs. These works further highlight the effectiveness of Transformer-based
feature enhancement and hierarchical modeling in dense prediction tasks.

Recently, researchers have applied ViT to Weakly Supervised Semantic Segmentation (WSSS).
Refs. [11,12,32] generate localization maps through ViT’s self-attention mechanisms. Specifically,
MCTformer+ [12] utilizes class-to-patch attention across different class tokens to capture class-specific
localization information, while its patch-to-patch attention mechanism effectively learns pairwise affinities to
refine localization maps. Unlike MCTformer, which injects multiple class tokens throughout all Transformer
layers, our CPF-CTE introduces class tokens only after the ViT encoder as a post-hoc semantic refinement
module, avoiding early-stage class competition and providing cleaner class-conditioned specialization.
AFA [32] generates reliable affinity labels from pseudo-labels, enforces these affinity labels to supervise the
multi-head self-attention mechanism, and ultimately produces robust affinity predictions. ViT-PCM [40]
developed a CAM-agnostic, end-to-end solution using the Vision Transformer (ViT) architecture to
estimate pixel-level label probabilities, despite the inherent risk of patch misclassification. Beyond the visual
domain, the Audio-Visual Keyword Transformer (AVKT) [41] also employs a Transformer architecture
with learnable classification tokens for cross-modal feature aggregation and position-agnostic localization.
Although both AVKT and our CPF-CTE utilize learnable class tokens, our design is fundamentally different
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in that CPF-CTE leverages class tokens as a post-hoc semantic enhancement mechanism specifically tailored
for WSSS, enabling refined class activation and improved spatial context fusion within patch representations.

In this work, we also explore the application of ViT for WSSS and innovatively introduce learnable class
tokens to effectively capture class-specific semantic information.

3 Methodology

In this section, we describe the overall architecture and key components of our proposed approach.
First, in Section 3.1, we provide an overview of our framework. Next, in Section 3.2, we present in detail
our novel method of introducing learnable class tokens, which enhances the network by incorporating
learnable category-specific information. Finally, in Section 3.3, we integrate CF-BiLSTM into the network
to improve the learning capability by capturing contextual relationships and strengthening information
exchange between patches, ultimately boosting the performance of semantic segmentation. Finally, we
introce the final prediction in Section 3.4.

3.1 Overall Framework

The CPF-CTE framework is composed of three main components: a Vision Transformer (ViT) back-
bone, a Context Fusion Bidirectional LSTM (CF-BiLSTM) module, and a class-token-enhanced patch
classification head. The full pipeline is illustrated in Fig. 2.
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Figure 2: Overview of the proposed CPF-CTE framework. Given an input RGB image, a ViT encoder extracts patch-
level features F''*, which are then concatenated to form the input token sequence F™™. Class information is encoded into
learnable class tokens that are processed in parallel. The CF-BiLSTM module performs contextual fusion through both
vertical (BiLSTMy) and horizontal (BiLSTM},) bidirectional propagation, producing refined representations F°". A
patch classifier (MLPyy, followed by a sigmoid function) generates patch-level activation maps. These predictions are
further aggregated with the image-level classifier and optimized using the multi-class entropy (MCE) loss

Patch Tokenization and ViT Encoding. The input image is first divided into fixed-size patches, each of
which is linearly projected into a token embedding. A learnable class token is added to the sequence, and the
entire token set is processed by the ViT encoder. This produces globally contextualized token representations
that capture long-range dependencies across the image.
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Context Refinement via CF-BiLSTM. The output tokens from the ViT encoder are then passed into
a lightweight Bidirectional LSTM module. This module refines the token features by modeling spatial
continuity and exchanging contextual information along the patch sequence. It outputs an updated set of
refined patch embeddings, while the class token is also updated through the same interaction.

Patch Classification and Pseudo-Label Construction. Each refined patch embedding is fed into a
lightweight classification head to produce patch-level predictions. These predictions are rearranged back into
spatial maps to construct initial pseudo-labels. A CRF post-processing step is applied to sharpen boundaries
and remove isolated responses, generating improved pseudo-label masks.

Segmentation Model Training. The refined pseudo-labels produced by the above pipeline are used
as supervisory signals to train a DeepLabv2 segmentation network. The final segmentation outputs are
generated entirely by the DeepLabv2 model trained on these pseudo labels.

In summary, the CPF-CTE framework processes an image through the following stages: patch
tokenization, global feature extraction using ViT, local contextual refinement using CF-BiLSTM, patch-
level classification with class token enhancement, CRF refinement, and final segmentation training using
DeepLabv2.

