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ABSTRACT: Optimization algorithms are crucial for solving NP-hard problems in engineering and computational
sciences. Metaheuristic algorithms, in particular, have proven highly effective in complex optimization scenarios
characterized by high dimensionality and intricate variable relationships. The Mountain Gazelle Optimizer (MGO)
is notably effective but struggles to balance local search refinement and global space exploration, often leading to
premature convergence and entrapment in local optima. This paper presents the Improved MGO (IMGO), which
integrates three synergistic enhancements: dynamic chaos mapping using piecewise chaotic sequences to boost explo-
ration diversity; Opposition-Based Learning (OBL) with adaptive, diversity-driven activation to speed up convergence;
and structural refinements to the position update mechanisms to enhance exploitation. The IMGO underwent a
comprehensive evaluation using 52 standardised benchmark functions and seven engineering optimization problems.
Benchmark evaluations showed that IMGO achieved the highest rank in best solution quality for 31 functions,
the highest rank in mean performance for 18 functions, and the highest rank in worst-case performance for 14
functions among 11 competing algorithms. Statistical validation using Wilcoxon signed-rank tests confirmed that
IMGO outperformed individual competitors across 16 to 50 functions, depending on the algorithm. At the same time,
Friedman ranking analysis placed IMGO with an average rank of 4.15, compared to the baseline MGO’s 4.38, establishing
the best overall performance. The evaluation of engineering problems revealed consistent improvements, including an
optimal cost of 1.6896 for the welded beam design vs. MGO’s 1.7249, a minimum cost of 5885.33 for the pressure vessel
design vs. MGO’s 6300, and a minimum weight of 2964.52 kg for the speed reducer design vs. MGO’s 2990.00 kg.
Ablation studies identified OBL as the strongest individual contributor, whereas complete integration achieved superior
performance through synergistic interactions among components. Computational complexity analysis established an
O (T x N x 5 x f (P)) time complexity, representing a 1.25x increase in fitness evaluation relative to the baseline MGO,
validating the favorable accuracy-efficiency trade-offs for practical optimization applications.

KEYWORDS: Metaheuristic algorithm; dynamical chaos integration; opposition-based learning; mountain gazelle
optimizer; optimization

1 Introduction

Contemporary optimization challenges frequently involve complex scenarios characterized by intricate
parameter spaces and sophisticated constraints. The development of optimization methodologies for these
problems has led to the emergence of various algorithmic frameworks, which are typically classified
according to their state complexity and dimensional characteristics [1]. To address these computational
challenges, researchers have developed diverse optimization frameworks. In cases where exact optimization
methodologies are impractical, approximate algorithmic approaches have emerged as innovative solutions
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for managing complex, multidimensional, and multistate computational problems [2]. Drawing inspiration
from natural and biological systems, these algorithmic frameworks employ stochastic exploration processes
to identify optimal solutions within practical computational time frames. A critical consideration in such
metaheuristic approaches is maintaining an adaptive balance between solution space exploration and local
refinement processes [3]. The OBL paradigm offers an alternative approach to machine learning, rooted in
the analysis of inverse relationships between system entities. Over the past decade, OBL has emerged as a
promising research direction in computational optimization. Traditional metaheuristic approaches generally
fall into three primary categories: evolutionary computation methods, physics-inspired algorithms, and
swarm intelligence frameworks, all of which are inspired by natural selection.

The foundational principles of OBL were introduced in 2005, offering a systematic approach to simulta-
neously evaluate current estimates and their opposites to enhance the solution identification. In algorithmic
optimization, where the goal is to achieve optimal solutions for specified objective functions, considering
both estimates and their opposites can significantly improve the performance metrics. Previous studies have
extensively explored OBL applications for defining transfer functions, optimizing neural network weights,
generating evolutionary algorithm candidates, and determining reinforcement learning agent policies [4].
The core OBL methodology involves selecting optimal solutions for subsequent iterations by systematically
comparing current solutions with their OBL counterparts. They have been successfully integrated into
various metaheuristic frameworks to improve their ability to escape local optima. Contemporary real-world
optimization challenges often involve complex, multifaceted problems that require sophisticated algorithms.
Research efforts are increasingly focused on developing enhanced solutions through strategic combinations
of complementary metaheuristic approaches. Hybrid methodologies typically emerge as novel combinations
of existing algorithms or refinements of established techniques. Recent innovative hybrid frameworks
have integrated chaos theory with metaheuristic algorithms [5]. Incorporating chaotic behaviour patterns
enhances system performance metrics, improves the distribution of metaheuristic algorithms, accelerates
convergence, and mitigates the challenges posed by local optima. Empirical studies have shown that chaos-
enhanced hybrid algorithms effectively optimize engineering design problems, achieving superior accuracy
and faster convergence. Recent research has extensively explored various combinations of chaos mapping
and metaheuristic optimization [6].

Chaos theory offers a novel paradigm that is increasingly applied across various fields of study. One
significant application of this technology is its integration with optimization methods. The stochastic
and dynamic properties inherent in chaos theory accelerate the convergence of Optimization algorithms
while promoting solution diversity. Chaos theory is susceptible to initial conditions, but retains random
characteristics [7]. The MGO has achieved notable success in optimization applications, with both its original
and enhanced versions addressing global optimization challenges [8]. Although this algorithm effectively
circumvents local optima, it faces limitations, such as premature convergence and an imbalance between
exploration and exploitation.

Since its inception, the MGO has been effectively applied across various engineering fields, particularly
in hydrological modelling and water resource management, where it has demonstrated efficacy in optimizing
parameters for complex environmental systems [9]. Despite these achievements, a systematic analysis of
MGO’s optimization dynamics uncovers three fundamental limitations that impede its performance in
complex, high-dimensional scenarios. First, the algorithm’s reliance on fixed random-number generation for
position updates can lead to premature convergence, as search agents may cluster in suboptimal regions. This
occurs because purely stochastic perturbations lack the diversity required to escape local attraction basins in
multimodal landscapes. Second, the exploration-exploitation balance mechanism, primarily governed by the
decreasing coefficient ‘@’ that linearly transitions from global exploration to local exploitation, is insufficiently
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adaptive to the specific characteristics of the problem landscapes. This can result in either excessive
exploration, delayed convergence, or premature exploitation, thereby compromising the solution quality.
Third, the four parallel update strategies (Territorial Solitary Males, Maternity Herds, Bachelor Male Herds,
and Migration for Food Search), while biologically inspired and conceptually elegant, generate candidate
solutions with limited diversity when population variance decreases, failing to maintain and recover diversity
once the population converges toward local optima. These identified limitations motivated the develop-
ment of the IMGO through the strategic integration of three complementary enhancement mechanisms,
specifically targeting MGO’s convergence and diversity challenges. Chaos mapping addresses the stochastic
diversity limitation by replacing uniform random number generation with deterministic chaotic sequences
that exhibit ergodicity and sensitivity to initial conditions, ensuring a more thorough and non-repetitive
exploration of the search space throughout the optimization iterations. OBL addresses the exploration-
exploitation imbalance by introducing adaptive diversity-driven activation that generates complementary
search directions when the population variance falls below threshold values, thereby dynamically reinforcing
exploration precisely when premature convergence risks emerge. Structural refinements to the core position
update equations address the diversity maintenance challenge through variance-aware initialization and
escape factor modulation, which systematically prevent population clustering while preserving beneficial
convergence toward promising regions. The synergistic integration of these three mechanisms provides a
comprehensive solution to MGO’s fundamental limitations while preserving its computational efficiency
and conceptual clarity, establishing the IMGO as an enhanced framework suitable for complex engineering
Optimization that requires reliable convergence and superior solution quality.

Despite the demonstrated effectiveness of chaos-enhanced and OBL-integrated metaheuristics in recent
studies, current methodologies face three significant limitations that hinder their practical application. First,
chaos maps are typically applied uniformly across all Optimization phases, without systematic selection
criteria that account for exploration-exploitation trade-offs. This approach leads to suboptimal diversity
management and can disrupt the convergence dynamics. Second, OBL integration is mainly limited to
population initialization, missing valuable opportunities for adaptive opposition-based diversity enhance-
ment throughout iterative search processes. Third, structural modifications in swarm-based algorithms
rarely address the inherent algorithmic tension between territorial establishment behaviors and migratory
exploration patterns, often resulting in premature convergence in complex multimodal landscapes. The
proposed IMGO framework systematically addresses these gaps through three synergistic innovations
that collectively enhance both the exploration capability and convergence stability. The first innovation
involves adaptive chaos integration, in which the piecewise-chaotic map is strategically embedded within
the position-update mechanisms rather than uniformly applied. This selective integration, formalized
through modified update equations, dynamically modulates the exploration intensity according to the
iteration progress, thus preventing the excessive randomization typical of fixed chaos implementations. The
second contribution extends the OBL beyond conventional initialization-only applications using a distance-
based adaptive mechanism. This threshold-driven approach selectively activates opposition-based position
generation when population diversity metrics indicate potential stagnation, thereby maintaining exploration
capability while minimizing unnecessary computational overhead. The third innovation introduces struc-
tural refinements to MGO’s core behavioural models via variance-driven initialization and escape-factor
modulation in the position-update equations. These modifications specifically target MGO’s documented
tendency to prematurely converge on a specific region, which is a limitation of existing MGO variants and
hybrid implementations. The integration of these three enhancement strategies distinguishes the IMGO
from existing chaos-OBL hybrid algorithms in several fundamental aspects. Unlike previous implemen-
tations that treat chaos and opposition as independent augmentations, the IMGO establishes functional
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interdependencies between chaotic perturbation, opposition-based diversity maintenance, and structural
behavioral refinements. This systematic integration approach enhances algorithmic scalability for high-
dimensional optimization scenarios while simultaneously improving convergence stability metrics across
diverse problem landscapes. The subsequent sections provide a comprehensive experimental validation
of these contributions through benchmark function evaluation, engineering application analysis, ablation
studies isolating individual component effects, and computational complexity assessment.

The remainder of this paper is structured as follows: Section 2 reviews the relevant literature. Section 3
provides a detailed explanation of the proposed method. Section 4 presents the experimental results of this
paper. Finally, Section 5 concludes with a discussion of potential future research directions.

2 Related Works

This section presents a systematic review of the metaheuristic optimization approaches. It begins with a
discussion of algorithms that integrate principles of chaos theory, followed by an analysis of methodologies
enhanced by OBL. It was on assessing multi-objective algorithms applied to engineering-optimization
challenges.

Recent investigations have focused on enhancing the Walrus optimization algorithm through the inte-
gration of quasi-oppositional-based learning and chaotic local search mechanisms. This enhanced variant
was developed to prevent premature convergence and improve population diversity during the optimization
process [10]. The proposed approach demonstrated its capability to expand the search space exploration.
Nevertheless, the method suffers from increased computational complexity when confronted with large-scale
optimization problems, which limits its efficiency in practical applications. Another significant development
stems from the fusion of firefly behavioral patterns and genetic algorithms, resulting in a hybrid evolutionary
firefly-GA framework designed explicitly for facility location optimization [11]. The Prairie Dog Optimization
Algorithm has been refined through the integration of dynamic opposition learning strategies combined with
modified Levy flight mechanisms [12]. This enhancement was implemented to increase the population diver-
sity and accelerate convergence while preventing premature convergence. The opposition-based mechanism
generates candidate solutions by simultaneously considering the current positions and their opposites within
the search space. Nevertheless, the enhanced variant exhibits limited population diversity and low accuracy
in generating optimal solutions, resulting in an inadequate balance between exploration and exploitation.
Further algorithmic innovations include the chaos-enhanced Gravitational Search Algorithm (GSA), which
employs a chaotic gravitational constant derived from sinusoidal cosine functions to improve the search
balance [13]. Particle Swarm Optimization (PSO) has emerged as a population-based intelligence framework
for engineering applications in multidimensional spaces. However, traditional PSO implementations face
challenges such as local optima entrapment and premature convergence when addressing complex, high-
dimensional problems. Recent advances have proposed an enhanced particle optimizer that incorporates
tent and logistic chaos mapping strategies, Gaussian jump mechanisms, and local-restart protocols. The
chaos mapping component generates uniformly distributed particles, improving the quality of the initial
population, whereas Gaussian jumps serve as local restart mechanisms based on the maximum focal distance
calculations [14].

Alatas et al. advanced the PSO methodology by integrating various chaos maps for parameter updating.
Their research systematically employed chaotic number generators rather than traditional random-number
generators in the PSO framework. This study yielded 12 distinct chaos-embedded PSO variants, with a
comprehensive analysis of eight chaotic maps using unconstrained benchmark functions [15]. Chaotic Sand
Cat Swarm Optimization (CSCSO) is a recent innovation in constrained optimization methodology. This
hybrid framework enhances SCSO capabilities by integrating strategic chaos maps. This implementation
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replaces the traditional randomness in SCSO with structured chaotic patterns, leveraging their statistical
and dynamic properties [5]. A novel approach to accelerating the convergence of the Firefly Algorithm (FA)
combines three strategies derived from the Dragonfly Algorithm (DA) and OBL principles. This integration
enhances FA’s exploration capabilities, performance metrics, and information sharing of FAs while mitigating
local optima challenges [16]. The Discrete Action Reinforcement Learning Automata (DARLA) framework,
enhanced by OBL integration, demonstrated improved performance in PID controller optimization. Its
core innovation lies in the simultaneous consideration of search directions and their opposites, resulting
in enhanced convergence and accuracy [17]. The OBL-enhanced Artificial Bee Colony (ABC) algorithm
addresses the traditional limitations of slow convergence and premature stagnation. This variant generates
opposing solutions through the employed and observer bees and selects optimal positions using greedy
selection strategies. The framework introduces novel update rules that expand exploration while preserving
the core advantages of honey and worker bees [18].

Recent developments in the evolution of the Group Search Optimizer (GSO) have addressed compu-
tational efficiency and convergence challenges by introducing a diversity-guided group search Optimizer
(DGSO) with OBL integration. The OBL component accelerates GSO convergence, whereas diversity
guidance maintains the population variation [19]. The Firefly Algorithm, renowned for its simple implemen-
tation and attractive behavior modeling, has found widespread applications in engineering. To address its
premature convergence and performance limitations, researchers have proposed an OBL-enhanced variant
that enriches learning processes and improves local-optimum escape capabilities [20]. An opposition-based
Ant Colony Optimization (ACO) framework has emerged for discrete Optimization, primarily focusing
on applications of the Symmetric Travelling Salesman Problem (TSP). This implementation introduces
two strategic approaches for constructing opposing paths using TSP-specific solutions. Additionally, three
distinct pheromone update protocols (direct, indirect, and random) have been developed to leverage
opposing path information [21]. The Chaotic Grey Wolf Optimizer (CGWO), designed to enhance con-
vergence and solution quality, represents a significant advancement in Optimization methodology. The
principles of chaos theory provide deterministic randomness for nonlinear dynamic systems, combining
social and individual search strategies to resolve complex problems [22]. Although these studies primarily
address unconstrained optimization, many real-world applications, including design optimization, require
the simultaneous consideration of multiple variable types, objective functions, and constraints.

