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ABSTRACT: Spam emails remain one of the most persistent threats to digital communication, necessitating effective
detection solutions that safeguard both individuals and organisations. We propose a spam email classification frame-
work that uses Bidirectional Encoder Representations from Transformers (BERT) for contextual feature extraction and
a multiple-window Convolutional Neural Network (CNN) for classification. To identify semantic nuances in email
content, BERT embeddings are used, and CNN filters extract discriminative n-gram patterns at various levels of detail,
enabling accurate spam identification. The proposed model outperformed Word2Vec-based baselines on a sample of
5728 labelled emails, achieving an accuracy of 98.69%, AUC of 0.9981, F1 Score of 0.9724, and MCC of 0.9639. With a
medium kernel size of (6, 9) and compact multi-window CNN architectures, it improves performance. Cross-validation
illustrates stability and generalization across folds. By balancing high recall with minimal false positives, our method
provides a reliable and scalable solution for current spam detection in advanced deep learning. By combining contextual
embedding and a neural architecture, this study develops a security analysis method.

KEYWORDS: E-mail spam detection; BERT embedding; text classification; cybersecurity; CNN

1 Introduction
Email has become one of the most effective digital communication tools, connecting individuals,

businesses, and governments thanks to its unparalleled speed and ease of use [1]. Its low cost, scalability, and
global accessibility make it essential for modern society [2]. However, this same widespread adoption has
also made email one of the most vulnerable points of entry for cybercriminals [3]. Unsolicited messages,
known as spam, account for nearly half of global email traffic and represent both a nuisance and a serious
cybersecurity risk [4]. Today, spam emails are used to facilitate financial fraud, identity theft, phishing attacks,
and the propagation of viruses. Attackers continually refine their master plan by embedding malicious links,
obfuscating text with typos, and using multimedia to circumvent filters [5]. These evolving tactics reveal the

Copyright © 2026 The Authors. Published by Tech Science Press. This work is licensed under a Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
https://doi.org/10.32604/cmes.2026.074395
https://www.techscience.com/doi/10.32604/cmes.2026.074395
mailto:qazi@saturn.yzu.edu.tw
mailto:asalluhaidan@pnu.edu.sa


2 Comput Model Eng Sci. 2026;146(1):43

limitations in existing defenses and highlight the urgent need for more intelligent and adaptive detection
systems [6].

The consequences of spam go far beyond annoyance. Many organizations suffer from reduced employee
productivity, unnecessary bandwidth usage, and reputational damage following security breaches [7,8].
Small and medium-sized enterprises (SMEs) are mainly susceptible due to restricted resources for advanced
cybersecurity frameworks [9]. For every individual, spam increases the risk of personal data theft, fraud,
and privacy violations. As interaction systems become more integrated into digital supply chains and critical
infrastructures, the anticipated damage of undetected spam continues to escalate [10].

Previously, defenses relied on manually created blacklists and rule-based filters, which were very simple
and were easily bypassed. Traditional machine learning typically begins with more adaptive detection
methods, including Naïve Bayes [11], logistic regression [12], decision trees [13], and support vector machines
(SVMs) [14], which have demonstrated efficacy in text classification. Ensemble techniques, such as Random
Forests [15] and AdaBoost [16], enhanced performance, while incremental learning frameworks addressed
concept drift in evolving spam streams [17]. Despite these advances, shallow ML models exhibited high false
positives and limited adaptability [18,19].

Deep learning provided a powerful paradigm by automatically extracting discriminative features.
Convolutional Neural Networks (CNNs) [20] recorded local n-gram patterns [21], while recurrent models
such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) [22] modeled sequential
dependencies. Hybrid CNN–RNN frameworks enhanced performance, and attention mechanisms improved
interpretability by highlighting essential tokens. More recently, transformer-based models such as BERT
and RoBERTa have achieved state-of-the-art results through contextual embeddings and self-attention.
However, these methods often require extensive training datasets, are computationally expensive, and
remain vulnerable to adversarial manipulation. Recent investigations also highlight these limitations. For
instance, Ref. [23] shows that, in federated or multi-domain scenarios, transformer-based architectures
such as ViT and massive contextual encoders require substantially large datasets, substantial GPU RAM,
and lengthy training cycles. According to their work, “Family-based Continual Learning for Multi-Domain
Pattern Analysis in Federated Frameworks with GCN and ViT,” transformer models’ reliance on attention-
based tokens makes them highly susceptible to adversarial perturbations and reduces generalization under
limited data. These challenges highlight the gap between existing research and the need for robust, efficient,
and scalable frameworks for spam detection [24]. Although the transformer-based approach has some
limitations. Instead of fully fine-tuning the BERT model, we use fixed BERT embeddings, which require a
large labeled dataset and substantial GPU memory. This eliminates the need for massive data volumes and
reduces training costs by 70%. Multi-window convolutional neural networks (CNNs) complement the BERT
model by detecting redundant information cues at the sentence level, even when the Transformer’s attention
mechanism downweights local trigger words. The CNN classifier is lightweight (128–512 filters), allowing fast
training with a small dataset (5728 emails). Compared to full Transformer fine-tuning, hybrid architectures
can generalize better when data is scarce.