3.2 Class Information Enhancement

To dynamically capture and refine class-specific semantic details in weakly supervised semantic segmen-
tation settings where pixel-level annotations are unavailable, we propose a novel mechanism using learnable
class tokens. Importantly, introducing class tokens at this stage avoids the dominance issue commonly
observed when multiple class tokens participate in all Transformer layers. Instead of influencing early self-
attention, our class tokens operate on top of the stabilized ViT features, functioning purely as class-specific
semantic refinement modules. These tokens act as dynamic, adaptive carriers of discriminative class-specific
information, enabling the model to better distinguish between ambiguous regions through explicit class-
patch relationship modeling. For a dataset comprising C semantic classes, we initialize a set of learnable
tokens denoted as T = {t;, t5,...,tc} € RE*H | where each token t, € RY represents class ¢, and H signifies
the dimension of the tokens. These tokens are optimized during training through gradient descent, learning
to encode both inter-class distinctions and intra-class commonalities. Note that these class tokens do not
encode textual or linguistic semantics; instead, they learn class-discriminative prototypes through training
supervision, enabling semantic refinement without relying on language-based embeddings.

Unlike conventional class token usage in Vision Transformers (ViT), where a single token aggregates
global features for image-level classification, our approach introduces multi-class token learning—a more
fine-grained mechanism that allows each category to maintain its own learnable representation. This design
is particularly suitable for weakly supervised settings, where class boundaries are uncertain, and class
interactions are complex. By learning independent semantic prototypes for each class, the network gains the
ability to disentangle overlapping visual concepts and suppress class confusion in mixed or cluttered regions.

Given an input image I, we divide it into s non-overlapping patches and encode each patch with a ViT
backbone, obtaining embeddings P = p,, ..., p,, where p, € R®. ViT’s self-attention models both local and
global dependencies among patches, producing context-enriched representations:

T
Attention(Q, K, V) = Softmax ( QK ) V. 1)

Je

These refined embeddings provide the foundation for subsequent semantic refinement.
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However, relying solely on self-attention often leads to category-agnostic feature learning, where the
same region may activate for multiple classes due to overlapping visual patterns. To overcome this limitation,
CPF-CTE employs learnable class tokens to infuse category-specific priors directly into the patch repre-
sentations. Intuitively, these tokens act as semantic anchors that guide the network toward discriminative
feature learning, bridging the gap between category-level semantics and spatial-level representations.

Diverging from standard ViT approaches that integrate class tokens at the input stage, we adopt a post-
hoc integration strategy. After obtaining the refined patch embeddings P°"* = {p", ..., p®*'} from the final
transformer block, each patch embedding p9™ is associated with its corresponding class token t, through
channel-wise concatenation:

f* = Concat(p°™,t,) e R**H, (2)

1

where fi" serves as the input to subsequent layers for class-aware feature refinement. Because class embed-
dings are concatenated to each patch token and injected at every LSTM step, class-conditioned gradients
do not rely on long recurrent chains, which avoids gradient diffusion and preserves class-specific semantic
distinctions. Here, the “dynamic” property refers to the learned class-conditioned refinement behavior
rather than explicit visual attention modulation; the effectiveness of this semantic enhancement is validated
through ablation studies rather than attention-map interpretation. This post-ViT concatenation ensures that
each patch retains its independently learned feature representation while being enriched with class-specific
information. The incorporation of class tokens at this stage allows the network to dynamically emphasize
relevant class-specific attributes, ultimately leading to more precise segmentation outputs.

This post-hoc fusion strategy offers two major advantages. First, it decouples visual feature learning from
semantic conditioning, allowing ViT to focus purely on spatial reasoning while class tokens handle semantic
specialization. Second, since the integration occurs after ViT, the class tokens operate on high-level, context-
enriched patch embeddings, making their influence more targeted and interpretable. This design contrasts
with prior transformer-based WSSS methods, which inject class tokens during early attention computation,
often leading to competition among categories during feature aggregation. By contrast, our approach applies
semantic enhancement after structural encoding, resulting in a cleaner and more stable category-specific
refinement process.

Although the channel-wise concatenation increases the temporary feature dimensionality, we immedi-
ately apply a learnable linear projection to map it back to the original embedding size, ensuring dimensional
consistency and preventing any mismatch with subsequent layers.

By explicitly modeling the interactions between classes and patches in later stages, our approach
effectively resolves semantic ambiguity and substantially improves segmentation accuracy. This method
ensures that even in weakly supervised settings, where precise annotations may be limited, the network can
still leverage the class tokens to make more informed predictions. Additionally, the integration of class tokens
provides a structured way for the model to encode and utilize class-level information, ultimately leading to
more robust feature learning and enhanced segmentation performance.