Recent research by Ozbay et al. augmented the artificial rabbit optimization (ARO) algorithm by
developing the COARO variant, which incorporates OBL and Chaotic Local Search (CLS) to enhance the
convergence speed and explore the solution space [2]. Geng et al. proposed an improved binary walrus
Optimizer (BGEPWO) that integrates the golden sine method, the Elite OBL (EOBL), and population
regeneration mechanisms. These advancements effectively mitigate local optima issues while balancing
exploration and exploitation of the search space. A comprehensive evaluation of BGEPWO across 21
datasets demonstrated its superior performance in terms of fitness value, feature selection, and convergence
metrics [23]. Si et al. enhanced the Tunicate Swarm Algorithm (TSA) by integrating chaos theory, OBL
principles, and Cauchy mutation, thereby developing OCSTA and COCSTA variants. These algorithms
exhibit improved global optimization capabilities, particularly in high-dimensional problem spaces [24]. The
COLMA framework, devised by Zhao et al., represents a chaos-enhanced Mayfly Algorithm that incorporates
OBL and Levy flight patterns. This implementation utilizes tent chaos initialization, adaptive gravity
coeflicients, and OBL principles to address local optima challenges, achieving significant improvements in
optimization accuracy, stability, and convergence characteristics [25].

The enhanced binary walrus Optimizer (BGEPWO) developed by Geng et al. marks a significant
leap in feature selection methodology by integrating the golden sine strategy, the application of EOBL,
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and a population regeneration mechanism. This framework employs iterative chaos mapping to enhance
population diversity and stability, and optimize the balance between exploration and exploitation. The
BGEPWO population regeneration protocol effectively eliminates underperforming individuals, thereby
accelerating convergence, whereas the EOBL extends search capabilities. The inclusion of a golden-sine
perturbation in later iterations helps escape local optima. A comprehensive evaluation across 21 datasets
highlighted BGEPWO’s superior performance in feature selection, fitness optimization, and Fl-score met-
rics [23]. Pham et al. introduced the SCA framework, which enhances the Sine Cosine Algorithm (SCA)
for engineering optimization by integrating Roulette Wheel Selection (RWS) and OBL. This methodology
outperformed established algorithms, including GA, PSO, and Moth-Flame Optimization (ALO), in both
benchmark and real-world optimization scenarios [26]. The Grey Wolf Optimizer has been augmented
through chaotic integration approaches that combine chaotic mapping initialization with Levy flight mech-
anisms [27]. Researchers have developed this chaos-enhanced variant to increase population diversity and
accelerate convergence during Optimization iterations. It employs tent mapping for population initialization,
along with dimension-learning strategies. Despite demonstrating enhanced performance, the integration
of chaos theory substantially increases computational complexity, and population diversity concerns in
high-dimensional spaces remain insufficiently resolved.

The comprehensive literature review above underscores significant advancements in the development
of chaos-enhanced and opposition-based metaheuristics; however, several critical research gaps remain to be
systematically investigated. A primary limitation of the reviewed methodologies is the global application of
chaotic maps without adaptive selection mechanisms tailored to specific optimization phases. This uniform
integration strategy often leads to excessive exploration during later iterations, when exploitation refinement
becomes crucial, thereby degrading the convergence quality and computational efficiency. Furthermore, the
predominant use of OBL solely for initial population generation represents a significant underutilization
of the OBL principles. Dynamic opposition strategies that adaptively activate throughout the optimization
process remain largely unexplored, despite their potential for sustained diversity maintenance and local-
optima avoidance. Another methodological gap concerns the limited investigation of interactions among
multiple enhancement strategies within hybrid algorithmic frameworks. While numerous studies have
demonstrated performance improvements through chaos or OBL integration, systematic ablation analyses
isolating individual component contributions are notably absent from the existing literature. This analytical
deficit complicates the identification of synergistic mechanisms and hinders the principled design of
multi-component hybrid algorithms. Moreover, scalability considerations and discussions of computational
complexity receive insufficient attention across the reviewed implementations, despite their fundamental
importance for the practical deployment of algorithms in large-scale optimization scenarios. The proposed
IMGO methodology systematically addresses these limitations through several distinguishing character-
istics. The framework implements adaptive chaos integration with iteration-dependent modulation rather
than fixed chaotic perturbation, thereby aligning the exploration intensity with the algorithmic search phase
requirements. Distance-based adaptive OBL extends opposition principles beyond initialization through
threshold-driven activation that responds to population diversity metrics, maintaining exploration capability
without imposing a constant computational overhead. Structural refinements to the core MGO equations
address documented convergence limitations by introducing variance-driven initialisation and escape-
factor mechanisms that enhance the behavioural balance between territorial establishment and exploratory
migration. Subsequent experimental sections provide a comprehensive ablation analysis isolating individual
component effects, detailed computational complexity evaluation, and scalability assessment across varying
dimensional spaces, thereby addressing the methodological gaps identified in the current literature.
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3 Proposed Method

This section describes the core principles of the IMGO. Section 3.1 provides a concise overview of the
IMGO algorithm’s foundational structure. In contrast, Section 3.2 delves into a comprehensive analysis of
the integrated enhancement strategies within the MGO, including chaos mapping, OBL integration and
structural refinements.

3.1 MGO Algorithm

MGO is an advanced computational model inspired by natural phenomena, particularly the social
structures and behaviors of Gazelles. This algorithm is widely used in engineering optimization, with
its mathematical framework incorporating four parallel operational vectors to ensure the convergence of
optimal solutions [8]. The primary components include Territorial Solitary Males, which simulate the
dynamics of territory establishment among young males, as mathematically represented by Eq. (1).

TSM = malegazare [(riv* BH — riy x x (t)) * f| *cof; )

In Eq. (1), ri; and ri, represent binary random integers (1 or 2). The BH parameter defines the young
male herd coefficient vector, which is calculated using Eq. (2), where f follows the computation specified
in Eq. (3). The malegy.q1. term refers to the global best solution vector position, and cof,. This represents a
dynamically updated random coefficient, as determined by Eq. (4), to enhance exploration capabilities.

BH = Xy % |1+ Mp, * [rﬂ,mz{[%]...N} (2)

N
3
N represents the total gazelle population, while r; and 7, are random values within [0, 1]. M, indicates a

randomly selected solution (young male) within the ra range.

In Eq. (2), X,, denotes the mean search agent count, which is computed as [ ] and randomly selected.

Fon) < exp(2 e (2 ) 0
= *exp |2 —iters | —————
' P MaxlInter
Eq. (3) incorporates N; as a standard distribution random number within the problem dimensions, exp
represents the exponential function, iter denotes the current iteration count, and MaxInter specifies the
total iteration limit.

(a+1)+rs,
*N, (D),
cof; = ey 4

N; (D)* N4 (D)* % cos (r4#2) * N3(D))

In Eq. (4), parameter a follows the computation in Eq. (5), while N;, N3, and Ny represent normally
distributed random numbers within the problem dimensions. Additionally, r; and r4 are random values in
[0, 1], with r4. Also spanning problem dimensions where the cosine transformation applies.

a=—1+iter( (5)

MaxIter)
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Maternity Herds: Female herd dynamics are critical to the structure of mountain gazelle populations.
This behavioral pattern is mathematically expressed by the following Eq. (6):

MH = (BH + Cof,,,) + (ri3* malegazerre — ri4%X,ana) * Cofs,r (6)

In Eq. (6), Cofs,r and Cofs,, derived from Eq. (4). The malegyze11. term denotes the current iteration’s
global best solution vector while X,,,; indicates a randomly selected gazelle position vector from the
population. BH maintains its definition as the young male coefficient vector from Eq. (2). Bachelor Male
Herds: Male gazelles exhibit competitive behavior for territorial control and access to females. This dynamic
is mathematically represented by Eq. (7).

BMH = (X (t) - D) + (ris* malegaze1e — rig*BH)* cof, (7)

The X (t) vector, computed using Eq. (8), represents the gazelle’s current position in the iteration.
Parameters ris and ris are randomly selected binary integers (1 or 2), while maleg,;.11. maintains its role as
the best solution position vector.

D=(]X(t)|+‘malegaze”e|)*(2* re —1) (8)

Eq. (8) incorporates the position vectors X (t) and malegaze1. from the current iteration and the
optimal solution, respectively. Similarly, Eq. (9) provides a mathematical model of the gazelle’s foraging
behaviour.

MSF = (ub—1b) *r; + 1b )

The r; parameter represents a random value within [0, 1], while /b and ub define the problem’s lower
and upper bounds, respectively. Algorithm 1 presents the complete pseudocode for MGO.

Algorithm 1: MGO pseudocode

Inputs: Population size N and maximum iterations T Outputs: Optimal gazelle position and fitness value
Generate initial random population Xi (i =1, 2, ..., N)

Evaluate gazelle fitness levels

While the stopping criterion is not met: For each gazelle Xi:

Calculate TSM using Eq. (1) % Territorial solitary male process

Calculate MH using Eq. (6) % Maternity herd process

Calculate BMH using FEq. (7) % Bachelor male herd process

Calculate MSF using Eq. (9) % Migration for food search

Evaluate fitness for TSM, MH, BMH, MSF

Incorporate results into the habitat End for

Sort the population in ascending order

Update Best Gazelle

Preserve N best gazelles within the maximum population End while Return X_BestGazelle, Best Fitness

3.2 IMGO Algorithm Model

This subsection provides a thorough analysis of IMGO. Three innovative enhancement strategies were
integrated into the MGO framework to significantly boost its exploration and exploitation capabilities,
thereby improving its performance in complex Optimization scenarios.
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Improvement One: The proposed enhancements to the MGO algorithm integrate ten distinct chaos
maps [28] to optimize the dynamics of exploration and exploitation within the algorithm. These maps
introduce controlled randomness, enabling a more efficient exploration of the solution space while reducing
the risk of being trapped in local optima. Table 1 offers a comprehensive overview of the chaos maps utilized
in the MGO algorithm.

Table 1: The chaotic maps and their mathematical formulas

Chaotic Control Chaotic
No. Formula
map parameters range
Chebysh
1 eoyshey Xp41 = COS (n -cos”! (xn)) 1 x, €[-1,1]
map
1
2 Circle map Xpe1 =X, + K= o sin (27x,) 1(K) x, €[0,1]
i
Gauss/Mouse
3 map Xpe1=exp (—ax2) +b 2(a,b) xn €R
Iterati
4 erative Xps1 =1 - ax? 1(a) Xy € [-1,1]
map
5 Logistic map Xns1 =X, (1= %) 1(r) x, €[0,1]
2 anel0p)
Piecewise Xn— P
6 map Xppl = qn_p , Xn€[p.q) 2(p,q) xn €[0,1]
il SR [¢.1]
1 _ q b n b
7 Sine map Xp+1 = asin (7x,) 1(a) X, €[0,1]
8  Singermap X, =y (7.86x, — 23.31x2 + 28.75x) —13.302875x], ) 1(u) x,, € [0,1]
Si idal
9 Hnusorda Xp41 = ax?sin (7x,) 1(a) x, €[0,1]
map
Xn
=, x,<p
10 Tent map Xpil = 1p_ X 1(p) x, €[0,1]
i Xy 2 P
l1-p

The Piecewise map demonstrated exceptional performance, resulting in significant improvements to the
algorithm. By harnessing its unique properties, the MGO achieves a more varied exploration of the search
space, striking an optimal balance between extensive exploration and focused refinement. The Piecewise
map, known for its discrete transformations and chaotic behaviour, has been strategically integrated into the
MGO framework to provide dynamic position updates during optimization. The chaos function oversees
chaotic value generation during implementation, with a chaos index of 6 corresponding to the piecewise
map. This mapping produces chaotic sequences between 0 and 1 through conditional updates that incor-
porate non-linear transformations. The resulting sequence exhibits complexity and diversity, enhancing the
effectiveness of the search space exploration. The chaotic values derived from the piecewise map contributed
to the position vector calculations A and D, which are crucial for updating the gazelle positions. This update
process follows Eq. (10).

A = chaos (chaosIndex, Iter, Maxlter, chValue)

1
D = A+ chaos (chaosIndex2, Iter, Maxlter, chValue) (10)
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In Eq. (10), the equations utilize piecewise map-generated chaotic values at each iteration to modulate
the forces of exploration and exploitation. Vectors A and D introduce nonlinear perturbations for position
updates, enabling dynamic adaptation to the landscapes of the objective functions and reducing susceptibility
to local optima.

The selection of the piecewise chaotic map from the ten evaluated candidates was determined through
systematic preliminary experiments on representative benchmark functions, which included both unimodal
and multimodal landscapes. The performance evaluation considered factors such as convergence speed,
solution quality, and maintenance of population diversity throughout the optimization iterations. The
Piecewise map consistently outperformed the baseline MGO and alternative chaotic maps, including the
Logistic, Sine, and Tent maps, across various problem types. This superiority is attributed to the balanced
characteristics of the piecewise map: it exhibits strong ergodicity, ensuring comprehensive coverage of
the search space; maintains a moderate Lyapunov exponent, providing controlled randomness without
excessive disruption to convergence trajectories; and requires minimal computational overhead through
simple conditional arithmetic operations, avoiding computationally expensive transcendental functions. The
map’s piecewise-linear structure, with parameters p and q configured to ensure a uniform distribution of
chaotic values across the unit interval while avoiding periodicity that could limit exploration diversity, makes
it particularly suitable for integration into MGO’s position update mechanism, where controlled stochasticity
enhances exploration without compromising the core convergence dynamics of the algorithm.

The resistance of the Piecewise chaotic map to limit cycles and periodic oscillations—critical issues in
chaotic dynamical systems that could undermine exploration diversity—stems from its mathematical struc-
ture and parameter configuration. Unlike simpler chaotic maps, such as the logistic map, which can exhibit
periodic behaviour within specific parameter ranges, the piecewise map maintains aperiodic behaviour
across its entire parameter space due to its piecewise-linear, conditional structure. With parameters p = 0.4
and q = 0.6, the map ensures the trajectory navigates distinct regions of the state space without settling into
repetitive patterns, as confirmed by Lyapunov exponent analysis, which shows positive values indicating
sustained chaotic behaviour without periodic windows. To ensure a reliable enhancement over purely
random variations, the IMGO employs two protective mechanisms. First, the chaotic sequence initialization
uses dimension-dependent seeds derived from prime-number sequences, ensuring that different dimensions
receive uncorrelated chaotic sequences and preventing synchronized oscillations in the population. Second,
the algorithm monitored population diversity by calculating variances at regular intervals. Suppose the
variance metrics potential stagnation, indicating that chaotic perturbations may fall into repetitive patterns.
In that case, the system automatically reinitializes the chaotic sequence with a new seed computed from
the fitness value of the current best solution, effectively disrupting any emerging periodic behavior. These
mechanisms, combined with the inherent aperiodicity of the piecewise map, ensure that chaos mapping con-
sistently provides deterministic yet non-repetitive exploration throughout the Optimization process, thereby
avoiding the convergence degradation that would result from limit-cycle entrapment while maintaining the
reproducibility advantage of deterministic chaos over purely stochastic perturbations.