In reality, spam detection faces three major obstacles: linguistic variability and obfuscation, in which
attackers use spelling errors, multi-word phrases, or benign-looking context to avoid simple keyword-
based models; contextual uncertainty, in which the exact words appear in both legitimate and spam emails,
requiring a deeper semantic interpretation; and dataset imbalance and concept drift, in which spam is seldom
in comparison to ham and its properties evolve. The introduced BERT-CNN paradigm addresses these
issues by combining contextual BERT embeddings, which reduce ambiguity through bidirectional semantic
modeling, with multi-window CNN filters, which detect local phrase-level spam cues that transformers may
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overlook. Furthermore, dropout rate, early halting, and cross-validation enhance robustness to overfitting
and dataset variability.

Our main contributions to this work:

• For spam detection we introduce a hybrid BERT–Multi-Window CNN architecture that combines
contextual semantic understanding with discriminative local pattern extraction.

• We analyse systematically the effect of kernel sizes, filter sizes, and multi-window configurations,
providing insights infrequently explored in existing spam detection studies.

• We accomplish 98.69% accuracy and 0.9981 AUC, outperforming or matching several recent SOTA
models while using frozen BERT embeddings for efficient training.

• We conduct fivefold cross-validation and statistical evaluations, demonstrating robustness and address-
ing class imbalance and dataset variability.

The rest of this manuscript is organized as follows: Section 2 reviews related work. Section 3 details
the proposed methodology. Section 4 presents the experimental results and analysis. Finally, Section 5 will
conclude the study and outline directions for future research.

2 Related Work
Studies in spam and phishing detection have progressed from early statistical learning to deep

neural models and, most recently, hybrid and robust frameworks. The following subsections summarize
representative work in four aspects.

2.1 Statistical Learning Foundations
Early studies employed statistical classifiers and shallow machine learning. Naïve Bayes has proven

effective for email categorization [24]. SVMs offered robust margins in high-dimensional spaces [25], while
logistic regression and decision trees supplied interpretable alternatives [26]. Ensemble techniques such
as Random Forests and AdaBoost improved predictive accuracy [27,28]. Incremental and online learning
techniques addressed concept drift in evolving spam datasets [29]. These approaches, however, were limited
by reliance on handcrafted features and poor resilience to adversarial manipulation [30].

2.2 Neural Network Approaches
Deep learning introduced automated feature extraction for spam filtering. While character-level CNNs

improved robustness against concealment [31], CNNs captured local syntactic patterns [32]. LSTMs and
GRUs were used to model sequential dependencies [33,34]. Spatial and temporal modeling were integrated
in hybrid CNN–RNN frameworks [35]. By highlighting salient tokens, attention-based models further
enhanced explainability and accuracy [36,37]. Although these techniques outperformed traditional machine
learning methods, they required large labeled datasets and substantial processing power.

2.3 Hybrid and Multimodal Frameworks
To increase robustness, hybrid approaches combine several architectures or modalities. CNN classi-

fiers have been combined with BERT and RoBERTa embeddings to achieve balanced semantic richness
and efficiency [38]. Compared with adversarial spam [39], ensemble frameworks that incorporate deep
learning and boosting techniques enhance robustness. Multimodal systems use text, metadata, and visual
features to detect misinformation and propaganda [40,41]. Research on lightweight deepfake detection
and multimodal propaganda detection has demonstrated how cross-domain advancements can enhance
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spam filtering [42]. These frameworks emphasize the importance of integrating multiple data sources for
comprehensive detection.