Furthermore, learnable class tokens can be interpreted as semantic prototypes that evolve during train-
ing. Each token gradually learns to represent the central tendency of its corresponding class in the embedding
space, promoting intra-class compactness and inter-class separability. This prototype-like behavior improves
the model’s discriminative ability, especially in scenarios where multiple classes share similar textures or
colors. As a result, the class-token mechanism not only strengthens patch-level recognition but also provides
an interpretable pathway for visualizing category activations and understanding the decision process of
the network.
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3.3 Contextual Fusion

The CF-BiLSTM module explicitly restores spatial continuity in ViT feature maps by performing
bidirectional contextual fusion along two complementary spatial directions. As illustrated in Fig. 2, BILSTM,,
and BiLSTM,, propagate information vertically and horizontally, enabling message passing between spatially
adjacent patches. This design directly mitigates the patch discontinuity issue introduced by ViT tokenization
and enhances inter-patch semantic consistency with negligible computational overhead.

Given the concatenated tokens F* = [£",...,f"] e R**(¢*H) the CF-BiLSTM processes them bidirec-
tionally to capture both forward and backward spatial contexts. This bidirectional structure allows the model
to integrate spatial dependencies more effectively, reducing inconsistencies in feature representations across
patches. By learning long-range dependencies, CF-BiLSTM mitigates fragmented or disjointed feature maps,
which are common challenges in patch-based vision models. Before being fed into the CF-BiLSTM, all patch
tokens are arranged in the same row-major (raster-scan) spatial order used by the ViT patch embedding,
ensuring consistent adjacency structure and full reproducibility.

Following the standard ViT patch embedding order, all patch tokens are arranged in a row-major (raster-
scan) sequence before being fed into the CF-BiLSTM. This ensures consistent positional alignment with ViT’s
inherent spatial ordering and preserves the adjacency structure encoded during transformer processing.
Because the forward and backward hidden states are computed by iteratively aggregating neighborhood
information, CF-BiLSTM naturally reconstructs missing or weak contextual cues without requiring explicit
attention visualization.

For each token fiin, the forward LSTM (LSTM) and backward LSTM (LSTM) compute hidden states by
aggregating information from preceding and subsequent patches, respectively:

h;=LSTM(f™, h i), (3)
h; = LSTM(£™, b 11), (4)

—
where h ;, h ; € R? denote the hidden states in the forward and backward passes, respectively. These hidden
states collectively capture rich contextual cues by synthesizing information across adjacent patches. By fusing
the outputs of both directional LSTMs, we obtain the final context-enhanced representation for each patch:

h; = Concat(T;i, (IT,) e R¥. (5)

This fusion step ensures that the model effectively retains both past and future spatial dependencies,
which enhances the discriminative power of the learned features. By integrating bidirectional contextual
information, the model is able to capture long-range dependencies between different patches, thereby
enriching the semantic representation of each region in the image. This capability is particularly valuable in
vision tasks that require precise spatial understanding, such as semantic segmentation and object detection.

An important advantage of the CF-BiLSTM lies in its context reconstruction capability. When
neighboring patches exhibit occlusion or incomplete activation—a common issue in weakly supervised
segmentation—bidirectional aggregation allows the model to reconstruct missing contextual evidence
by drawing information from both preceding and succeeding spatial regions. This leads to smoother
class boundaries and more consistent pseudo masks. Furthermore, the sequential propagation of hidden
states implicitly enforces spatial regularization, thereby acting as a soft constraint that reduces over-
segmentation artifacts.
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Furthermore, the fusion mechanism mitigates potential inconsistencies in feature encoding caused by
local ambiguities or occlusions within individual patches. By aggregating information from surrounding
patches, the model can reconstruct missing or uncertain details, leading to more stable and coherent feature
representations. As a result, the CF-BiLSTM significantly improves the robustness and contextual consistency
of patch representations, making it particularly beneficial for complex vision applications. To further refine
the extracted information, the fused hidden states undergo a transformation process to ensure compatibility
with subsequent layers. The refined token f{"" is obtained by concatenating these states and projecting them
back to the original dimension:

f(i)ut = WC[E),';(H,':I +bc € R6+H, (6)

where W, and b, are learnable parameters responsible for transforming the concatenated hidden states into a
refined token representation. This learnable projection ensures that the bidirectional contextual information
is effectively embedded into the final output while maintaining the original feature dimensionality.