Improvement Two: The OBL technique enhances the exploration of the search space and the discovery
of optimal solutions in optimization algorithms. It accomplishes this by generating new solutions by
evaluating the opposite values of existing solutions. The core idea is that when current solutions fail to
progress toward optimality, their opposite values may yield better results. By evaluating both the current
and the opposite values simultaneously, the likelihood of identifying an efficient optimal solution increase.
The OBL process generates opposite values for each solution in a population. Rather than focusing on
individual points in the search space, the OBL algorithm introduces diversity by generating opposing



Comput Model Eng Sci. 2026;146(1):24 1

solutions. This approach reduces the risk of premature convergence to local optima, as the opposite solutions
provide alternative search directions that may lead to improved solutions.

The calculation of the opposite point X?p for a solution X; within a bounded search space [LB;, UB;]
followon:

X*=LB;+UB; - X; (1)

In the current solution, the variables represent the lower and upper bounds, respectively, for the ith
dimension. This formulation ensures that the opposite values remain within the feasible limits. In imple-
menting the MGO, the principles of OBL are applied during the updates of the gazelle positions. Specifically,
during the position-updating process, the algorithm evaluates both the current and the opposite positions
and selects the superior option based on a fitness evaluation. The function responsible for computing
and implementing opposite values, known as the corpses function, assesses the dimension-wise distances
between gazelle positions and optimal fitness values (BestFitness) and updates opposite values when specific
criteria are met. The OBL component for the position updates is as follows: Distance Calculation: Compute
the Euclidean distance d; i for a given threshold T using Eq. (12).

di; =X - X} (12)

Eq. (12) can be formulated as where X; is the position of the current gazelle and X is the position of
the other gazelles in the population. Threshold Check and OBL Update: If d;; < T, use OBL to update the
position as Eq. (13).

X;=UB,; +LB; - X; (13)

The integration of OBL into the Multi-objective Genetic Algorithm (MGA) offers several benefits. First,
it enhances the population diversity by promoting exploration across different regions of the search space.
Second, it helps avoid local optima by allowing the algorithm to escape these traps through the evaluation of
the opposite values. Third, using opposite values improves the convergence rate, enabling the algorithm to
reach optimal solutions more quickly and provide additional candidate solutions that may be closer to the
optimum. The implementation of the OBL method enhanced the precision and convergence characteristics
of the MGA. By evaluating both the original and opposite positions, the MGA achieves a more effective
exploration of the solution space and superior optimization performance.

The threshold T for activating distance-based OBL is dynamically calculated as a fraction of the search
space range, ensuring scale-invariant functionality across problems with varying dimensional magnitudes.
This threshold was determined through a sensitivity analysis of ain, in which different threshold levels
were systematically evaluated to find the optimal balance between the OBL activation frequency and com-
putational efficiency. The selected threshold enables appropriate activation rates that maintain population
diversity without incurring excessive computational overheads from continuous opposition generation.
When the threshold is exceeded, indicating potential population clustering, the opposition mechanism gen-
erates complementary solutions to systematically explore the underutilized regions of the search space. The
Euclidean distance calculation in FEq. (12) operates on a dimension-wise basis, triggering opposition when
the average distance between a gazelle and its population neighbors suggests convergence toward specific
regions that may represent local rather than global optimum. This adaptive activation strategy ensures
that diversity enhancement occurs precisely when necessary, thereby avoiding both premature convergence
owing to insufficient diversity maintenance and unnecessary computational costs from excessive opposition
generation during well-diversified search phases.
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The issue of potential degradation in OBL performance arises when opposite solutions consistently
converge to the same optima, offering no exploratory benefit while incurring a computational overhead.
The IMGO addresses this issue with its adaptive activation mechanism and diversity monitoring framework.
Statistical analysis of OBL activation patterns across optimization iterations revealed a dynamic behaviour
that adapts to the evolution of the population distribution. During the initial exploration phases, when
population diversity is high and members are dispersed across the search space, OBL is activated infrequently
when distance metrics exceed threshold values, thereby conserving computational resources when opposite-
solution generation is unlikely to provide additional value. As optimization advances and the population
begins to converge toward promising regions, the frequency of OBL activation increases in response to
decreasing inter-member distances, particularly when diversity enhancement is most valuable for preventing
premature convergence. Importantly, when the opposite and original solutions converge to similar fitness
values, indicating that opposition no longer offers an exploratory advantage, the greedy selection mechanism
in the fitness function naturally reduces the impact of OBL by retaining the original solutions. In contrast,
the distance threshold monitoring detects this convergence state by observing increased similarity between
consecutive pairs of opposite solution fitness values. To prevent scenarios in which all opposite solutions
converge to identical suboptimal regions, the IMGO employs dimension-wise opposition rather than simple
centroid-based opposition, where opposite positions are calculated independently for each dimension rela-
tive to dynamic search space bounds that contract as optimization progresses. This dimension-wise approach
ensures that even when the population clusters in specific dimensions, opposition can still provide diversity
in uncorrelated dimensions, where exploration potential remains. Additionally, the opposition mechanism
incorporates variance-weighted perturbations that scale inversely with the dimension-specific population
variance. Dimensions exhibiting low variance receive stronger opposite perturbations to disrupt clustering,
whereas dimensions maintaining healthy diversity receive conservative opposition to preserve beneficial
convergence patterns. Empirical analysis across benchmark functions demonstrates that OBL activation
frequency naturally decreases throughout optimization as the population approaches optimal regions,
exhibiting higher activation during critical mid-optimization phases, where the exploration-exploitation
balance determines the final solution quality, while gracefully reducing computational overhead during later
phases, where opposition offers diminishing returns. This self-regulating behaviour maintains a favourable
accuracy-efficiency trade-off, as demonstrated by a comprehensive evaluation.

Improvement Three: In this enhancement, four principal components were integrated into the opti-
mization algorithm to improve its effectiveness. Each element was intentionally incorporated to achieve
specific objectives. A detailed explanation of how these components are implemented, along with the
relevant formulas, is provided below. Integration of Mean and Variance Calculations: The mean and variance
calculations were introduced at the beginning of the solution enhancement process. These modifications
replace the previous relationship in Eq. (1), as described in Eq. (14).

ub +1b

mean,, and =
(14)

2 2
) ( ub-1b )
variance_val =
These calculations were aimed at enabling the creation of new candidate solutions using a standard
distribution centered on the mean of the search space. This approach increases the likelihood of finding

optimal solutions to the problem. The next step involved applying a position-update formula that incorpo-
rated a random escape factor. This adjustment, which replaces the relationship in Eq. (6), is implemented as
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follows (15):

NewX (2,:) = BestX — |(randomj,gex - M — randomipgey - X(i,:)) - A| - cofi(randi(4),:)
+ escapefactor - (rand(l,size(X,2))-0.5)-D (15)

This study aimed to enhance population diversity by incorporating a random escape factor. This factor,
drawn from a uniform distribution [0,0.1], introduces a controlled randomness during position updates,
aiding in escaping local optima while ensuring convergence towards optimal solutions. Furthermore, a
position update mechanism without an escape factor was implemented, replacing the relation in Eq. (7).

NewX (3,:) = BestX — | (random;pgex - M — randomypgex + X (i,:)) - A | -cofi (randi (4),:) (16)

Objective: The escape factor in Eq. (16) enhances the exploration near the identified optimal solu-
tion. This targeted approach helps the algorithm strike a balance between exploration and convergence,
thereby optimizing the search process. A novel position-update mechanism based on the square ratio was
implemented, replacing the relationship described by Eq. (9).

X(3,:)?

NewX (4,:) = m

17)

Objective: Eq. (17) systematically adjusted the new positions to ensure value containment while facil-
itating rapid convergence to the optimal solution. This enhancement improves the stability of the solution
updates and the overall performance of the algorithm. These four components significantly enhanced the
capabilities of the optimization algorithm by strategically integrating them into its sections. Calculating the
mean and variance enables the practical exploration of the search space. In contrast, position updates, with
or without the escape factor, improve convergence and prevent entrapment in local optima. Collectively,
these modifications yield more robust and efficient optimization processes. The integrated enhancements of
the IMGO provide complementary performance advantages. The integration of the chaos map enhanced the
diversity of position generation, thereby improving the search precision and accelerating the convergence.
The enhancement of population diversity through OBL facilitates the exploration of previously unexplored
search regions, effectively mitigating the risk of entrapment in local optima. The refined vector generation
methodology addresses the core limitations of the MGO by optimizing diversity management and improving
navigation in the solution space. These strategic improvements collectively enhance the optimization
capabilities of the IMGO, as illustrated in the algorithmic workflow presented in Fig. 1.

The escape factor in Eq. (15) is derived from a carefully selected uniform distribution range designed
to introduce controlled stochasticity, helping avoid local optima while maintaining convergence toward
promising regions. This range was established through a systematic parameter evaluation of benchmark
functions representing diverse optimization landscapes. The chosen range provides sufficient perturbation
to escape local attraction basins in multimodal environments while ensuring convergence precision on
unimodal functions, where exploitation refinement is crucial. Values significantly below this range provide
insufficient perturbation for effective local-optima escape, whereas substantially higher values introduce
excessive randomness, degrading solution quality by disrupting convergence patterns. The mean and vari-
ance calculations in Eq. (14) used the current search space bounds rather than fixed, predetermined values,
allowing for adaptive scaling as the algorithm transitioned through the exploration and exploitation phases.
The variance formulation ensures that the initial population distribution provides comprehensive coverage
of the search space under standard distribution assumptions, establishing thorough initial exploration while
avoiding boundary concentration, which could introduce bias into early search dynamics. This adaptive
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parameter strategy enables the IMGO to automatically adjust its search intensity based on the evolving
optimization landscape, thereby eliminating the need for problem-specific manual parameter tuning that
characterizes many metaheuristic implementations.

! e Jf
O O
— N < Pop e SOl < BestF \ Initialize Gazelles
‘ | A
pg Fobj<Sol |

" =
‘ —>_ Calculate the fitness
OBL
—_
_’_
\ 4
Update Best Gazelle
— Chaos - X4 B ——

@ Best Gazelle <

Figure 1: Flowchart of the IMGO algorithm that fully demonstrates the innovations of this algorithm and shows how
to use the chaos map and OBL

4 Result and Discussion

This section assesses the performance of the IMGO by employing established test functions and
addressing real-world engineering optimization challenges, as delineated in the following two subsections.

4.1 Comparison of IMGO through Benchmark Functions

The IMGO was evaluated using 52 established unimodal and multimodal polynomial benchmark
functions categorized into Unimodal VariableDim, UnimodalFixedDim, Multimodal VariableDim, and Mul-
timodalFixedDim categories. Functions F1-F24 focus on unimodal tasks, emphasizing the algorithms’
exploitation capabilities with a single global optimum. Conversely, functions F25-F52 examine multimodal
characteristics and assess optimization capabilities in terms of exploration (diversity). The performance of the
algorithm was compared with several established heuristic methodologies, demonstrating IMGO’s superior
performance of the IMGO. The algorithm achieved notable results across various optimization frameworks,
and the performance documentation is presented in comprehensive tables. The comparative algorithms
included MGO [8], Invasive Weed Optimization (IWO) [29], Slime Mould Algorithm (SMA) [30], Chaos
Game Optimization (CGO) [31], Transient Search Optimization (TSO) [32], Whale Optimization Algorithm
(WOA) [33], Harris Hawks Optimization (HHO) [34], PSO [35], Grasshopper Optimization Algorithm
(GOA) [36], and Sine Cosine Algorithm (SCA) [37]. The experimental parameters included the best solution,
worst solution, standard deviation, mean results, and execution time. All evaluations were conducted
under uniform system conditions and identical inputs, utilizing a population size of 30 and 500 iterations
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each. Table 2 presents these results. In this comprehensive evaluation, the IMGO was compared with well-
recognized optimization methodologies in the field. Extensive experimental results demonstrate IMGO’s
remarkable superiority in most scenarios. During the assessments, the IMGO exhibited significantly faster
convergence to optimal values than the alternative approaches. The algorithm achieved superior results even
after numerous iterations, highlighting its effectiveness in optimizing complex functions. For the F1 function,
which involves intricate optimization challenges, the IMGO attained optimal values substantially faster than
its competitors. In comparison, algorithms such as the SCA and CGO yielded inferior results after multiple
iterations, highlighting IMGO’s strength in complex function optimization.

Table 2: Comprehensive performance comparison across 52 benchmark functions. Best: minimum fitness value
achieved across 30 runs; Worst: maximum fitness value; Mean: average fitness value; SD: standard deviation indicating
consistency; Time: average execution time in seconds. Lower values indicate superior performance

Function Creative MGO HHO CGO WOA SMA SCA IWO GOA TSO PSO IMGO
108 x 563x 106x 786 x 270 x 128 x  342x 218 x 220 x

Best  [o7t g2 g g 0x10 T T 10* s e 0x10
Worst LSLX l4dx  7lMx 315x  622x 162x 546x 7d46x 230x 856x  78lx
10 10 10 10 10 10 10 10 10 10 10
- Mean MY 289x 340x 941x 166x 327x 208x 969x 171x  776x 160 x
10 10 10 10 10 10 10 10 10 10 10
oo MO7x  64dx 390x 152x 284x 102x  L2x  4llx  106x 193x 349 x
10° 10° 10! 10° 10° 107! 10 10 10! 10 1072
Time o0 ss9 708 305 279 777 3 242000 40 74 508
(ms) 000
Best 16(‘)1,320§ }02,230? 0 x 10° 1201,7137) 0x10° 0 x10° l‘lf;ff 4;1)9; 61'325 61'3,725 0 x 10°
Worst 109X 324x 5dlx 648x 520x 578x 6I7x 284x 802x 379x 826x
10 10 10 10 10 10 10 10 10 10 10
0 Mean 7.1}1x0 6.4?6x 1.23_6x 2.2§5>< I.OZ3>< 5.1i11;< 9.6§2>< 2.420 X 5.6(36>< 1.42_5x 1‘65—;(
10 10 10 10 10 10 10 10 10 10 10
sp 848X 145x 243x 355x 232x SIx  195x 108x 509x 673x 370x
107 107 10” 107 1072 107 107 107 10” 107 107
Time 691 168 819 964 323 106 440 236 863 120 467
Best B 7S0x 201k 84lx  218x  206x  795x 817 x 44dx 695x o
10 10 10 10 10 10 10 10 10 10
Worst 1.450>< 2.341 X 4.821 X 2.062 X 1.183>< 6.860 X 1.383>< 1.133>< 1.952>< 2.422 X 2.770 X
10 10 10 10 10 10 10 10 10 10 10
B3 Mean 4.2%2>< 7.0(3; 4.4%1>< 4.4§1>< 1.501>< 3.8£1>< 9.342 X 1.503>< 2.221 X 2.331 X 6.0§3><
10 10 10 10 10 10 10 10 10 10 10
oo 206x Lllx 365x 921x 125x 58x 162x 835x 207x 493x 124x
107! 10° 10° 10° 10% 107! 10? 10? 10! 10! 107!
f;“;; 471 605 614 285 265  50.4 345 682,000 5.9 527 376
Best 1‘6_12: 2.2_717>5< 5.895: 7.15_5>< 4.6_516>7< 2.0(38x 5.431 X 7.131>< 1.290>< 2‘260>< 0 % 10°
10 10 10 10 10 10 10 10 10 10
Worst 04x 836x 164x 253x 890x Lllx 939x 950x 637x 226x 489 x
10 10 10 10 10 10 10 10 10 10 10
F4 Mean 706X L83x 374x 894x 355x 808x 6ldx 963x 160x 226x 1Lx
107 107 107 107 107 107 10 10 10 10 107
oo 136X 374x  222x  LI7x  409x 496x 925x 728x 723x  800x 221x
107! 107! 107! 1072 10° 107! 10° 10! 107! 107 1072
fr‘nnsl; 539 80.8 632 403 284 55 289 53500 628 427 463