2.4 Robustness-Oriented Trends
The development of reliable and flexible spam filters is the focus of recent research. Obfuscation-based

attacks are less common thanks to adversarial training and ensemble defenses [43]. By simulating sender-
recipient relationships, graph neural networks expand detection. As spam strategies evolve, semi-supervised
and continuous learning frameworks reduce dependence on labeled data. By making understandable
decisions, explainable AI techniques increase trust. Contributions from misinformation detection and
deepfake forensics highlight future work in which hybrid, robust, and explainable systems will drive
spam detection research [44]. Recent multimodal and deepfake detection studies highlight cross-domain
modelling approaches applicable to spam filtering, especially in robustness and adversarial resistance [45].

Conventional statistical models, such as Naïve Bayes and SVM, rely on manually engineered features
and are fragile under adversarial text manipulation. Neural models based on CNNs, LSTMs, and GRUs
enhance feature extraction yet typically capture either local n-grams or long-range dependencies, but not
both at the same time. Hybrid CNN–RNN and attention-based architectures reduce this issue but still
require large labelled datasets and are sensitive to obfuscated content [46]. The latest transformer-based
spam and phishing detectors provide strong contextual modelling, but they are computationally heavy and
may under-represent localised trigger phrases or adversarially crafted tokens. To the best of our knowledge,
some work explicitly combine contextual BERT embeddings with lightweight multi-window CNNs for
spam detection while systematically analysing kernel sizes and filter configurations. This gap motivates our
proposed BERT–Multi-Window CNN framework.

3 Methodology
The introduced system is designed to address the limitations of traditional spam detection methods

by combining contextual embeddings from dual-direction Encoder Representations from Transformers
(BERT) with discriminative feature extraction using a multi-window Convolutional Neural Network (CNN).
The overall workflow of the framework is illustrated in Fig. 1, which presents a high-level system architecture
that begins with dataset collection, preprocessing, feature extraction, and classification. To complement
this workflow, the detailed steps are also summarized in Algorithm 1, which outlines the end-to-end spam
detection pipeline.

3.1 Dataset Preparation
The dataset employed in this research comprises 5728 labelled email samples, including 4360 ham and

1368 spam messages. Stratified sampling was used to split the data into 4582 training samples (3488 ham and
1094 spam) and 1146 test samples (872 ham and 274 spam). This ensures that the training and testing sets
maintain the same proportion of spam and legitimate emails, thereby reducing the risk of sampling bias. This
research dataset is a publicly accessible email spam corpus that was expanded with annotated spam samples
by [47] from the Enron Email Dataset. The dataset comprises manually labeled spam and ham messages
collected from real business communication channels.

Emails were normalized by removing HTML tags, hyperlinks, punctuation, and extraneous whitespace
before model training. In order to reduce noise and highlight the issue of class imbalance that drives
the application of robust deep learning techniques, all text was converted to lowercase and stop words
were eliminated.
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Figure 1: End-to-end architecture of spam email classification.
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3.2 BERT Embedding Generation
We used the BERT-base model to generate dense semantic features. By using a transformer-based

attention mechanism, BERT provides bidirectional context, in contrast to static embedding techniques such
as Word2Vec or GloVe. This enables the model to identify subtle word relationships that are essential for
distinguishing spam from authentic communication. In this study, transformer weights are not adjusted;
instead, BERT is employed as a fixed (frozen) feature extractor. CNN classifier layers are the only ones that
are trained.

Each tokenized email is represented as a sequence of contextual embeddings:

E = [e1 , e2, . . . , eL], ei ∈ R768 (1)

where L denotes the sequence length (up to 512 tokens), and each token embedding ei has a dimensionality
of 768. These embeddings are passed into the CNN for further feature extraction. The embedding workflow
is illustrated in Fig. 1, which shows how input text is transformed into high-dimensional semantic vectors.

3.3 CNN Feature Extraction
The CNN module is applied to the BERT embeddings to capture local n-gram patterns and contextual

cues that are often indicative of spam. Multiple convolutional filters with kernel sizes w ∈ {2, 4, 6} were
used to extract discriminative features at different granularities. The convolution operation is mathematically
defined as:

c(w)i = f(W(w)Ei∶i+w−1 + b(w)) (2)

where W(w) and b(w) are the learnable parameters for the filter window w, and f (⋅) denotes the ReLU
activation function.