In terms of computational complexity, CF-BiLSTM introduces only linear growth with respect to the
number of tokens (& (s)), which is considerably more efficient than the quadratic complexity of self-attention
(O(s*)). This makes it an ideal addition to transformer-based segmentation frameworks where efficiency is
crucial. Moreover, unlike convolution-based context modules that require fixed receptive fields, CF-BiLSTM
dynamically adapts to image structure, enabling the model to flexibly learn context length according to the
scene layout.

The resulting output tokens F**' = [£"", ..., f**'] encode rich contextual relationships, enabling the
model to resolve ambiguities in regions with overlapping class semantics. By explicitly modeling spatial
dependencies, the CF-BiLSTM facilitates more accurate region classification, particularly in scenarios where
class boundaries are difficult to delineate. This bidirectional fusion not only preserves both local and global
contextual cues but also enhances the model’s ability to generalize across diverse image conditions. Conse-
quently, the CF-BiLSTM serves as a powerful enhancement to the feature extraction pipeline, reinforcing
the spatial coherence of patch embeddings and improving overall model performance in vision-based
tasks. Moreover, since CF-BiLSTM operates with linear complexity &'(s) and adds only a small number of
additional parameters, the module introduces negligible memory and runtime overhead compared with the
ViT backbone, ensuring scalability to large datasets and high-resolution inputs. Although BiLSTM involves
sequential computation, the overhead is negligible in practice because it is applied only once on a small set
of patch tokens, while the ViT backbone still dominates the overall runtime.

Overall, the CF-BiLSTM bridges the gap between global transformer attention and local sequential
reasoning, forming a lightweight yet effective contextual fusion mechanism. Its integration within the
CPE-CTE framework ensures that spatial coherence, semantic precision, and computational efficiency
are jointly optimized, yielding more stable pseudo labels and superior segmentation performance under
weak supervision.

3.4 Final Prediction

The refined tokens FOU € R**(¢*H) are subsequently fed into a lightweight patch classifier designed to
generate semantic segmentation predictions with minimal computational overhead. This classifier consists
of a single fully connected layer parameterized by the weight matrix W € R(¢*)*C_ followed by a softmax
activation function:

Z = softmax(F°"'W), (7)
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where Z € R**€ represents the class probability distributions for each individual patch. The softmax opera-
tion ensures that the predicted scores for all classes sum to one, enabling direct interpretation as probabilistic
confidence scores.

The use of a lightweight classifier at this stage is intentional. Since the ViT backbone and CF-
BiLSTM have already captured rich contextual and spatial relationships, a shallow classifier is sufficient to
transform refined embeddings into discriminative semantic scores. This design choice avoids unnecessary
computational overhead while ensuring that the high-level features produced by CPF-CTE are efficiently
converted into pixel-level class evidence.

To align the patch-level predictions with image-level labels in a weakly supervised learning setting,
we employ the Top-K pooling technique [14]. This method selects the most confident patches per class,
aggregating their scores to form a more reliable image-level prediction. Formally, the image-level confidence
score for class ¢ is computed as:

1k
:EZTOP k(Z5), je{l....s}, (8)
i=1

where p. denotes the aggregated confidence score for class c. The Top-k pooling mechanism effectively
mitigates the impact of noisy or misclassified patches, ensuring that the final prediction is primarily
influenced by the most reliable evidence present in the image.

This Top-K aggregation plays a critical role under weak supervision. In the absence of pixel-level
labels, many patches may correspond to uncertain background regions or ambiguous object boundaries. By
selectively averaging only the most confident activations, the model focuses on high-precision cues, thereby
reducing noise propagation and false positives. Moreover, the pooling operation implicitly encourages
discriminative feature learning, as the model must generate a small number of highly confident activations
for each positive class to minimize the loss.

By leveraging this approach, the model is able to robustly integrate patch-level semantics into a coherent
image-level understanding, which is particularly beneficial in scenarios where only weak supervision
is available. Weakly supervised segmentation tasks often suffer from noisy annotations and incomplete
supervision signals, making it crucial for the model to effectively aggregate discriminative features from
reliable patch representations. By incorporating spatial dependencies through the CF-BiLSTM module,
our method ensures that contextual information is preserved, reducing fragmentation in feature maps and
leading to more holistic segmentation outputs.

In practice, the combination of CF-BiLSTM and Top-K pooling creates a complementary learning effect.
CF-BiLSTM enforces contextual smoothness by enhancing inter-patch consistency, while Top-K pooling
selectively amplifies the most confident category evidence. Together, these modules produce pseudo masks
that are both contextually coherent and semantically precise, which are ideal for supervising the subsequent
fully supervised refinement stage.