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO  GOA TSO PSO IMGO

Best 1.8_31: 0 x 10° 2.2_11: 2.8§_§2>< 3.593>< 3.280 x 2.364 x 3.9(1 x 231 x 112 x 7.5454><
10 10 10 10 10 10 10 10 10 10
Worst 1.053>< 5.221 X 2.692 X 7.002>< 7.224>< 1.091 X 7.634>< 8.554>< 3.742>< 3.173x 4.94%) X
10 10 10 10 10 10 10 10 10 10 10
- Mean 2.120>< 105 x 1.540>< 1.470>< 1.922>< 3.330>< 3.554>< 1.035>< 1.320>< 3.222 x 719 x
10 10 10 10 10 10 10 10 10 10 10
D 4.711>< 2.340 x 1.651>< 3.131>< 3.323 x 3.991>< 1.444>< 4.84i x 1.691>< 7.422>< 413 x
10 10 10 10 10 10” 10 10 10 10 10~
. 24,500,
Time 497 89.8 564 29.4 266 449 271 000 50.3 40.1 403
Best —1.55 x —1.55 x —1.55 x —1.5; x —1.5; x —4.09 —1.4; x —3.612 x —1.5; x —1.2; X —1.55 x
10 10 10 10 10 x 10 10 10 10 10 10
Worst —1.5&23 x —1.23 x —1.5125 x —1.5125 x —2.49 x —2.7? x —2.1(1) x —2.213 x —1.23 x —1.25 x —1.23 x
10 10 10 10 10 10 10 10 10 10 10
F6 Mean —1.5? X —1.5? X —1.5? X —1.5? X —1.5(2) X —3.9? X —1.3? X 1.001>< —1.5? X —1.2? X —1.5? X
10 10 10 10 10 10 10 10 10 10 10
I T R A
Time
(ms) 524 90.9 622 36.5 262 475 242 41,200 537 36.9 401
Best 2.5041>< 2.9649x 4.2371>< 2.0353x 5.7%;; 2.2647>< 2.1430x 1.824x 6.835>< 7.364>< 0 % 10°
10” 10” 10” 10™ 10” 10~ 10 10 10~ 10~
Worst 2.400 x 1.2§0x 1.288>< 3.781 x 1.4}1; 8.210>< 2.0§1>< 1.8§7>< 2.9(; x 3.2?0>< 1.480><
10 10 10 10 10 10 10 10 10 10 10
- Mean 8.2'ZZ>< 2.51; 2.555x 131 x 2.8§9>< 4.0§1>< 1.1639>< 2.2§1x 6.396 x 5'9% x 3.04_1;
10 10 10 10 10 10 10 10 10 10 10
sD 393 x 562 x 5.71 x 1.72 x 6.30x 6.25x 136 x 782 x 426 x 433 x 6.61 x
107! 10%8 10° 10° 10%° 107! 10% 10% 10 10° 1072
F(FI’I’:S‘;’ 536 61.5 590 323 243 46.2 438 741E+10 49.9 36.7 413
Best i’)3_626§ 0x10° 0 x10° f(')7_923§ 0x10° 0 x10° 11'5_65 2'1359)( 41‘5_925 21'3_225 0 x 10°
Worst 1.2?15>< 4.542 X 5.5(35>< 8.6%4>< 1.0710>< 6.7}15 7.749>< 2.3(1)0>< 1.9ZSX 3.2§li< 7.0?16><
10 10 10 10 10 10 10 10 10 10 10
- Mean 5.1(38x 9.OZ1>< 1.86_7x 1.72_6>< 2.167>< 1.3?1: 6.867 x 2.8(1)0>< 1.9_71: 6.9_11; 141 x
10 10 10 10 10 10 10 10 10 10 10
D 776 x  2.03x 272x 385x 478x 3.00x 552x 291x 196x 116x 314 x
1077 10! 107° 107° 10° 1071 108 10° 100 107! 1077
?;Isl;’ 709 214 817 95.1 325 88.4 504 2.83E+08 114 111 562
Best 6.2}3: 4.892: 1.711>< 2.711 X S.Z?ZX 2.791 X 2.761 X 1.138>< 2.6% X 2.601 X 3.522><
10 10 10 10 10 10 10 10 10 10 10
Worst 3.921 x 1.125>< 4.961 x 1.154>< 3.368 x 1.622>< 3.548 x 3.788 x 1.363>< 1.342>< 1.262><
10 10 10 10 10 10 10 10 10 10 10
Fo Mean 6.5§1x 2.252 x 2.261 x 5.101>< 8.385 x 2.861 x 1.957>< 4.478 x 2.701 x 4.111>< 4.44_11><
10 10 10 10 10 10 10 10 10 10 10
D 438 x 5.03x 443 x 513 x 1.55 x 6.02 x  5.69 x 1.15 x 1.47 x 2.91 x 5.97 x
10° 10° 10° 10? 10 10° 10 108 10% 10" 10°
Time o0 131 641 443 298 58 qis P70 o6 462 494
(ms) 000

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO GOA TSO PSO IMGO
Best ll-gi: 19(-)1_6250 11(-)1_713 613_48; 0 x 10° 413;) x 2@* 5-1%?3 71-§§1T ﬁgl; 0 x 10°
Worst 8.1% 2>< 7.7{ 1>< 3.0% 1>< 1.7? 1>< 9.528 X 6.592 X 1.017>< 1.7515>< 3.313>< 7.6€E 1>< 6.5}1><
10 10 10 10 10 10 10 10 10 10 10
F10 Mean 7.5%4>< 1.7ZS>< 2.0}3>< 5.1?4>< 1.906>< 1.331>< 2.034>< 1.6.’-';8>< 6.7§4>< 6.2§2>< 1.3(33><
10 10 10 10 10 10 10 10 10 10 10
SD 6.843>< 3.482x 2.112>< 8.043>< 4.267 x 5.211>< 4.545 x 5.1910>< 5.624>< 1.56 x 2.91;
10 10 10 10 10 10 10 10 10 10 10
Time 173 754 708 316 17 467 12000y 157 636
(ms) 000
Best 1.59_4x 2.4?1>< 6'6le 2.4?1>< 3.O§1>< G'GZIX 6.7(31>< 7.305>< 2.45_31x 6.6Z1x 2.5(31><
10 10 10 10 10 10 10 10 10 10 10
Worst 1.550>< 7.673>< 3.09O X 2.5?1>< 1.486>< 1.07O>< 2.926>< 2.566x 2.691>< 3.970>< 7.180><
10 10 10 10 10 10 10 10 10 10 10
1 Mean 1.091x 1.561>< 6.94_11>< 2.4?1>< 3.983 X 6.7§1>< 7.324>< 3.806 X 2.5(_)1>< 1.160>< 2.711><
10 10 10 10 10 10 10 10 10 10 10
SD 193 x  343x 217x 492x 690x 234x 335x 748x 287 x 102x 312 x
107! 10? 107! 107 10* 1072 10° 10° 107 10° 107!
Time o0 o487 30 315 483 280 ¥ 54 m6 405
(ms) 000
Best ‘;)7_33? 0 x 10° 11'8_98§< 21'3_715 0 x 10° 51'(1)95 9i(7)?lx 5'19023 X 23)25 1'1‘(1)3_5 0 x 10°
Worst 2.2£El>< 1.181>< 2.9?1>< 1.451 x 1.594>< 5.112>< 1.124>< 1.794>< 2.640 x 8.0113>< 1.381><
10 10 10 10 10 10 10 10 10 10 10
FI2 Mean 2.7§3>< 3.4§2>< 1.85_3>< 6.1£2x 3.461 X 4.890 x  2.78 x 5.82 x 5.0% X 9.7Z X 2.7? X
10 10 10 10 10 10 10? 10* 1072 107 1072
sp  226x 556x 188x 778x 713x  247x LI7x  8l4x 333x 246x 617x
1072 107! 1072 107! 10% 10! 10° 10° 107! 107 107!
Time o0 996 725 592 340 761 338 BI04 62.8 41
(ms) 000
Best —1.0(()) X —1.0(()) X —1.0(()) X —1.0(()) X —1.0(()) X —1.0(()) X 7.8711x8 1.281;< —1.000 X 6.2219>: —1.000 X
10 10 10 10 10 10 10 10 10 10 10
Worst 8.2% 3.8§4>9< 4.3% 4.9;; 1.513: 4.304: 7.115 2.263>< 72.961 x 6.2219: 74.161 x
10” 10” 10” 10” 10” 10” 10” 10” 10” 10” 10”
F13 Mean —9.4_9; x —9.9_31 x —9.9_% x —7.5_71 x —7.5_01 x —1.4_61 x 1.4_34; 1.36_8>< —9.8_51 x 6.2_219: —9.9_91 x
10 10 10 10 10 10 10 10 10 10 10
D 2.001>< 7.662x 4.472>< 4.281>< 4.331>< 3.531>< 3.184; 1.502: 3.162>< 0 % 10° 2.612><
10 10 10 10 10 10 10 10 10 10
Time 5 333 789 130 334 135 6a7 20 5 153 766
(ms) 000
Best 9.7?1>< 4.301 X 5.7§3>< 5.031 X 1.3171>< 2.972x 2.630>< 1.826>< 3.994>< 2.1§1x 4.0(3L X
10 10 10 10 10 10 10 10 10 10 10
Worst 2.653 x 2.955 x 2.024 x 4.024 x 8.284 x 305x 38lx 26lx 280x 433x 716 x
10 10 10 10 10 10? 10° 10° 10° 10 10
- Mean 152X 304x  LI2x  503x  250x  3.02x 105x  3l4x  438x  202x  4.02x
10 10° 10 10 10° 10? 10° 107 10 10? 10*
D 3.88 x 1.72 x 1.31 x 4.02 x 1.32 x 2.72 x 1.77 % 8.0l x 243x 2.00x 194 x
10 10* 10° 10° 10* 10° 10* 10° 10* 10° 10°
fr‘nnsl)e 583 231 738 832 220 803 536 1,780,000 89.9 758 559

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO  GOA TSO PSO IMGO

Best ‘Ll'gif 0 x 10° i’f_zlﬁ ll'éiz 0x10° 0x10° Zfﬁf 6'15(; X ll'éiﬁ lig_gx 0 x 10°
Worst 3.452 X 1.611>< 2.780 X 2.332>< 1.044>< 1.4§1x 1.124>< 1.164>< 2.2(22>< 4.510>< 1.210><
10 10 10 10 10 10 10 10 10 10 10
FI5 Mean 7.0(31>< 3.2§2>< 2.3ZZ>< 4.7§1>< 2.311>< 4.0§3>< 3.932 X 1.564>< 7.2313>< 4.6}1>< 2.4}3><
10 10 10 10 10 10 10 10 10 10 10
D 1.541 x 718 x 232 x 1.041 x 4.672 x 1.062>< 1.443 x 7.093>< 1.02 x 1.120>< 5.402><
10 10” 10” 10 10 10” 10 10 10” 10 10”
Time oo 68 585 289 259 514 21 M0 ug9 a1 4o
(ms) 000
Best 0 x 10/ 51~g_41 X 0x10° 31~§_51 X 71-391; 91-(1)9_f 4;")?9* 618031 x ll-g_j 0 x 10° ﬂfﬁf
Worst 4.0§3>< 9.720 X 1.3§1x 9.750 X 8.SZI>< 1.410>< 3.6?1>< 2.591 X 9.820 X 3.9% X 7'37,1X
10 10 10 10 10 10 10 10 10 10 10
FI6 Mean 205 x 164 x 4.3§4x 718 x 157 x 1.070>< 108 x 5.873 x 517 x 1.4§2x 6.5§1x
10 10 10 10 10 10 10 10 10 10 10
D 4.334>< 1.190x 6.533>< 798 x 8.842>< 8.232>< 1.662>< 4.941 x 6.351>< 1.901>< 3.623><
10” 10 10” 10” 10” 10” 10” 10 10” 10™ 10”
Time oo 641 488 239 133 238 351 U3, 67 B2 303
(ms) 000
Best 0x10° ° g&x 0 x 10° 21‘2)9_4X 1'1%2_5 1'1%3_'7X 95)95 3 15 071 X Zfé?zx 0 x 10° 1'123_1X
Worst 4.3%1>< 2.350>< 1.630>< 1.871>< 8.591x 3.460 x 2.190>< 3.831 x 1.231x 2.500 x 2.180><
10 10 10 10 10 10 10 10 10 10 10
F17 Mean l.0§3>< 5.6ZZ>< 3.2?3>< 1.02_1>< 1.86_2x 5.9?2>< 5.4?3>< 3.662 X 9.2%1>< I.S%ZX 1.95_1><
10 10 10 10 10 10 10 10 10 10 10
D 194 x  3.22 x 7.31 x 8.77 x  1.05 x 3.41 x 984 x 324x 978x 140x 2.52x
1072 107! 1072 107! 107! 107! 1072 10" 107! 107! 107!
Time
(ms) 382 56.9 468 20 133 21.8 358 34,400 263 11.2 316
Best 1.3?8: 1.3?8: 1.3538: 1.3538: 1.3538: 1.3538: 1.3538: 2‘570 X 1.3538: 2.5§4>< 1.12_;
10 10 10 10 10 10 10 10 10 10 10
Worst 1.3§87x 1.86 x 1.3§87x 1.3%; 8.480 x 4.780 x 5.251 x 8.370 x 6.6113>< 128 x 113 x
10 10 10 10 10 10 10 10 10 10 10
F1s Mean 1.3§87x 3.7%4x 1.3§87x 2.626x 1.7(3; 7.053; 491 x 2.562 x 133 x 1.63_; 5.8(_)4><
10 10 10 10 10 10 10 10 10 10 10
D 1.12 x 8.32 x 1.12 x 597 x 379x 444 x 417 x 2.82x 297 x 238 x 2.13 x
10712 107 10712 107 107! 107! 10° 10° 107 1072 107
E:Sl;’ 384 62 481 20.1 134 227 226 2320 234 10.8 294
2.01 x 226x  2.00x 8.64x 216 x

Best 0x10° 0x10° 0x10° 0x10° 0x10° 0 x 10°

107193 10710 10° 1074 107%
858x 120x 162x 491x L12x 280x 594x 219x 564x 631x 3.88x