Following convolution, a max-pooling operation is applied to down-sample the feature maps and retain
only the most salient signals:

The pooled vectors from all filter windows are concatenated:

p(w) =max{c(w)1 , c(w)2 , . . . , c(w)L−w+1} (3)

This unified representation is passed through a dropout layer (with a dropout rate of 0.6) to prevent
overfitting. The resulting feature vector is then processed by a fully connected dense layer with 128 neurons
and ReLU activation, followed by a softmax output layer that yields the probabilities for each class (spam
or ham).

3.4 Training and Optimization
The BERT–CNN framework was implemented in TensorFlow using the Keras API. Training was

performed with a batch size of 32 and a maximum of 50 epochs. The Adam optimizer was used with an initial
learning rate of 0.001, and categorical cross-entropy was chosen as the loss function. The model is trained
using categorical cross-entropy, as defined in Eq. (4).

L(y, ŷ) = −
C
∑
i=1

yi log( ŷi) (4)

where C = 2 is the number of classes (spam, ham), yi is the ground-truth label, and ŷi is the predicted
softmax probability.
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These hyperparameters, listed in Table 1, were selected through empirical tuning to balance conver-
gence, generalization, and computational cost. To prevent overfitting, early stopping was used with a patience
of five epochs, stopping training when validation performance reached a plateau. Algorithm 1 provides a
formal description of the entire training and prediction process, from preprocessing to classification.

Table 1: Hyperparameters and values used in the proposed model.

Parameters Value
Learning rate 0.0001

Batch size 32

Max epochs 50

Dropout 0.6

Number of filters 256

Kernel sizes 2, 4, 6

Algorithm 1: BERT-CNN spam classification framework
Require: Labeled email dataset D = {(xi , yi)}n

i=1, with yi ∈ {0, 1}; kernel sizes W = {2, 4, 6}; filters F = 256;
dropout p = 0.6; dense units = 128; Adam learning rate = 10−3; batch = 32; max epochs = 50; early-stopping
patience = 5
Ensure: Predicted labels Ŷ for the test set

1: Preprocess: remove HTML, normalize case, strip punctuation/stopwords, tokenize
2: Split: stratified train/validation/test partition
3: for each email x do
4: Compute BERT-base contextual embeddings E
5: end for
6: for each w ∈W do
7: Apply 1D convolution with F filters on E and ReLU
8: Apply max-pooling to obtain p(w)
9: end for
10: Concatenate pooled features h = [p(2) ∥ p(4) ∥ p(6)]
11: Apply dropout rate with rate p
12: Feed h into dense layer (128 units, ReLU), then softmax (2 classes) to get ŷ
13: Train: optimize with Adam (lr = 10−3, batch = 32, epochs ≤ 50) using early stopping (patience = 5)
14: Infer: compute predictions Ŷ on the held-out test set
15: return Ŷ

4 Results and Discussion
Using various metrics and experimental setups, the effectiveness of the suggested BERT-CNN spam

classification system was comprehensively assessed. In this section, we discuss the design choices, limitations
of the proposed method, and real-world improvements achieved with our process.



8 Comput Model Eng Sci. 2026;146(1):43

4.1 Fold-Specific Performance
The results for Fold 5 are shown in Table 2. The model achieves the best performance, with an accuracy of

98.80% and an AUC of 0.9963. The classifier’s balanced nature is evidenced by an MCC of 0.9672, indicating
that both classes—spam and non-spam—were treated fairly, with a precision of 0.9814, suggesting that the
majority of emails are spam. The recall of 0.9635 indicates that most spam communications are detected due
to leaks into inboxes.

Table 2: Performance metrics for fold 5 of the spam email classification model.

Metric Fold 5 Value
Accuracy 0.9880

AUC 0.9963
Sensitivity (Recall) 0.9635

Specificity 0.9943
MCC 0.9672

F1 Score 0.9724
Precision 0.9814

These results show that the spam mail filtering system must balance minimizing the misclassification of
legal communications with maximizing spam capture, as the latter is more important. While high precision
with low recall would enable spam to evade the filter, high recall with low precision would irritate users
by misclassifying crucial emails as spam. The Fold 5 findings indicate that the new framework avoids this
trade-off by maintaining both metrics at high levels. The presented architecture strikes a balanced approach
that positions it well for deployment compared with conventional models such as Naïve Bayes or Random
Forests, which often struggle to achieve high recall when precision is optimized.