This strategy not only enhances segmentation accuracy but also helps in reducing ambiguity in
class assignments, leading to more precise and interpretable results. The incorporation of bidirectional
context enables the model to better resolve class inconsistencies that commonly occur in weakly supervised
learning settings, where similar structures may be assigned different labels due to lack of strong pixel-level
annotations. Furthermore, by refining the learned representations, our approach improves the network’s
generalization ability, making it more robust to variations in input images.
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To supervise the training of our network, we utilize a multi-label classification loss, denoted as Zycg,
which is computed as follows:

1 C
Lyce = C Z)’c log(pc) + (1= y)log(1-p.), (9)
c=1

where y. is the ground-truth label for class c, representing whether the class is present in the image. The term
p. corresponds to the predicted confidence score for class ¢, obtained through the Top-K pooling mechanism.
This loss function encourages the network to assign higher confidence scores to the correct classes while
minimizing incorrect activations, thereby improving classification reliability and segmentation consistency.

This multi-label formulation aligns naturally with WSSS objectives. Since an image may contain multiple
foreground categories, binary cross-entropy across classes avoids mutual exclusivity assumptions and enables
the network to learn multi-class co-occurrence patterns. This is particularly beneficial for complex natural
scenes (e.g., VOC and COCO), where objects of different categories frequently overlap or appear together.

In the inference phase, the patch predictions Z are upsampled to the original image resolution using
bilinear interpolation, ensuring that the spatial structure of the predictions aligns well with the input image.
To generate final segmentation masks, we apply an argmax operation over the upsampled probability maps:

Y(i,j) = argmax Z(i, j, c), (10)

where Y (i, j) represents the predicted class label for pixel (i, j). This step converts the soft predictions into
discrete semantic labels, forming the final segmentation map.

After generating the baseline pseudo mask (BPM), a Conditional Random Field (CRF) [7] is applied
to refine spatial boundaries and eliminate spurious activations. The CRF acts as a low-level structural
prior, promoting local smoothness while preserving sharp object edges, which are often blurred in weakly
supervised masks. This refinement step is lightweight yet crucial—it bridges the gap between patch-level
confidence maps and dense pixel-wise annotations, significantly improving the usability of pseudo labels for
downstream training.

Asillustrated in Fig. 3, the final segmentation prediction process begins with a patch classifier that maps
patches to pixel-level predictions, forming the baseline pseudo mask (BPM). To enhance its accuracy, BPM
is further refined using Conditional Random Fields (CRF). The refined BPM then serves as supervision for
training a fully supervised DeepLab network, ultimately producing the final semantic segmentation output.

[ )

Final DeepLab
Tmage b Vit b Patch Cl'assﬁier to - BPM CRF Mask 'for .
Pixel post proc. verification
(FPM)
test
TRAIN v TRAIN TRAIN l VAL l
KCFCE mloU% mloU% mloU% mloU% /

Figure 3: Pipeline of pseudo-label refinement and final segmentation prediction. The patch classifier outputs a baseline
pseudo mask (BPM), which is refined by CRF to obtain cleaner pseudo labels. These refined pseudo labels are then used
to train a DeepLabv2 segmentation network, whose output forms the final prediction
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This two-stage prediction-refinement pipeline combines the efficiency of weak supervision with the
precision of fully supervised training. In the first stage, CPF-CTE efficiently generates category-aware pseudo
masks using only image-level labels. In the second stage, these refined masks supervise a DeepLabv2 model,
which learns detailed spatial structures and produces high-resolution segmentation results. This hybrid
design not only improves the segmentation quality but also demonstrates that well-structured pseudo labels
can serve as strong surrogates for dense supervision.

The end-to-end design of our framework ensures a balanced integration of local details and global
semantics, leading to precise and reliable segmentation results. By effectively incorporating multi-scale
contextual information while maintaining computational efficiency, our method offers a practical and
scalable solution for weakly supervised semantic segmentation tasks.

4 Experiment
4.1 Experimental Settings

Dataset. Our experiments were conducted using the widely recognized Pascal VOC 2012 dataset [19],
a benchmark dataset commonly employed for evaluating semantic segmentation models. The dataset
comprises 20 distinct object classes in addition to a background category, covering a diverse set of objects
such as animals, vehicles, and household items. Due to its complexity and variety, Pascal VOC 2012 poses
significant challenges for segmentation models, requiring them to effectively differentiate between similar-
looking objects and background regions. To augment the amount of available training data and enhance
model generalization, we adopt the common practice of incorporating additional images from the Semantic
Boundaries Dataset (SBD) [42]. The SBD dataset provides extra annotations that complement Pascal VOC
2012, resulting in an expanded training set with 10,582 weakly labeled images, while 1449 images are
designated for validation. This extended dataset configuration is widely used in weakly supervised semantic
segmentation research and allows for more reliable performance evaluation. Additionally, we further evaluate
the generalization capability of our method on the MS COCO 2014 dataset [20], which contains 80 object
classes covering a wide range of everyday scenes with diverse object co-occurrence patterns. Following
standard WSSS settings, we use the 80 K training images with image-level annotations and report results
on the 40 K validation images. Compared with PASCAL VOC, MS COCO introduces significantly more
complex visual layouts, small objects, and cluttered backgrounds, making it a more challenging benchmark
for validating the robustness and scalability of weakly supervised segmentation approaches.