Worst 05 102 105 107 10° 10° 107! 10° 0% 10t 107
- Mean 183X 240 109x 100x  557x 560x L71x 174x  550x 138x 776
10 10 10 10 10 10 10 10 10 10 10
oo 385X 536x 127x  220x  725x  125x  277x  183x  3E&2x 855x 174
10 10 107° 107° 10 10 1072 10° 107° 10 107!
Time
(me 82 446 480 203 126 21 374 1850 212 112 282

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO GOA TSO PSO IMGO
Best 23X 293x 293x  293x  293x  293x 423x 525x  293x  293x 293 x
107! 107! 107! 107! 107! 107! 107! 107! 107! 107! 107!
Worst 3.01 x 5.01 x 3.18 x 501x 470x 384x 484x 575x 501 x 447 x 294 x
107! 107! 107! 107! 107! 107! 107! 107! 107! 107! 107!
20 Mean 293X 294x  293x  296x 293x 294x 442x 499x 298x 294x 293 x
107! 107! 107! 107! 107! 107! 107! 107! 107! 107! 107!
sp  605x 150x  231x 184x 840x 626x 196x 530x 184x 126x 3.84x
107 1072 107 1072 107 107° 1072 107! 1072 1072 107
-
(rlnn;; 388 722 477 21 135 212 272 569 224 111 288
Best  MOLX 191x  191x  191x  191x  191x  389x 460x 191x 191x  235x
10! 10! 10! 10! 10! 10! 107 10° 10! 10! 10!
Worst 1.12 x 33l1x  9.09x 286x 6.02x 323x 166 x 1.70 x  2.08x 747 x  3.75x
10° 10! 10 10° 10 10° 10° 10° 10 10 10
- Mean 246 202x  210x  598x  137x 703x 267x 355x  675x  640x  2.63x
10 10! 10! 10 10° 10° 10% 1010 10! 10? 10!
sD 5.00 x 1.99 x 3.98 x 1.28 x 2.71 x 1.45 x 3,69 x 465x 927x 6.67 x 2.10 x
10° 10° 10! 10* 10° 10° 10° 10° 10? 10° 10!
-
(If;; 387 6L8 482 222 129 225 268 431E+08 24.4 12 307
2.95 x 1.72 x 1.35x  6.08x 170 x 130 x  395x 329x 169 x
Best 0 x10° - ° o d °
es A0 g7 000 s 07 102 1078 10! 10° 10" 10°
187 x 165x 314x 137x 204x 863x 58 x 955x 521x 190x 125x
Worst 02 0t 0t 0! 10° 10 107! 10° 102 100 10!
— Mean M4X 565x 868x 86lx 929x 13lx 184x TI8x 72x  278x 939 x
107 107 107 107 1073 107! 1072 10! 10 1072 107
D 1.28 x 8.27 x  1.46 x 8.71 x 9.92 x 1.37 x 2.61 x 1.85 x  4.69 x 1.81 x 9.35 x
107 107 1072 107° 1072 107! 1072 10! 107 1072 107°
-
(rlnn;)e 390 656 490 221 130 343 358 1,900 251 123 299
Best 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0 x10°
Worst 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0 x10°
F23 Mean 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0 x10°
SD  0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0 x10°
T
(rlnnsl;’ 636 259 785 92 214 89.1 377 0 952 827 579
Best =379 x =379 x -379%x -379x -379x -371x -379x 335x -379x -379x -3.79x
107 107 107 107° 107 107° 107 10! 107° 107 107
Worst 249X 419x  256x  323x  372x  105x 262x 416x 537x 274x  4.49x
107! 107 1073 107! 107! 107! 107! 10! 1072 107 1073
4 Mean 323X “377x -378x -310x -208x 756x -3.09x 420x -352x -371x -377x
1073 1073 1073 1073 1073 1073 1073 10° 1073 1073 1073
D 1.13 x 1.91 x 287 x 146 x 223 x 2.17 x 120x  296x 2.64x 562x 373x
1072 107 107 1072 1072 1072 1072 10! 107 107 107
-
(rlnnsl;’ 386 582 465 277 131 246 385 31,600 228 101 301

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO  GOA TSO PSO IMGO
127 x  127x  127x 118x L19x 254x 252x 435x 123x 140x 2.84x

Best

107° 107° 107° 10 1073 10 10 10 10° 107° 107°
Worst 1.110>< 3.441 X 5.700 X 1.192>< 3.582 X 3.292 X 3.672 X 4.402 X 1.551x 3.9% X 4.8(3) X
10 10 10 10 10 10 10 10 10 10 10
25 Mean 9.5%; zo?zx 128 x 1.182>< 1.781>< 2.552>< 2.792 x 4.062 x 1.700>< 8.5§lx 4.5§2x
10 10 10 10 10 10 10 10 10 10 10
D 9.912>< 1.540>< 7.811>< 2.272>< 5.111>< 6.9(3) x 3.101>< 4.272 x 1.730>< 1.390>< 3.461><
10 10 10 10 10 10 10 10 10 10 10
Time o) 130 645 445 279 645 315 26 55 505 504
(ms) 000

876 x 433x 4.88x 107 x

Best 0x10° 0x10° 0x10° 0x10° 0x10° 0 x10° 10! e 106 o 0% 10°
Worst 4.401 X 8.27l X 4.501 X 4.071 X 4.412>< 5.154x 4.762 X 5.042 X 7.180>< 2.801 X 3.141><
10 10 10 10 10 10 10 10 10 10 10
26 Mean 1 x 166 x 1.310>< 171 x 9.650 x 1.4%; 1.792>< 5.672 x 4.szlx 3.060 x 6.3§2><
10 10 10 10 10 10 10 10 10 10 10
sp  343x 370x  691x  257x 296x 368x 789x 422x 12x 729x ldlx
10° 10° 10° 10° 10! 1072 10! 10% 10° 10° 10°
Time o 106 590 365 298 511 s M2 a0 375 a9
(ms) 000
Best 9.091x 9.091x 9.091x 9.091x 9.091x 9.091x 1.000 x 1.491 x 1.000 x 1.000 x 9.091x
10 10 10 10 10 10 10 10 10 10 10
Worst 1.280>< 1.130>< 9.01}1>< 1.000>< 1.111>< 916 x 9.6% x 1.471>< 1.070>< 1.020>< 9.54}1><
10 10 10 10 10 10 10 10 10 10 10
- Mean 9.0%1>< 9.01 x 9.0(_)1>< 913 x 1.050>< 9.0(_)1>< 2.430 x 1.541>< 1.000>< 1.000>< 9.0(_)1><
10 10 10 10 10 10 10 10 10 10 10
D 1.83 x 1.49 x 6.13 x  3.30 x 747 x 946 x  1.89 x 150 x  6.79 x 532 x 2.41 x
1072 1072 107 1072 107! 107 10° 10" 107 107 107
?:g; 509 104 610 479 291 53.9 261 14,700 621 50.8 417
Best 7.005>< 4.512>< 7.621: 2.032 X 2.620x 3.163>< 2.0Z1>< 8.6?0x 8.3»62 X 9‘172x 1.163><
10 10 10 10 10 10 10 10 10 10 10
Worst 9.403 X 1.434>< 2.263 X 7.923>< 2.3(1)1>< 10'0100 X 3.0_:3l>< S.O?IX 4.246>< 6.976>< 7.313><
10 10 10 10 10 10 10 10 10 10 10
28 Mean 4.742 x 1.693x 7.681>< 5.742 x 5.108>< 3.878 x 2.3(1)1x 3.7.::1>< 1.984>< 8.445 x 1.453><
10 10 10 10 10 10 10 10 10 10 10
sD 9.12 x 941 x 342x 703 x 1.03 x 523 x 265x 9.65x 267x 196 x 6.51 x
10? 10? 10? 10% 10'° 10° 10'° 10'° 10° 10° 10%
Time 01 906 563 298 279 573 Y B I 2 425
(ms) 000
Best igi: ﬁ%?j 11-3,571* 815527 ifjg 0 x 10° 219070 6fg x ﬁg‘?z Biz%f 0 x 10°
Worst 7.9%2>< 3.9(31>< 4.391x 2.740>< 5.661 X 5.4?2>< 6.881 X 7.521>< 1.100>< 6.6ilzx 4.4Zl><
10 10 10 10 10 10 10 10 10 10 10
F29 Mean 2.02_;3>< 143 x 4.3§3>< 4.9}2>< 2.491>< 313 x 1.781 x 9.431 x 133 x 118 x 9.oz4><
10 10 10 10 10 10 10 10 10 10 10
D 1.11; 1.772>< 3.452x 2.441>< 3.100>< 5.013>< 1.331>< 6.041 X 2.451>< 1.962>< 2.002x
10 10 10 10 10 10 10 10 10 107 10
f:nnsl; 498 988 587 373 261 49.1 259 57600 63.6 407 405

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO  GOA TSO PSO IMGO
456 x  591x 970x 119x 594 x 1.57 x 479 x  570x  3.07 x

Best 10757 1079 10718 gm0 107273 0 x 10° 10°° 10! 1013 10°° 0 x 10°
Worst 1.5172>< 7.0%2>< 4.6§2>< 8.8Z2>< 1.3%3>< 8.8§5>< 3.8?2>< 9.1714>< 3.0§2>< 2.4§2x 2.3%2><
10 10 10 10 10 10 10 10 10 10 10
F30 Mean 701 X 1.4Z4>< 218 x 1.9Z4>< 2.6&130>< 2.0117x 1.1210>< 1.7%; 3.8§4x 117 x 4.6§5x
10 10 10 10 10 10 10 10 10 10 10
SD 9.584>< 3.15 x 2.673x 3.983x 5.92131x 4.006>< 1.8911>< 3.5912>< 2.333>< 4.553>< 1.043><
10 10 10 10 10 10 10 10 10 10 10
Time 00 505 845 17 323 997 455 V8606 972 480
(ms) 000
Best —4.4i16 —4.4;16 3.111§ 3.111§ _4'4ﬁ; _4'4ﬁ; 1.901 x 1.991 x 5.503x 771 x _4'4ﬁs
x 10710 x10” 10 10” x 10716 x10” 10 10 10” 107 x10”
Worst 1.730x 3.67O x 6.2% x 4.59O x 2.061 x 4.6§1x 2.061 x z.ulx 4.580 x 2.840 x 1.310x
10 10 10 10 10 10 10 10 10 10 10
F31 Mean 2.4%2>< L6l x 8.4§2x 135 x 8.4(_)2>< 2.8%; 1.961 x 2.111>< 1.870 x 4.8§1x 3.2%3><
10 10 10 10 10 10 10 10 10 10 10
sp  M48x  233x  600x 2lx  102x 430x 442x  201x 122x  9.02x 6.0 x
107! 107! 107! 107! 10° 1072 107! 10! 10° 107! 1072
Time
(ms) 526 108 597 40.2 256 50.9 259 18,700 60 40.6 415
Best 1.000 X 1.0% X 1.671 X 5.070 X 3.851 X 9.251 X 1.696>< 9.295 X 1.052>< 2.531 X 1.720x
10 10 10 10 10 10 10 10 10 10 10
Worst 7.873>< 2.153>< 9.022 x 2.194>< 1.656>< 8.385 x 2.026 x 1.956>< 1.194>< 7.154>< 4.691 x
10 10 10 10 10 10 10 10 10 10 10
— mean 1.941>< 6.010 x 3.541 x 8.951 x 6.333 x 4.213>< 1.776>< 2.466 x 9.902 x 5.553>< 1.871><
10 10 10 10 10 10 10 10 10 10 10
sp 353X 975x  TAlx  L09x  872x 446x 94dx 106x 732x  148x  L05x
10? 10! 10! 10° 10* 10* 10 10° 10% 10* 10!
Time 121 625 454 286 61.3 316 674 945 449 449
(ms) 000
B 90 G g MBX oy 999 23 208 200 0y
Worst 1.490>< 2.120>< 1.120>< 2.140>< 2.841 x 1.800>< 2.561 x 2.751 x 2.610>< 1.440>< 2.2(31x
10 10 10 10 10 10 10 10 10 10 10
F33 Mean 1.2311>< 8.15_3>< 1.6%;( 3.8?2>< 3.7(31>< 1.05_1>< 2.391 X 3.281 X 3.411>< 8.5%1x l.6§2><
10 10 10 10 10 10 10 10 10 10 10
D 1.35 x 1.05 x 1.06 x 1.37 x 1.82 x 779 x 344 x 218 x 1.56 x 1.99 x  3.79 x
107! 107! 107! 107! 10° 1072 107! 10! 107! 107! 1072
Time
(ms) 494 67.3 566 29 320 44.8 485 17300  50.4 33 385
Best _MZ X _MZ X _MZ X _MZ X _MZ X —4.3? X —9.221 X —3.928 X —1.IZ X —1.IZ X —1.IZ X
10 10 10 10 10 10 10 10 10 10 10
Worst —1.12 x —1.1Z x —1.1Z x —1.1% x —4.122 x —431x -383x —2l4x -ll4dx -117x -117x
10 10 10 10 10 10? 107 10? 10° 10° 10°
F34 Mean _MZ X _MZ X _MZ X _MZ X —1.12 X —4.3? X —8.8;5 X —1.43 X _MZ X _MZ X _MZ X
10 10 10 10 10 10 10 10 10 10 10
SD 173x 855x 358x 284x 571x 817x 590x -423x 278x 188x  3.02x
10° 10 107! 10° 10! 107! 10! 10% 10° 10° 107!
Time oo 255 828 95 341 945 357 387, 115 104 658
(ms) 000

(Continued)
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Table 2 (continued)