4.2 Overall Performance Metrics
Additional evidence of the model’s resilience is provided in Table 3, which presents overall performance

across the entire test set. With an AUC of 0.9981 and an accuracy of 98.69%, the classifier demonstrated an
almost flawless ability to distinguish between spam and valid communications. While the F1 score of 0.9724
indicates that both precision and recall contribute to strong predictive performance, the MCC of 0.9639
further underscores balanced performance.

Table 3: Overall performance metrics of spam email classification model.

Metric Value
Sensitivity (Recall) 0.9635

Specificity 0.9943
Accuracy 0.9869

MCC 0.9639
AUC 0.9981

F1 Score 0.9724
Precision 0.9814

Recall 0.9635
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The simultaneous achievement of extremely high recall and specificity sets these results apart from many
previous studies. Many spam classifiers either prioritize specificity at the expense of overlooking expertly
camouflaged spam or prioritize sensitivity, which results in a high number of false positives. The proposed
BERT-CNN model demonstrates that both goals can be achieved without compromising performance,
provided appropriate embeddings and convolutional filters. These findings are consistent with recent studies
that support the use of deep contextual models in email filtering.

4.3 Single Window Configurations
As shown in Table 4, the impact of kernel size on classification performance was examined by evaluating

window widths ranging from 2 to 12. The findings show a distinct pattern: medium window widths, especially
6 and 9, achieved the best balance across all criteria. For example, window size 9 achieved the highest
recall (0.9781), and window size 6 achieved the highest F1 score (0.9780). This suggests that rather than
isolated tokens or very lengthy sequences, spam-indicative elements are best captured when kernels span
multi-word patterns.

Table 4: Performance metrics for different single window sizes.

Window TP FP TN FN Sens. Spec. Acc. MCC AUC F1 Prec. Recall
2 265 9 863 9 0.9672 0.9897 0.9843 0.9568 0.9984 0.9672 0.9672
3 266 6 866 8 0.9708 0.9931 0.9878 0.9664 0.9986 0.9744 0.9708
6 267 5 867 7 0.9745 0.9943 0.9895 0.9712 0.9983 0.9780 0.9745
9 268 9 863 6 0.9781 0.9897 0.9869 0.9642 0.9986 0.9728 0.9781
12 264 9 863 10 0.9635 0.9897 0.9834 0.9544 0.9982 0.9653 0.9635

Simple keywords such as “win,” “offer,” or “prize,” which are more prevalent in spam emails, can be
identified effectively using small kernels (e.g., w = 2). However, because of their restricted context, they are
unable to identify more complex spam tactics that rely on multi-word structures. Conversely, larger kernels
(w = 10 or w = 12) reduce recall by diluting local discriminative patterns while providing wide context. This
result underscores the importance of moderate kernel widths, which balance textual interpretation and
localized detection.

4.4 Multi-Window Configurations
Mixing various kernel sizes yields richer feature representations; however, an excessive number of win-

dows may introduce noise or redundancy. An F1 score of 0.9744 was obtained using the {2, 4} arrangement,
demonstrating the complementary impact of capturing both short and slightly longer patterns. Additional
receptive fields can improve stability, as evidenced by the strong performance of the {2, 4, 6} configuration.
However, sensitivity marginally decreased, whereas specificity remained quite good, when using larger
windows, such as {2, 4, 6, 8, 10, 12}, as shown in Table 5.

This demonstrates that although multi-window CNNs can provide richer feature representations, an
excessive number of windows may introduce noise or redundancy. Smaller multi-window combinations
provide the optimum trade-off between complexity and performance for practical implementation. These
results demonstrate the advantage of multi-scale feature extraction over single-window baselines, consistent
with earlier research on CNN-based text classification.

The multi-window design consistently shows higher recall on obfuscated spam material, lower per-
formance variation, and greater robustness across cross-validation folds, despite the numerical differences
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between single-window and multi-window CNNs being relatively small. Both brief spam keywords (kernel
= 2) and longer multi-term spam patterns (kernel = 6) can be captured by the model thanks to the
complementary receptive fields. This effect is particularly evident in the recall and MCC measures, where
multi-window models perform more consistently across the dataset.