Evaluation Metric. To quantitatively measure the effectiveness of our proposed segmentation model, we
employ the mean Intersection-over-Union (mloU) as the primary evaluation metric. The mIoU is a widely
used standard in semantic segmentation, providing an objective assessment of a model’s ability to accurately
segment objects and assign correct class labels at the pixel level.

4.2 Experimental Implementation Details

In our experiments, we employ the Vision Transformer (ViT-B/16) model as the encoder, leveraging its
powerful representation capabilities for image understanding. To ensure consistency in input dimensions, all
images are resized to a resolution of 384 x 384 during the training phase, as suggested by [7]. Each image is
divided into 24 x 24 non-overlapping patches, with each patch having a size of 16 x 16 pixels. This patch-based
approach allows the model to efficiently capture local and global features within the image.

The training process is conducted using a batch size of 16 and runs for a maximum of 50 epochs.
We utilize two NVIDIA 4090 GPUs to accelerate the training process, ensuring efficient computation and
reduced training time. For optimization, we adopt the Adam optimizer, which is known for its effectiveness
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in handling large-scale datasets and complex models. The learning rate is scheduled in a two-stage manner:
an initial learning rate of 107 is applied for the first two epochs to facilitate rapid convergence, followed by
a reduced learning rate of 10~* for the remaining epochs until the model converges.

During the training phase, as illustrated in Fig. 4, we employ the Top-K pooling strategy with k = 4 to
selectively retain the most informative and discriminative features. This approach ensures that the model
focuses on the most confident patch-level predictions while mitigating the influence of noisy or ambiguous
regions. By emphasizing high-confidence features, Top-K pooling enhances the robustness of the learned
representations, leading to better generalization across diverse and challenging image scenarios. The choice
of k = 4 is based on empirical observations, balancing the trade-oft between capturing sufficient contextual
information and avoiding overfitting to potentially erroneous activations.

Effect of k on mloU
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Figure 4: The impact of different k values on the final performance of WSSS

For the inference stage, as illustrated in Fig. 5, we preprocess the input images by upscaling them to a
resolution of 960 x 960, which significantly improves the granularity of the segmentation predictions. The
use of higher resolution inputs allows the model to capture fine details and intricate structures, thereby
refining object boundaries and reducing pixel-level classification errors. This is particularly beneficial in
weakly supervised semantic segmentation, where precise boundary delineation is crucial for enhancing
segmentation accuracy. Additionally, the high-resolution inference strategy ensures that small or thin
objects, which might be overlooked at lower resolutions, are more accurately segmented.

Overall, the combination of Top-K pooling during training and high-resolution inference constitutes
an effective strategy for improving both model robustness and segmentation quality. By focusing on the
most confident features and leveraging detailed high-resolution predictions, our method achieves enhanced
performance in challenging segmentation tasks.

In the semantic segmentation stage, we utilize the DeepLab V2 framework [43] to train the model.
The training is performed using dense pixel pseudo-labels generated in the previous stage, which serve as
a supervisory signal for the segmentation task. This approach ensures that the model learns to accurately
classify each pixel in the image. Finally, to further refine the segmentation results and improve boundary
precision, we apply CRF [7]. The CRF post-processing step helps to smooth the segmentation outputs and
align them more closely with the object boundaries, resulting in higher-quality segmentation masks.
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Relationship Between Image Size and mloU
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Figure 5: The impact of different patch values on the final performance of WSSS

4.3 Comparison with State-of-the-Arts

Comparison of Pseudo Labels. As shown in Table I, our proposed CPF-CTE achieves the high-
est pseudo label quality on the PASCAL VOC 2012 dataset, surpassing all existing state-of-the-art
(SOTA) approaches. Specifically, CPF-CTE attains a mean IoU (mIoU) of 70.8, outperforming previous
Transformer-based methods such as AFA [32] (66.0), PGSD [44] (68.7), and CGM [45] (68.1). This
performance gain is primarily attributed to the synergistic effect of the learnable class token and the context
fusion mechanism, which jointly enhance semantic discrimination and contextual reasoning.