Function Creative MGO HHO CGO WOA SMA SCA IWO GOA TSO PSO IMGO
Best 0x10° 0x10° 0x10° 0x10° 0x10° 0 x 10° 6'15010X 9'17;)X 91'%)3_7X 3£§8X 0 x 10°
Worst 1.540x 6.54}1x 5.9§1>< 1.240>< 2.031 X 9.0§l>< 1.921 X 2.051 X 6.1%1x 1.170x 7.3(32><
10 10 10 10 10 10 10 10 10 10 10
F35 Mean 9.4?3>< 2.8§3>< 6.3§3>< 2.5}3>< 7.25;< 3.42}3>< 9.320>< 2.581 X 6.5(32x Z.G%IX 1.4Z4x
10 10 10 10 10 10 10 10 10 10 10
. 9.352>< 4.162>< 5.922>< 5.532>< 9.51 x 4.092>< 3.410>< 1.231 x 6.172>< 4.261>< 3.263><
10 10 10 10 10 10 10 10 10 10 10
Time
(ms) 585 135 656 44.8 294 59.3 315 6730 72 51 489
Best —1.000 X —1.000 X —1.000 b3 —1.000 X —1.000 X 1.547>< 4.511: 1.027>< —1.000 X 1.152>1< —1.000 X
10 10 10 10 10 10 10 10 10 10 10
Worst 2.2?1; 5.9?1; 2.6?1; 5.0?1: l.lfi7x 3.2§7x 4.5§7>< 3.2}6>< 8.1}1>S< 1.0?1: —1.5772 X
10 10 10 10 10 10 10 10 10 10 10
F36 Mean —9.6_51 X —9.9_41 X —9.5_31 X —9.9_21 X —9.2_51 X 1.56_7>< 2.2%9>< 2.8(35>< —8.2_51 X 1.391: —9.9_81 X
10 10 10 10 10 10 10 10 10 10 10
D 1.60 x 776 x 1.92 x 7.56 x 1.43 x 1.70 x  252x 782x 242x 287 x 4.44x
107! 1072 107! 1072 107! 1078 1078 1078 1070 10 1072
Time
(ms) 570 134 700 42.8 280 63 305 0.05 105 57.4 475
Best 3.5_11; 3.5_11; 0 % 10° 3.5_11; 1.7?3: 2.4§4>< 9.0_912>< 8.6%x 3.5_812>< 3.5_13 3.5_13
10 10 10 10 10 10 10 10 10 10
Worst 3.5}1;< 6.05)12>< 5.9j112>< 3.8}1; 1.434>< 2.5%3>< 3.4(33>< 7.760>< 8.1}1>2< 76?1: 3.7111;
10 10 10 10 10 10 10 10 10 10 10
F37 Mean 3.5_11;< 3.5_21; 3.4_612>< 3.5_11;< 2.8§7>< 6.0§4>< 7.4&36>< 1.332>< 3.6_912>< 4.1_21: 3.5_21;
10 10 10 10 10 10 10 10 10 10 10
D 1.64 x 1.59 x 7.48 x 1.97 x 6.40 x 1.50 x 1.52 x 237 x  4.60 x 1.19 x 3.33 x
1077 10 10 10 10 1074 1074 10° 07" 10 1o
E:Sl; 532 111 603 37 267 50.6 381 2460 59.6 45.7 424
Best 1.353; 9.6013>< 2.9222x 6.035>< 6.703>< 2.940>< 4.6% X 5.068 X 2.122>< 3.4811>< 7.435><
10~ 10~ 10~ 10~ 10 10 10 10 10~ 10 10~
Worst 1.081>< 5.44%J X 1.6(31>< 5.6§1>< 1.509>< 4.4% X 1.589>< 1.679>< 7.121>< 1.1()4>< 2.1?1x
10 10 10 10 10 10 10 10 10 10 10
F38 Mean 5.7§2>< 1.4%2>< 2.2§3x 3.19_;( 3.446 X 2.9%) X 1.278>< 2.239 X 2.3%1x 1.35_2>< 1.02_2><
10 10 10 10 10 10 10 10 10 10 10
D 7.00 1>< 2.51 1X 1.572>< 3.792x 6.777 X 9.932>< 2.9% X 4.818>< 3‘2(2)>< 3.272>< 3.912><
10~ 10~ 10~ 10~ 10 10~ 10 10 10 10~ 10~
Time 00 564 1380 239 468 195 51 182000 e 06 160
(ms) 000
Best 1.8?2; 7.6912< 6.0?ZZ< 3.04}5>< 4.2§6>< 3.8§1>< 3.271 X 2.108x 6.3?6>< 1.1§9x 6.225><
10 10 10 10 10 10 10 10 10 10 10
Worst 2.380 X 3.670 X 5.12;< 5.140 X 7.748>< 1.570>< 7.678 X 9.538 X 3.2(33>< 7.9(3;< 1.3§l><
10 10 10 10 10 10 10 10 10 10 10
F39 Mean 7.6%;( 1.41_2>< 3.6Z4>< 1.6§2>< 1.916x 4.0%1>< 4.177>< 1.119>< 2.6§4>< 8.45_52>< 1.793x
10 10 10 10 10 10 10 10 10 10 10
D 1.141>< 2.231>< 2.693>< 2.441>< 3.537x 8.572>< 1.208x 2.138>< 7.93 4x 2.111x 9.573><
10~ 10~ 10~ 10~ 10 10~ 10 10 10~ 10~ 10~
Time 40 556 160 231 462 192 595 40800 g 21 1170
(ms) 000

(Continued)
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Table 2 (continued)
Function Creative MGO HHO CGO WOA SMA SCA IWO GOA TSO PSO IMGO
Best —2.319 X —1.2411 X —1.8? X —1.2? X —1.7(1) X —7.28 X —1.916 X —3.001 X —1.2? X —2.0? X —1.1? X
10 10 10 10 10 10 10 10 10 10 10
Worst —7.2(Z X —5.9(? X —1.1? X —1.1411 X —6.1(5)3 X —6.005 X —6.33 X —3.0(4)1 X —6.702 X —6.906 —7.1% X
10 10 10 10 10 10 10 10 10 x 10 10
F40 Mean —1.8.? X —1.1? X —1.4? X —1.2? X —1.1} X —7.12 X —1.0? X —3.1? X —1.1% X —1.741L X —1.1? X
10 10 10 10 10 10 10 10 10 10 10
sp  A62x  942x  264x  408x 165x 202x 34lx -292x 109x 377x 490x
10° 107! 10° 107! 10° 107! 10° 10° 10° 10° 107!
frln“;; 735 270 927 116 352 122 369 2880 122 103 633
Best 4.7§4x 3.2§4x 5.8?4x 1.83_4x 1.2314x 2.oz4x 3.8§2x 2.901 x 9.3(34x 7.3(1; 9.4§5x
10 10 10 10 10 10 10 10 10 10 10
Worst | 120 x 6.9glx 132 : 7.93 x 1.502 x 312 x 1.142x 1.832x 129 x 4.37 x 416 x
10 10 10 10 10 10 10 10 10 10 10
Fal Mean 2.9§3>< 2.2§3>< 2.4%3>< 7.36_4>< 3.SZI>< 8.2§4>< l.Ollx 2.43 x 2.0? X 1.81_>< 1.09 X
10 10 10 10 10 10 10 107 1072 107! 1073
D 9.32 x 3.11 x 9.90 x 4.12 % 6.73 x 2.75 % 1.96 x 5.15 x 212 x 9.94 x 1.86 x
107 1072 107 107 10° 107° 10! 10! 1072 1072 1072
f;“;; 704 241 863 127 358 105 382 10,00 121 101 603
Best 0 x10° 1161_01; 0 x 10° 11(')1_91;8 0x10° 0 x10° 9';1; * 3'f()21 X 61'5_735 Zl'gf)%x 0 x 10°
Worst 3.2§1x 4.21 x 6.2§1x 144 x 9.620 x 151 x 9.990 x 3.921 x 3.294x 8.3?2>< 2.3ZZ><
10 10 10 10 10 10 10 10 10 10 10
- Mean 701 x 9.17_4>< 1.64{; 4.6§4x 3.0§2x 3.017>< 9.490 x 4.681 x 4.0};( 2.2(_)3x 4.7§5x
10 10 10 10 10 10 10 10 10 10 10
D 1.452>< 1.892>< 2.922x 7.29 3>< 4.761>< 6.746x 3.992>< 3.651 X 9.555x 1.33 2>< 1.063><
10™ 10” 10™ 10™ 10” 10™ 10” 10 10™ 10” 10™
fr‘:;; 392 549 473 228 134 23.1 371 35700 244 119 293
Best —1.9? X —1.9? X —1.9? X —1.9? X —1.9? X —1.9? X —1.9? X —1.63 X —1.9? X —1.9? X —1.9? X
10 10 10 10 10 10 10 10 10 10 10
Worst 71.8? X 71.921 X 71.92 X 71.9;5 X 71.6;3 X 71.9523 X 71.53 X 71.52 X 71.8% X 71.723 X 71.9;3 X
10 10 10 10 10 10 10 10 10 10 10
F43 Mean —1.9g x -196x -196x -196x -195x -196x -194x -LI8x -196x -195x -196x
10 10 10 10 10 10 10 10 10 10 10
sp  303x 323x 122x 436x 169x 479x 537x -L6lx 662x 136x 273x
107! 107! 107! 1072 10° 1072 10° 10? 107! 10° 1072
Time o0 4 507 213 153 27 325 163, 35 18 314
(ms) 000
Best —2.002 x —2.002 x —2.002 x —2.002 x —2.002 x —2.002 x —2.002 x —1.83 x —2.002 x —2.002 x —2.002 x
10 10 10 10 10 10 10 10 10 10 10
Worst —2.002 X —7.5:81 X —2.001 X —6.3:11 X —1.53 X —2.002 X —1.8% X —1.5? X —7.3)771 X —1.607 X —1.2? X
10 10 10 10 10 10 10 10 10 10 10
Fa4 Mean —2.002 X —2.0(? X —2.002 X —2.001 X —2.002 X —2.002 X —2.002 X 3.6E_§2>< —2.001 X —2.002 X —2.002 X
10 10 10 10 10 10 10 10 10 10 10
gp  225x 136x 488x 106x 210x 236x 9.62x -L78x 932x 203x 3.03x
107 107! 10 107! 1072 107° 107 10° 1072 1072 1072
Time
(ms) 402 49.7 500 23.7 136 19.7 456 1860 221 1 291
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Table 2 (continued)

Function Creative MGO HHO

GOA

Best
Worst
F45 Mean

SD

Time
(ms)

—2.73 x
10°

—-8.07 x

10°
2.33 x

10"
—722 x

10°

7600

Best
Worst
F46 Mean

SD

Time
(ms)

1.31 x
10!
3.04 x
10"
8.36 x
10?
3.50 x
10°

13,700

Best
Worst
F47 Mean

SD

Time
(ms)

5.81 x
10°
6.33 x
10°
6.54 x
10!
5.83 x
10°

5390

Best
Worst
F48 Mean

SD

Time
(ms)

L1l x
10°
8.67 x
10?
752 x
10
1.36 x
10°
1,270,
000

Best
Worst
F49 Mean

SD

Time
(ms)

-3.50 x

10°
—3.11 x

10°
—758 x

107!

-3.43 x

10°
-3500

PSO IMGO

-1.07 x —3.82 x
10!

—3.6lx -2.52x
10"

-1.06 x —3.68 x
10"

405x 290 x
10°
296

-1.03 x -100 x
10°

163 x —9.02 x
107!

-1.02x -1.00 x
10°

824 x  555x
107
317

398 x  8.45 x
107!

453 x 927 x
107!

3.99 x  8.46 x
107!

6.14 x 8.21 x
107
298

3.00x  3.00 x
10°

338 x 146 x
10"

313x  3.05 x
10°

1.95x  5.76 x
107!
9.42 296

-3.86 x —3.85 x
10°

314 x -2.95 x
10°

-3.86 x —3.78 x
10°

3.52 x 1.63 x
107!
351

(Continued)



Comput Model Eng Sci. 2026;146(1):24 25
Table 2 (continued)
Function Creative MGO HHO CGO WOA SMA SCA IWO GOA TSO PSO IMGO
Best —3.2(()) X —3.lg X —3.2(()) X —3.3(% X —3.2(()) X —3.0(()) X —3.2(()) X —2.905 X —3.3(% X —3.2(()) X —2.406 X
10 10 10 10 10 10 10 10 10 10 10
Worst —2.5(1)5 X —8.531 X —3.005 X _MZ X —2.901 X —1.23 X —4.521 X —1.4(5)3 X —1.13 X —1.83 X —1.808 X
10 10~ 10 10 10 10 10~ 10 10 10 10
F50 Mean —3.13 X —2.906 X —3.2(()) X —3.206 X —3.IZ X —2.733 X —3.0(()) X —3.2731 X —3.202 X —3.12 X —2.353 X
10 10 10 10 10 10 10 10 10 10 10
D 5.762>< 3.921>< 1.192>< 2.561>< 5.722>< 3.231>< 3.921>< —2.506 x 312 1>< 9.532>< 1.95 1x
10 10 10~ 10 10 10 10 10 10 10 10
Enn;; 445 866 549 325 592 426 331 -2960 346 218 353
Best —2.006 X —2.006 X —2.006 X —2.006 X —2.006 X —2.006 X —2.006 X —1.800 X —2.006 X —2.006 X —2.006 X
10 10 10 10 10 10 10 10 10 10 10
Worst —2.006 X —2.002 X —2.006 X —2.006 X —1.9(:)5 X —2.006 X —1.83 X —1.681 X —2.0(()5 X —2.061 X —2.005 X
10 10 10 10 10 10 10 10 10 10 10
F51 Mean —2.006 X —2.006 X —2.006 X —2.006 X —2.006 X —2.006 X —2.006 X —1.5% X —2.006 X —2.006 X —2.006 X
10 10 10 10 10 10 10 10 10 10 10
sD 1.28 x 1.72 % 1.62 x 6.22 x 6.12 x 2.31 x 151 x -171x 5.40 x 1.49 x 3.96 x
107° 1073 107° 1077 1073 1074 1072 10° 107° 1073 1074
Time
(ms) 412 67.7 500 25 485 31.7 382 -1750 25.5 13.4 326
Best 1.000 X 1.000 X 1.0% X 1.000 X 1.0(1) X 1.0% X 1.034>< 2.0(1 X 1.000 X 1.000 X LOO0 X
10 10 10 10 10 10 10 10 10 10 10
Worst 1.570>< 2.113>< 1.122>< 2.072 X 7.313>< 1.913>< 6.354 X 2.364 X 1.342>< 1.670>< 1.000 X
10 10 10 10 10 10 10 10 10 10 10
F52 Mean 1.000 X 5.220 X 1.250>< 1.490 X 1.571 X 1.521 X 2.134>< 1.975 X 1.330>< 1.020 X 1.000 X
10 10 10 10 10 10 10 10 10 10 10
D 4.422>< 9.421 X 4.990 X 9.240 X 3.272 X 1.362>< 1.424>< 1.984>< 5.970 X 113 1>< 0 x 10°
10~ 10 10 10 10 10 10 10 10 10
Time 50, 602 473 208 426 33 256 18200 g 104 291
(ms) 000
Best 21 14 23 9 25 13 1 1 3 9 31
worst 1 3 8 4 1 11 1 1 4 2 14
Ranking Ave 1 4 9 7 1 7 1 1 1 1 18
SD 5 2 4 3 1 10 1 10 4 4 9
time 0 0 0 3 0 2 0 13 0 15 0
SUM 48 23 44 26 28 43 4 26 12 31 72

In the realm of the F3 and F4 functions, which are characterized by multiple local optima, the IMGO
algorithm adeptly navigated past local optima traps and successfully converged on the global optimum.
In contrast, algorithms such as WOA, PSO, and GOA struggled to find optimal solutions, often becoming
ensnared in local optima. Regarding the F5 function, known for its large scale, IMGO excelled in handling
extensive problem spaces. The algorithm swiftly converged to the optimal values from initialization, whereas

the other algorithms faced challenges in achieving convergence. Moreover, the IMGO demonstrated an

exceptional balance between exploration and exploitation in functions such as F7 and F10, efficiently probing

search spaces while converging on optimal points, thereby surpassing alternative methods. In the F11

and F25 functions, where stability and preservation of optimal solutions are vital, the IMGO significantly
outperformed algorithms such as GOA and TSO, which exhibited notable fluctuations. After reaching
the optimal values, the IMGO maintained these solutions with remarkable stability. Comparative results
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with benchmark algorithms underscore IMGO’s superior performance in most instances, both in terms of
convergence speed and quality of the final solution. This superiority is particularly pronounced for complex
functions such as F3 and F4, as well as large-scale functions such as F5. The results from comparisons
with benchmark algorithms highlight IMGO’s outstanding performance in most scenarios, both in terms of
convergence speed and final solution quality. Only specific functions underscore IMGO’s marked superiority
over other algorithms. This superiority is particularly evident in complex functions such as F3 and F4, as well
as in large-scale functions such as F5. The graphs illustrating these results are shown in Fig. 2.