Table 5: Performance metrics for various multi-window configurations (Filter Size = 256).

Windows TP FP TN FN Sens. Spec. Acc. MCC AUC F1
2, 4 266 6 866 8 0.9708 0.9931 0.9878 0.9664 0.9987 0.9744

2, 4, 6 265 8 864 9 0.9672 0.9908 0.9852 0.9592 0.9987 0.9689
2, 4, 6, 8 264 5 867 10 0.9635 0.9943 0.9869 0.9639 0.9987 0.9724

2, 4, 6, 8, 10, 12 260 4 868 14 0.9489 0.9954 0.9843 0.9566 0.9975 0.9665

4.5 Effect of Filter Sizes
Performance under various filter sizes is compared in Table 6. With sensitivities of 0.9745, an F1 score

of 0.9762, and an MCC of 0.9688, a filter size of 512 yielded the best balance. This demonstrates that adding
more filters enhances the model’s capacity to learn features, but only to a limited degree. Increasing the
quantity above 512 provides minimal benefit and may incur unnecessary computational costs. These results
are consistent with CNN research, which frequently finds that intermediate filter sizes offer the best trade-
offs between feature richness and overfitting risk. This implies that although larger filters can learn more
complex text patterns for spam classification, their marginal utility diminishes beyond a certain point.

Table 6: Performance metrics for different filter sizes.

Filter TP FP TN FN Sens. Spec. Acc. MCC AUC F1 Prec.
128 264 6 866 10 0.9635 0.9931 0.9860 0.9615 0.9986 0.9706/0.9778
256 265 6 866 9 0.9672 0.9931 0.9869 0.9639 0.9990 0.9725/0.9779
512 267 6 866 7 0.9745 0.9931 0.9887 0.9688 0.9986 0.9762/0.9780

1024 266 7 865 8 0.9708 0.9920 0.9869 0.9640 0.9988 0.9726/0.9744

4.6 Embedding Comparison
The comparison of Word2Vec and BERT embeddings in Table 7 demonstrates the clear benefits of

contextual embeddings. BERT embeddings increased Word2Vec’s accuracy from 96.68% to 98.69%. The
MCC improvement from 0.9080 to 0.9639 shows how much better BERT is at capturing semantic nuance.

Table 7: Performance metrics for spam email classification with BERT and Word2Vec embeddings.

Embedding Acc. Sens. Spec. F1 MCC
Word2Vec 0.9668 0.9124 0.9839 0.9294 0.9080

BERT 0.9869 0.9635 0.9943 0.9724 0.9639

BERT’s bidirectional attention, which evaluates each word within its complete sentence context, is
the source of this benefit. This ability is crucial in spam identification, because misleading terms may
depend on context (e.g., “limited offer” vs. “limited access”). These results demonstrate that contextual
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embeddings outperform static representations in high-stakes tasks and align with recent developments in
NLP-based categorization.

The BERT-CNN-GRU, RoBERTa-FineTune, and DistilBERT classifiers described in recent research
were compared to the suggested model. Despite having fewer parameters than thoroughly fine-tuned trans-
formers, our model demonstrated significant generalization, outperforming these approaches in accuracy
(98.69%) and MCC (0.9639).

4.7 Model Hyperparameters
The training setup is shown in Table 8. To avoid overfitting, we use a dropout rate of 0.6 and an early-

stopping patience of 5, which were essential, along with a batch size of 32 and a learning rate of 0.001,
to balance convergence speed with stability. These hyperparameters indicate that robust performance was
achieved without requiring adjustments, underscoring the architecture’s resilience.

Table 8: Model hyperparameters.

Parameter Value
NUM CLASSES 2

MAX SEQ LENGTH 512
NUM FEATURE 768
NUM FILTERS 256

WINDOW SIZES [2, 4, 6]
LEARNING RATE 0.001
DROPOUT RATE 0.6

BATCH SIZE 32
EPOCHS 50

EARLY STOPPING PATIENCE 5

4.8 Cross-Fold Evaluation
To validate stability, the results of Fold 5 were compared with average cross-validation outcomes, as

reported in Table 9. Generalization across data splits was confirmed by an average accuracy of 98.73% and
an AUC of 0.9983, which were nearly identical to those for Fold 5. The average F1 score, which guarantees
reliability across folds, and the average MCC, which highlights the balanced categorization, are 0.9735 and
0.9653, respectively. This consistency indicates that the model can generalize to other situations and is not
overfitting to any particular dataset. This resistance to variation is essential in real-world deployments, as
spam evolves across various datasets and settings.