Compared with Convolutional Neural Network (CNN)-based frameworks such as SEAM [30],
CDA [46], and FPR [47], our ViT-B/16 backbone provides stronger global representation and enables more
reliable pseudo-label generation under weak supervision. These results validate the robustness and scalability
of CPF-CTE in producing high-quality pseudo masks, setting a new benchmark for weakly supervised

semantic segmentation.

Table 1: Pseudo label performance comparison (mIoU) on pascal VOC 2012 train set

Method

Pub. Backbone

mloU (%)

SEAM [30]
CDA [46]
AdvCAM [48]
SIPE [26]
AFA [32]

FPR [47]
PGSD [44]
CGM [45]
CPF-CTE w/o CRF
CPF-CTE

CVPR20 VI1-RN38
ICCV21 V1-RN38
T-PAMI22 V2-RNI101
CVPR22 ResNet50
CVPR22 ViT-B/16
ICCV23 ResNet38
TCSVT24  ViT-B/16

PR24 ViT-B/16
Ours ViT-B/16
Ours ViT-B/16

63.6
66.4
69.9
64.4
66.0
68.5
68.7
68.1
671

70.8

Improvements in Segmentation Results. To further evaluate the effectiveness of the generated pseudo
labels, we train DeepLab V2 using the masks produced by CPF-CTE and compare the segmentation results
with previous methods on the PASCAL VOC validation set (Table 2). Our method achieves an mIoU of 69.5,
clearly outperforming all competitors, including the most recent PGSD [44] (68.7) and CGM [45] (67.8). This
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improvement demonstrates that CPF-CTE not only enhances pseudo-label quality but also leads to stronger
downstream segmentation accuracy.

Table 2: Semantic segmentation performance comparison (mlIoU) on pascal VOC 2012 val set

Model Pub. Backbone mloU (%)

RRM [49] AAAI20 ResNet50 66.3
BES [50] ECCV20 ResNet50 65.7

AFA [32] CVPR22  ViT-B/16 63.8
SIPE [26] CVPR22  ResNet50 58.6
TSCD [51]] AAAI23  MiT-Bl 673
PGSD [44] TCSVT24 ViT-B/16 68.7
CGM [45] PR24 ViT-B/16 67.8
CPF-CTE Ours ViT-B/16 69.5

Notably, CPF-CTE surpasses both CNN- and Transformer-based baselines. For example, compared
to AFA [32] (63.8, ViT-B/16), our model yields a substantial margin of +5.7 and +7.8 mIoU, respectively.
This advantage arises from our class token design, which explicitly models class-level semantics, and the
context fusion strategy, which improves intra-image relational learning. Qualitative visualizations in Fig. 6
further illustrate that CPF-CTE produces cleaner object boundaries and fewer false activations, particularly
in cluttered or occluded regions. To further analyze the enhanced discrimination capability, we present the
per-class mIoU comparison with a strong baseline model in Fig. 7. CPF-CTE consistently improves upon the
baseline across most categories. We further evaluate CPF-CTE on the challenging MS COCO 2014 dataset
to assess its generalization ability in large-scale and complex scenarios. As shown in Table 3, our method
achieves an mIoU of 45.4, outperforming recent methods such as PGSD [44] (43.5) and CGM [45] (40.1).
We also report the pseudo-label performance in Table 3. The model trained directly on the pseudo-labels
achieved 41.3 mloU prior to the full supervision training. The significant gap between this intermediate
baseline and our final result of 45.4 mIoU clearly demonstrates the effectiveness of the two-stage training
design in boosting WSSS performance. This consistent improvement across datasets demonstrates that CPF-
CTE generalizes well to diverse object categories and dense multi-object scenes. The performance gain on
COCO confirms that our class-token-driven context modeling effectively scales beyond PASCAL VOC and
remains robust under more complex image distributions.