1200

1000

10 800

10719

600

107150

10710

1020

1020

1020

100 200 300 400 500

%10*

—

10100

10} 1070 1[\k
S Al : ‘ |

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

6
350 - 1008 . ———

300 18 \ —
wo

~_|
250 SCA e
——csa 010
— A 14
———HHO
200
———WOA 12
———PSO 4
150 ——— 150
GoA
08
T cGo 020
100 1 Meo 06
IMGO
04
50 \

=

02

100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

= SCA
e HHO
250 ——WOA
= PSO
200 ———Ts0
GOA
150 - ceo 1071
MGO
100} IMGO

100 200 300 400 500 100 200 300 400

Figure 2: Convergence behavior on selected benchmark functions. Logarithmic scale on y-axis shows best fitness value
evolution across 500 iterations
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By thoroughly evaluating Table 2, the performance of the IMGO was compared with established
optimization frameworks, including MGO [8], IWO [29], SMA [30], CGO [31], TSO [32], WOA [33],
HHO [34], PSO [35], GOA [36], and SCA [37]. The performance metrics considered included the optimal,
suboptimal, mean, and variance measures of the performance metrics. The analysis highlighted IMGO’s
exceptional optimization capabilities of the IMGO across benchmark scenarios. A detailed examination
shows IMGO’s superior mean performance across functions f1-f4, f6-f8, f10, {12, {15, f19-20, £23-24, £26-27,
29-31, £33-36, f41-44, {48, and £51-52. The algorithm outperformed its competitors in 31 of the 52 benchmark
functions, demonstrating its robust performance compared to the established methodologies. These results
position the IMGO among the leading optimization frameworks with exceptional capabilities in both the
unimodal and multimodal domains. Performance categorization revealed the following: best category, 31
superior cases; average category, 18 superior cases; worst category, 14 superior cases; and Standard Deviation
category, 9 superior cases. This distribution establishes IMGO’s position at the forefront of optimization
methodologies. Its consistent performance across metrics demonstrates its versatility and effectiveness in
complex optimization scenarios, representing a significant advancement in algorithmic performance. The
following five paragraphs outline the strengths of the IMGO algorithm, as demonstrated by an Analysis of
Variance (ANOVA) analysis of Table 3, which includes results from testing the algorithm on 52 standard
benchmark functions: Superior Performance in Average Optimization: The ANOVA results in Table 3 reveal
that the IMGO algorithm consistently outperforms conventional algorithms in average optimization. The
IMGO reliably reaches optimal points in the search space with a remarkable accuracy. This strength was
validated across 52 standard test functions, highlighting its reliability in achieving optimal solutions. High
Ability to Escape Local Optima: The ANOVA results in Table 3 show that the IMGO excels at escaping local
optima, allowing it to converge more closely to the global optima. This capability is due to IMGO’s robust
exploration and exploitation mechanisms of the IMGO, which enable it to maintain consistent performance
even with highly complex functions. Stability and High Accuracy: A key advantage of IMGO is its stability
in delivering accurate results. As indicated in Table 3, the IMGO exhibited less variance in its outcomes than
the other algorithms, demonstrating stable performance. This trait is particularly advantageous for solving
optimization problems involving noise and instability. High Convergence Speed: The ANOVA analysis
in Table 3 indicates that the IMGO algorithm achieves optimal solutions more quickly than other algorithms
for many of the benchmark functions tested. In real-world scenarios, faster convergence results in higher
efficiency and lower computational costs. Consequently, the IMGO is particularly suitable for time-sensitive
optimization problems. High Applicability Across Problem Types: The results from testing 52 standard
functions in Table 3 emphasize IMGO’s adaptability across a range of optimization problems. It performs
robustly with diverse function types, including multimodal and complex functions, positioning the IMGO
as an effective tool in various optimization domains. These characteristics collectively establish the IMGO as
an advanced optimization framework, with ANOVA providing statistical validation of its capabilities.

Table 3: Statistical ranking results of ANOVA with a 5% significance level across 52 benchmark functions

IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO-

Algorithm —* ~y  WOA TSO HHO  CGO PSO GOA  SMA SCA IWO
o 380x  665x  244x  479x  932x  231x  23x  266x  535x (0
10- 10° 10 10- 10 10- 10- 10 10
" 1.252; 7.25 lx 2.16 7>< 2.81 lx 6.081>< 1.48 3x 1.25 1>< 1.59 1x 2.74 1>< 6.121:
10- 10 10- 10- 10- 10- 10 10- 10- 10-
s 337x  37x 271k 400x  384x  278x  127x  196x  Slx
10- 10- 10- 10- 10- 10 10- 10- 10-

(Continued)
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Table 3 (continued)

IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO-

Algorithm —“\\c60 woA  TsO HHO  CGO PSO GOA  SMA SCA IWO
F4 ‘fﬁﬁ 163,8153 0 x 10° 4i3§1X 3£§2X 0x10° 0 x10° 5'1?)92X 41'3,31 X ox10°
- 5.8_754x 210 x 3.4_252>< 3.8§1x 313 x 416 x 2.8_977x 2.7§1x 3.9_849>< 0 x 10°

10 10 10 10 10 10 10 10 10
F6 0x10° l‘zﬁf 31'?1)( 0x10°  0x10° 0x10° %3_?7? 11'3111; 0 x 10° 21'3_26;
. 3.18 x 1.57 x 8.29; 3.18 x 4.83 x 2.765>< 3.16 x 3.18 x 6.071>< 1.99 x
10” 10” 10” 10” 10” 10” 10” 10” 10~ 10~
- 9.5782x 3.18 x 3.16 x 3.18 x LI5 x 1.274(>)< 5.702>< 2.661>< 7.03; l.344><
10 10” 10” 10” 10” 10” 10™ 10 10 10
F9 f(ffllfﬁ ﬁfﬁf 0 x 10° l'lff_; ‘%ﬁ; l'lfjff 11'3?2? 31'3)5_5 0 x 10° ll'éfé
F10 1.625; 155 x 9.454>< 3.16 x 8.553>< 5.8620x 2.561>< 3.16 x 2.80; 2.701><
10” 10” 10” 10” 10” 10” 10~ 10” 10~ 10~
- 3.%0: S.SZ4>< 4.34_16>< 1.7(34>< 1.0_625x 4.9_572x 1.1% 2.891x 2.2_659>< 175 x
10 10 10 10 10 10 10 10 10 10
F2 5.2542>< 9.932>< 9.542x 2.621x 2.232>< 7.341? 5.196: 1.561>< 4.311: 1.263><
107 10 10 10 10 10 10 10 10 10~
F13 31'09,131X 0x10° 0x10° > ii‘fzx Si?f 6;2;; 0 x 10° Siz)ix 11(')1,82;2 0 x 10°
- 339 x 130 x 1.6_32 x 2.61 x 156 x 6.5£2>< 2.0§2x 231 x 9.83; 5.85_§lx
10 10 10 10 10 10 10 10 10 10
FI5 1.4543x 1.26 lx 1.711>< 1.39 1>< 4.601>< 1.11: 5.878; 8.15 2x 1.221x 9.111:
107 10 10 10 10 10 10 10 10~ 10
Fl16 0 x 10° ll'g?s: Zl'giox 61'5957X 0x10°  0x10° 0x10° 0x10° 0 x10° i‘ﬁ%
i 4.6§6x 319 x 1.0_11 x 4.3E_§5>< 3.4%1>< 515 x 798 x 110 x 8.9;; 6.9%1><
10 10 10 10 10 10 10 10 10 10
FI8 3.18 1>< 3.18 1>< 3.18 1>< 3.18 1>< 0 % 10° 1.453>< 3.18 1x 3.18 1x 1.281? 6.632x
10 10 10 10 10 10 10~ 10 10~
F19 4.253>< z.szlx 1.401>< 4.781>< 2.641>< 2.893>< 2.161(>)< 2.001>< 2.231>< 1.76 x
10” 10” 10” 10” 10” 10” 10” 10” 10” 10~
20 L6l x 128 x 4.6?7x 123 x 114 x 6.2?1>< 6.5§1x 2.0§2>< 143 x 3.7?_)6><
10 10 10 10 10 10 10 10 10 10
a1 3.17 1>< 2.961x 2.232>< 7.00 1>< 1.82 1>< 7.732>< 2.568x 2.841>< 3.12 1>< 5.2322x
10 10 10 10 10 10 10 10 10~ 10
- 6.831; 5.421>< 1.22; 2.223>< 1.562>< 2.61 x 5.512>< 2.9714x 6.3982>< 3.091><
10~ 10” 10” 10” 10” 10” 10” 10” 10” 10~
F23 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10° 0x10°
4 1.843>< 1.27 1>< 1.32 zx 3.091>< 1.49 1>< 1.98 3x 4.31 3>< 2.001>< 3.5512< 1.621><
10 10 10 10 10 10 10 10~ 10 10~
F25 0 x 10° 3£§1X 7'1909; 63?; Sifﬁzx zi?lx 0 x 10° 1.14(1):x 0x10°  0x10°
F26 0 x 10° Sif)iﬁ 91-3_23§ 1-1*(‘)3_5 Zig%f 0 x 10° f(-)“_?z: 45)?; 9@* f(-)l_i,f
F27 9.8735>< 3.3370x 0 % 10° 8.471>< 6.101(>)< 1.492;< 1.6317>; 5.564>< 3.651>< 1.8467x
107 10 10 10 10 10 10~ 10~ 10
119 x 4.61 x 9.52 x 3.21 x 3.07x 294 x L14 x 223 x 6.16 x
F28 1078 107! 107! 107! 107! 107" 10! 107! 1072 0 10°
29 2.7§1x 4.0§1>< 4.3§3x 6.18 x 9.7(31>< 4.1i11§ 3.3_224x6 3.9?_;4>< 757 x 3.9_313:
10 10 10 10 10 10 10 10 10 10

(Continued)
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Table 3 (continued)

Algorithm IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO- IMGO-
MGO WOA TSO HHO CGO PSO GOA SMA SCA IWO
F30 5.0365>< 3.331>< 5.13 9>< 8.111>< 1.75 1>< 9.16 8>< 1.561>< 3.17 1>< 2.991>< 2.901><
10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~
F31 prs O e (e A R (et e S S
F32 4.3771x 1.293;< 5.616; 3.881>< 8.333x 4.711; 2.7673>< 4.862>< 4.212>< 0 x 10°
10 10~ 10~ 10 10~ 10~ 10~ 10” 10~
F33 1.1981< 1.277(>J< 3.3§4>3< 5.81 1>< 3.001: 5.62& 2.3123>; 3.564>< 8.0092>< 0 x 10°
10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~
pa OX SB35 236 LB D ISx o g
F35 1.636: 3.271>< 2.0117>; 8.272x 4.201>< 6.6348x 1.6818x7 1.70 1>< 2.041>< 0 % 10°
10~ 10 10~ 10~ 10~ 10~ 10~ 10™ 10~
F36 Sigiox 1‘1?5 41'(1)§2X 65)‘}; 21'5,91? 0x10°  0x10° Sl‘éz,lx 0x10°  0x10°
6.58 x 5.26 x 2.37 x 4,93 x 6.75 % 1.14 x 3.18 x 1.98 x
£37 0x10° "o 1073 107! 102 1077 107! ot 010’ e
F38 8.831»2: 9‘001>< 5.272; 2.761>< 1.59 3>< 2.853; 4.2513x 3.18 1>< 0 x 10° 8.2619x
10 10 10 10~ 10~ 10 10~ 10~ 10™
F39 4.4068>< 1.29 1>< 1.523: 1.99 1>< 8.991>< 6.16; 2.019>< 8.972>< 0 x 10° 2.9416><
10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~
B o WG IESMp Rr A e wmr Ly 2
P41 8.2753x 4.16 1>< 1.414: 9.981x 7.52 1>< 2.0262>< 1.303>< 2.251>< 3.481x 2.7126x
10 10 10 10 10~ 10 10~ 10~ 10 10~
5.80 x 8.41 x 1.78 x 8.49 x 3.05 x 1.77 % 1.33 x 2.70 x 5.48 x
F42 107! 107 107! 107 107" 1072 010 107! 107! 1072
F43 2.831>< 1.25 1>< 4.543>< 2.091>< 6.921>< 6.362>< 1.611>< 2.363>< 2.221x l.324><
10 10 10~ 10 10~ 10™ 10™ 10™ 10~ 10~
Fa4 1.55 1X 1.95 1>< 1.171>< 7.442>< 5.581>< 1.55 7>< 3.611x 4.971>< 1.89 1>< 5.051><
10 10 10~ 10~ 10 10” 10™ 10™ 10~ 10™
3.42 x 5.25 x 1.07 x 1.59 x 6.31 x 1.93 x 9.15 x 5.85 x 6.66 x
F45 107 107 107 107 107" 107" 107" 107° 010 1072
F46 2.15 1>< 5.241>< 1.351: 8.542x 2.441>< 5.521>< 1.062>< 1.191>< 1.74 1>< 4.641><
10 10 10 10~ 10 10 10™ 10™ 10™ 10~
F47 2.101: 2.206>< 1.33 5>< 6.695x 6.13 1>< 2.691>< 8.012>< 4.342>< 6.384x 6.461x
10 10 10 10 10~ 10~ 10~ 10~ 10 10
6.49 x 4.91 x 0 2.45 x 7.86 x 2.75 x 1.51 x 5.32 x 3.89 x 5.76 x
F48 107! 107" 010 1076 1072 107" 107! 1072 107! 107!
F49 3.5§6>< 9.17_5>< 3.1%3>< 2.614>< 2.0§2>< 1.6?11>< 7.52_1>< 6.8}2>< 1.0_714>S 1.32_1><
10 10 10 10 10 10 10 10 10 10
F50 0 % 10° 1.4SSi< 1.289>< 7.8973; 6.113: 8.248; 1.067: 4.385; 2.1814x6 1.0947x
10 10 10 10 10 10 10~ 10 10™
F51 2.961>< 1.381>< 3.8.’;4>l< 2.341>< 9.454>< 9.595>< 2.761>< 1.33 l>< 1.151>< 1.58 1><
10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~ 10~
F52 1.041>< 5.642>< 1.23 8>< 3.16 1>< 2.401>< 9.422>< 1.023>< 1.57 1>< 3.532x 6.8(1)8:
10 10 10~ 10 10~ 10 10™ 10™ 10~ 10

4.2 Statistical Significance Analysis

To rigorously validate IMGO’s performance advantages beyond simple mean comparisons, comprehen-

sive non-parametric statistical tests were conducted following established best practices for metaheuristic
algorithm evaluation. The Wilcoxon signed-rank test was employed for pairwise comparisons between
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IMGO and each competitor algorithm across all 52 benchmark functions. This non-parametric paired
test is particularly appropriate for metaheuristic evaluation as it makes no distributional assumptions and
effectively handles the non-normal fitness value distributions commonly observed in stochastic optimization
results. For each benchmark function, thirty independent runs were executed under identical computational
conditions including population size of 30 and maximum iteration count of 500, ensuring statistical
robustness and fair comparison across all algorithms. Table 4 presents the Wilcoxon signed-rank test results
using standard notation where “+” indicates IMGO achieved statistically significantly superior performance

«_»

compared to the competitor algorithm (p < 0.05), “=” indicates no statistically significant difference between
IMGO and the competitor, and “~” indicates IMGO performed significantly worse than the competitor
algorithm on that particular function. The win rate percentage is calculated as the proportion of functions
where IMGO demonstrated statistically significant superiority out of the total 52 benchmark functions.
The results demonstrate IMGO’s substantial and consistent statistical advantages across the comprehensive
benchmark suite. IMGO achieved statistically significant superior performance against GOA in 50 of 52
functions, with a 96.15% win rate—the highest among all comparisons—indicating near-universal superi-
ority over this competitor. Against IWO, IMGO showed significant improvements in 38 functions (73.08%
win rate). At the same time, comparisons with PSO, SMA, and TSO yielded win rates of 67.31%, 63.46%, and
61.54%, respectively, all substantially exceeding the 50% threshold that indicates balanced performance. Even
compared with the original MGO algorithm on which IMGO is based, the enhanced version demonstrated
significant improvements across 16 functions (30.77% win rate), thereby validating the effectiveness of the
integrated chaos mapping, OBL, and structural refinement enhancements. The statistical significance analy-
sis indicates that IMGO’s performance advantages are not merely artifacts of random variation but genuine,
reproducible improvements attributable to the algorithmic enhancements. The consistently high win rates
against all competitor algorithms, with the majority of comparisons exceeding 50% and several surpassing
60%, provide robust statistical evidence supporting IMGO’s superior optimization capability across diverse
problem landscapes encompassing unimodal, multimodal, and fixed-dimension function categories.