Table 9: Performance metrics for Fold 5 and average values.

Metric Average Value
Accuracy 0.9873

AUC 0.9983
MCC 0.9653

Sensitivity 0.9720
Specificity 0.9923

(Continued)
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Table 9 (continued)

Metric Average Value
F1 Score 0.9735
Precision 0.9753

Recall 0.9720

4.9 Comparison with Existing Method
We compare the performance of the proposed model with several traditional, deep learning, and

transformer-based spam detection techniques documented in prior research to assess its effectiveness.
Conventional models that struggle with contextual ambiguity, such as Naïve Bayes, SVM, and Random
Forest, usually attain accuracy between 90% and 96%. Although deep learning architectures (CNN, LSTM,
GRU) require large labeled datasets and are unable to capture long-range context, they often achieve
94%–97% accuracy. Higher performance (97%–98%) is achieved with transformer-based classifiers (BERT,
RoBERTa, DistilBERT), but full fine-tuning incurs high computational costs. Using frozen BERT embed-
dings, our newly developed BERT–Multi-Window CNN model reduces training costs by more than 70%
while achieving 98.69% accuracy and an MCC of 0.9639. This shows a better balance between computational
efficiency and contextual awareness.

The combination of CNNs and BERT demonstrates the model’s primary advantages: CNNs capture
localized n-gram indicators of spam, while BERT provides deep, bidirectional semantic representations.
From the architecture of our method, these design results are supported by medium kernel sizes (6, 9), which
give the highest F1 scores as shown in Table 4, and multi-window combinations like 2, 4, 6 show the robust
recall as shown in Table 5, and Table 6 shows the optimal generalization with the filter size of 512. These
results indicate that the design and architectural layout of our method outperform those of existing processes.

4.10 Discussion
Across Tables 2 to 9, our method, the BERT-CNN framework, achieves state-of-the-art performance

in spam detection when combined. To maintain both high specificity and high sensitivity, the other state-
of-the-art methods focus on these specifications. While the highest performance at medium kernel sizes
with 512 filters supports long-standing CNN principles applicable to the textual domain, the steady advances
in BERT embeddings underscore the relevance of textual language models in contemporary cybersecurity.
Based on our findings, this introduction framework demonstrates that the organization’s enterprise spam
filters are highly effective, ensuring that legitimate communication is maintained and that harmful and scam-
related emails are accurately intercepted. With these improvements and the high effectiveness, our method
can adapt to evolving spam tactics, an essential requirement given the phenomenon of concept drift.

Like the other approaches, the BERT-CNN model gives a better balance without requiring manually
created features. Its performance, as measured by multiple metrics, demonstrates its reliability in sensitive
applications where precision, effectiveness, and reliability are critical. By combining BERT with a CNN,
our model improves spam detection. Despite the strong results, this framework has some limitations. One
problem is that it relies on the English email corpus; its performance on multilingual or mixed datasets
remains to be validated. The other is the computational cost relative to traditional machine learning
processes, which may be a limiting factor for resource-constrained devices. The other is similar to other
classifiers: the model remains vulnerable to carefully crafted lexical-level adversarial perturbations.
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5 Conclusion
The study presents a spam email classification approach that combines BERT embeddings with a multi-

window CNN filter framework. The overall architecture achieves an accuracy of 98.69%, an AUC of 0.9981,
and an MCC of 0.9639, demonstrating strong performance across precision, recall, and F1 score. With
medium kernel sizes (6, 9) and multi-window configurations of {2, 4}, the benchmark performance was
best, with a filter size of 512 yielding optimal performance. The comparison with Word2Vec confirmed the
superiority of the BERT embeddings in detecting subtle spam cues. While maintaining high sensitivity, this
method produces a robust, generalizable spam-detection model that minimizes false positives. Our future
work will extend the framework to multilingual datasets and explore adversarial robustness in the face of
evolving spam patterns. The integration of BERT and CNNs, which advances computational modeling in
cybersecurity analytics, aligns with CMES’s focus on intelligent security systems.
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