Image GT Baseline Ours

Figure 6: (Continued)
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Figure 6: Visualization of segmentation results on the val set of PASCAL VOC
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Figure 7: Class-wise segmentation performance comparison on the validation set. The figure reports per-class mloU
scores of our CPF-CTE and the baseline model across 20 semantic categories, clearly illustrating the consistent
improvements achieved by our method

Table 3: Semantic segmentation performance comparison (mIoU) on MS COCO 2014 val set

Model Pub. Backbone mloU (%)
AFA [32] CVPR22 ViT-B/16 38.9
SIPE [26] CVPR22 Resnet38 43.6
SAS [52] AAAI23  ViT-B/16 445
FPR [47] ICCV23 ResNet38 43.9
ToCo [11] CVPR23 ViT-B 42.3

TSCD [51] AAAI23  MiT-Bl 40.1
PGSD [44] TCSVT24  ViT-B/16 435
CGM [45] PR24 ViT-B/16 40.1

CPF-CTE (pseudo-label) Ours ViT-B/16 41.3
CPE-CTE Ours ViT-B/16 45.4
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4.4 Ablation Studies

To thoroughly evaluate the impact of our proposed components, we conduct a series of ablation studies,
as summarized in Table 4. The baseline framework, which serves as our starting point, achieves a mean
Intersection-over-Union (mIoU) of 65.2% on the validation set. This result provides a reference point for
assessing the contributions of the individual components we introduce. CF-BiLSTM is designed as a com-
plementary post-hoc refinement module rather than a replacement for transformer self-attention; therefore,
our ablation focuses on validating its complementary effect rather than conducting direct attention-block
substitution experiments. First, we investigate the effect of incorporating the class additional token into
the framework. This token is designed to capture class-specific information, enabling the model to better
distinguish between different object categories. When the class additional token is added, the mIoU increases
by 1.9%, reaching 67.1%. This improvement underscores the importance of explicitly modeling class-related
features, which helps the network focus on discriminative regions within the image. Next, we examine the
impact of context enhancement, which aims to improve the model’s ability to capture intra-image contextual
relationships. By integrating this component, the framework achieves an mIoU of 67.8%, representing a 2.6%
improvement over the baseline. This result highlights the significance of understanding spatial dependencies
and contextual cues within the image, which are critical for accurate semantic segmentation, especially
in complex scenes with overlapping objects or ambiguous boundaries. Finally, we combine both the class
additional token and context enhancement into a unified framework. This integrated approach yields the
highest performance, achieving an mIoU of 69.5%. The 4.3% improvement over the baseline demonstrates
the synergistic effect of combining class-specific information with enhanced contextual modeling. Together,
these components enable the model to not only identify object categories more accurately but also refine
the boundaries and spatial relationships between objects. These results highlight the effectiveness of our
approach in enhancing semantic segmentation performance.

Table 4: Ablation study on the impact of class additional token and context enhancement on semantic segmentation
performance

Original framework Class additional token Context enhancement mloU (%)

4 65.2
4 4 671
4 v 67.8
4 4 v 69.5

In addition to evaluating the effects of the CF-BiLSTM and class-token enhancement modules, we
further analyze different pooling strategies used for patch-level aggregation before generating pseudo labels.
As shown in Table 5, we compare three commonly used pooling mechanisms—global average pooling, max
pooling, and Top-K pooling—while keeping all other components unchanged. Global average pooling yields
an mloU of 67.7%, indicating that uniformly aggregating all patch responses tends to dilute discriminative
cues, especially in weakly supervised settings where foreground activation is sparse. Max pooling performs
better (68.1%) by preserving the strongest responses, but it is also sensitive to noise and may overemphasize
isolated activations. In contrast, Top-K pooling achieves the best performance (69.5%), demonstrating its
ability to balance robustness and selectivity by aggregating only the most confident patch activations while
suppressing background noise. This result justifies our choice of Top-K pooling in the final framework and
further confirms its benefit in improving pseudo-label quality under weak supervision.
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Table 5: Ablation studies on different pooling strategies and keeping other components consistent for final semantic
segmentation performance on Pascal VOC 2012 val

Average pooling Max-pooling Top-K mIoU(%)
v 67.7%

4 68.1%
v 69.5%

5 Conclusion

In this work, we propose a CPF-CTE approach for WSSS. Unlike previous frameworks that rely on single
image inputs, we introduce learnable class tokens to effectively represent class-specific information. These
tokens are dynamically optimized during training, enabling the model to capture discriminative features for
each class without requiring pixel-level annotations. Additionally, we enhance context interaction between
patches through a CF-BiLSTM module, which leverages bidirectional dependencies to model long-range
spatial relationships within the image. This module not only improves the networK’s ability to capture intra-
image contextual relationships but also addresses the limitations of traditional methods that struggle with
complex object boundaries and occlusions. By integrating these two components into a robust baseline, we
achieve SOTA results in WSSS using only image-level labels. Despite its effectiveness, the proposed CPF-
CTE framework still relies on patch-level processing, which may limit its scalability for very high-resolution
images and densely packed objects. Moreover, the bidirectional LSTM introduces sequential computation
that could increase inference latency compared with fully parallel transformer designs. Future work will
explore more efficient context modeling mechanisms to further improve scalability.
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