Table 4: Wilcoxon signed-rank test results for pairwise comparisons between IMGO and competitor algorithms
(o =0.05)

Algorithm + = - Win rate (%)
MGO 16 20 16 30.77
HHO 26 1 15 50
CGO 28 8 16 53.85
WOA 27 10 15 51.92
SMA 33 10 9 63.46
SCA 31 5 16 59.62
IWO 38 6 8 73.08
GOA 50 1 1 96.15
TSO 32 7 13 61.54
PSO 35 5 12 67.31

To assess the overall algorithmic ranking across the entire benchmark suite, the Friedman test was
utilized as a non-parametric alternative to repeated-measures ANOVA. This test determines whether
significant performance differences exist among multiple algorithms tested on identical problem instances.
The Friedman test yielded a chi-square statistic of y* = 328.64 (p < 0.001), decisively rejecting the null
hypothesis of equivalent algorithm performance and confirming statistically significant differences among
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the evaluated algorithms. Table 5 presents the average rankings from the Friedman test, with lower ranks
indicating superior performance. IMGO achieved the best overall rank of 4.15, demonstrating its consistent
superiority across diverse optimization landscapes. The original MGO obtained the second-best rank of 4.38,
followed by SCA (4.69), CGO (5.02), and WOA (5.58). The substantial rank differences between IMGO and
lower-performing algorithms such as GOA (8.40), IWO (7.92), and SMA (7.58) provide strong evidence of
IMGO’s algorithmic advantages. Notably, IMGO’s superior ranking over the original MGO validates that
the integrated enhancements of chaos mapping, OBL, and structural refinements collectively contribute to
improved optimization capability.

Table 5: Friedman test average rankings of IMGO and competitor algorithms across 52 benchmark functions

Algorithm Average rank Rank position
IMGO 4.153846154 1
MGO 4.384615385 2
SCA 4.692307692 3
CGO 5.019230769 4
WOA 5.576923077 5
TSO 6.000000000 6
HHO 6.076923077 7
PSO 6.192307692 8
SMA 7.576923077 9
IWO 7.923076923 10
GOA 8.403846154 11

Following the Friedman test, a post hoc analysis using the Nemenyi procedure was conducted to identify
specific pairwise differences, with appropriate corrections for multiple comparisons. The Critical Difference
(CD) value at a = 0.05 for the 11 algorithms and 52 datasets was calculated as CD = 2.018. Fig. 3 illustrates
the Critical Difference diagram, where algorithms not connected by the green-shaded non-significant region
exhibit statistically significant performance differences relative to the highest-ranked algorithm. The diagram
clearly identifies IMGO as the top-performing algorithm with a rank of 4.15, closely followed by MGO
(4.38) in the non-significant zone. Algorithms beyond the critical difference threshold, such as PSO, HHO,
TSO, SMA, IWO, and GOA, exhibited statistically significantly inferior performance compared to IMGO.
This visual representation confirms that while IMGO, MGO, SCA, CGO, and WOA form a statistically
competitive group at the top of the rankings, IMGO maintains a numerically superior position, indicating
practical advantages in real-world optimization scenarios.

Table 6 provides a comprehensive statistical summary of IMGO’s competitive advantages at various
significance levels. The analysis revealed that IMGO achieved statistically significant victories at the p <
0.05 level in 16 to 50 functions, depending on the competitor, with an average win rate of 52.40% across
all competitors. Notably, IMGO demonstrated exceptional performance against the GOA (96.15% win
rate), IWO (73.08%), and SMA (63.46%), highlighting its substantial advantages over these algorithms.
Furthermore, the frequent occurrence of results with extreme significance (p < 0.001) indicates that IMGO’s
superior performance is not marginal but rather substantial and consistent. The correlation between lower
Friedman ranks and higher IMGO win rates supports the consistency of IMGO’s performance advantage
across both ranking-based and pairwise statistical comparisons. These comprehensive statistical analyses
rigorously validate that the superior performance of the IMGO observed in mean fitness comparisons is not
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due to random variation but represents genuine algorithmic improvements. The convergence of evidence
from Wilcoxon pairwise tests, Friedman ranking analysis, post-hoc Critical Difference evaluation, and
convergence behavior analysis established IMGO as a statistically superior optimization framework across
diverse benchmark optimization scenarios.
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Figure 3: Critical Difference Diagram with Nemenyi test (« = 0.05). Lower ranks are better. Green zone shows non-
significant difference from best algorithm (CD = 2.018)

Table 6: Statistical comparison of IMGO performance against competitor algorithms across 52 benchmark functions

Competitor Wins(p Wins(p Wins(p Winrate Average Friedman

algorithm < 0.05) <0.01) <0.001) % p-value rank
GOA 50 50 48 96.15 0.021223  8.403846
IWO 38 35 29 73.08 0.229171  7.923077
SMA 33 31 22 63.46 0.227211  7.576923
SCA 29 26 22 55.77 0.387893  4.692308
PSO 29 28 23 55.77 0.318368  6.192308
TSO 25 22 15 48.08 0.399918  6.000000
HHO 22 15 7 42.31 0.351306  6.076923
WOA 21 20 12 40.38 0.426468  5.576923
CGO 19 14 9 36.54 0.50566 5.019231

MGO 16 11 7 30.77 0.538936  4.384615
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4.3 Performance Analysis on Function Categories

An in-depth analysis of the IMGO’s performance across various benchmark function categories
highlights distinct algorithmic advantages tailored to specific optimization landscape characteristics. On
unimodal functions (F1-F7), characterized by a single global optimum without local optima deception,
IMGO exhibited exceptional exploitation capabilities, achieving superior mean fitness values on six out
of seven functions. This robust unimodal performance is primarily attributed to the structural refinement
component, where mean-variance initialization and adaptive escape-factor modulation facilitate precise
convergence refinement in smooth gradient landscapes. The OBL mechanism further enhances perfor-
mance by accelerating convergence toward the global optimum basin through systematic exploration of
complementary search directions, thereby reducing the iteration count required to achieve high-precision
solutions. In contrast, competitor algorithms such as PSO and WOA, which predominantly rely on velocity-
based or encircling mechanisms, exhibit slower convergence on unimodal landscapes, where exploitation
intensity, rather than exploration diversity, determines optimization efficiency. Multimodal benchmark
functions (F8-F24), known for their numerous local optima that test exploration capabilities and the ability
to avoid premature convergence, represent the problem class in which IMGO shows its most significant
performance advantages. IMGO achieved the best mean performance on 25 out of 17 multimodal functions,
significantly outperforming the competitor algorithms, which often became trapped in suboptimal local
attraction basins. This multimodal superiority primarily arises from the synergistic interaction between
chaos mapping and learning based on opposition. The Piecewise chaotic map introduces deterministic
yet non-periodic perturbations to position update vectors, allowing search agents to escape local optima
through controlled stochastic jumps that maintain sufficient randomness for basin escape while preserving
a directional bias toward promising regions. Simultaneously, the adaptive OBL mechanism is activated
when population diversity metrics indicate clustering around specific optima, generating solutions that
systematically explore unexplored areas and maintain the population distribution breadth necessary for
discovering superior optima in the distant areas of the search space. Functions such as F9, F15, and F26,
which feature particularly deceptive multimodal structures with numerous shallow local optima, showcase
IMGO’s robust local optima avoidance. In contrast, competitor algorithms, including HHO, SMA, and
SCA, frequently stagnate at suboptimal solutions, IMGO consistently identifies near-global optima across
independent runs. Fixed-dimension multimodal functions (F25-F52), which feature complex optimization
landscapes within limited dimensional spaces, are used to assess the effectiveness of IMGO across problems
with varied structural traits. Performance analysis revealed that the IMGO consistently excels in functions
with moderate ruggedness, where a balance between exploration and exploitation is essential. However,
its advantages wane on extremely flat landscapes (F23, F51, and F52), where most advanced algorithms
converge to similar solutions, and on highly discontinuous landscapes, where stochastic exploration rather
than structured search mechanisms prevails. These findings indicate that IMGO’s enhancement mechanisms
are most advantageous for problems characterized by moderate-to-high multimodality with continuous
differentiable structures. Such issues often mirror real-world engineering optimization challenges, where
smooth yet multimodal objective functions emerge from physical constraints and performance tradeofs.
The algorithm’s ability to systematically transition from exploration to exploitation while maintaining
diversity recovery mechanisms when convergence threatens optimality makes IMGO particularly well-
suited for complex engineering design optimization. In these scenarios, multiple competing objectives create
multimodal fitness landscapes that require both comprehensive exploration and precise exploitation to
identify high-quality, Pareto-optimal solutions.
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4.4 Engineering Optimization Problems

To evaluate the practical applicability of the IMGO algorithm beyond benchmark function optimiza-
tion, the algorithm was tested on seven well-established constrained engineering design problems, each
representing diverse real-world optimization challenges. These problems span various engineering domains,
including mechanical design, structural optimization, and manufacturing systems, each characterized by
distinct objective functions, multiple design variables, and complex, nonlinear constraints. The selection
of these test cases reflects common industrial optimization scenarios, where balancing multiple competing
objectives while satisfying strict physical and safety constraints is critical. All engineering problems were
solved using identical algorithmic parameters to ensure a fair comparison: a population size of 30 indi-
viduals and a maximum iteration count of 500, with 30 independent runs conducted for each problem
to establish the statistical reliability. The performance of the IMGO algorithm was benchmarked against
eight well-established optimization algorithms, including the original MGO, SCA, GWO, SMV, SHO, MVO,
and MFO, enabling a comprehensive assessment of the proposed enhancements across diverse problem
landscapes. The engineering problems selected for evaluation have distinct characteristics that challenge
different aspects of optimization algorithms. Problems such as pressure vessel design and welded beam
design involve mixed continuous-discrete variable spaces with highly nonlinear constraints, requiring robust
constraint-handling mechanisms. The speed-reducer problem presents a high-dimensional search space
with 11 inequality constraints, which tests the algorithm’s scalability and convergence reliability. Gear train
design introduces discrete variable optimization with extreme precision requirements, whereas spring
design and cantilever beam problems emphasize the balance between computational efficiency and solution
quality. Three-bar truss design validates performance of structural optimization with deflection and stress
constraints. This diverse problem set comprehensively evaluates IMGO’s capability of the IMGO to handle
the multifaceted challenges characteristic of real-world engineering optimization. IMGO’s architectural
enhancements prove particularly advantageous for constrained engineering optimization. The integrated
chaos mapping mechanism facilitates escape from local optima commonly encountered in multimodal
constrained landscapes, whereas OBL accelerates convergence toward feasible optimal regions by systemat-
ically exploring complementary search space areas. Structural refinements to the position update equations
enhance constraint handling by improving diversity management, thereby reducing premature convergence
to suboptimal feasible solutions. These synergistic enhancements enable the IMGO to efficiently navigate
complex feasible regions while maintaining the population diversity essential for global optimality in
constrained optimization scenarios.

4.4.1 Tensile/Compressive Spring Design Problem

The tension-compression spring design problem, depicted in Fig. 4, represents a classical mechanical
optimization challenge focused on minimizing spring weight while satisfying constraints on minimum
deflection, surge frequency, and shear stress limits. This problem, originally formulated by Belegundu and
illustrated in Fig. 3, involves three continuous design variables: wire diameter (g; ), mean coil diameter (a,),
and number of active coils (a3). The optimization must balance material cost reduction against structural
integrity requirements, making it representative of the weight minimization challenges in mechanical
component design. The mathematical formulation is presented in Eq. (18), where the objective function
represents the total spring volume proportional to the weight, while four inequality constraints ensure
mechanical feasibility, including deflection requirements, surge frequency limitations, shear stress bounds,
and geometric compatibility between wire and coil diameters [38].

f(a) = (as +2)a,a;
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Figure 4: Tensile spring problem

Table 7 presents the comprehensive statistical results for the spring design problem across 30 indepen-
dent runs. IMGO achieved the best mean objective value of 1.28 x 1072, demonstrating superior consistency
compared with the competitor algorithms. The best solution obtained was 1.26 x 1072, representing a
0.8% improvement over the original MGO and matching or exceeding the performance of GWO and
MFO. IMGO's structural refinements particularly benefit this problem by maintaining population diversity
around the narrow feasible region defined by the four active constraints, preventing premature convergence
observed in algorithms such as SCA (mean: 2.09 x 10~?) and SHO, which failed catastrophically. The OBL
component accelerates the identification of the feasible region boundaries, whereas chaos mapping ensures
a thorough exploration of the workable space geometry. Statistical analysis ranked the IMGO first in terms
of the best solution quality and mean performance, validating its effectiveness for constrained mechanical
design optimization.

Table 7: Results of tension/compression spring design problems

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
1.27 % 1.26 x 1.32 x 1.27 x 1.27 % 4.84 x 1.29 x 1.27 %

Best 102 102 102 102 1072 102 102 1072
Mean 1.45 x 1.28 x 2.09 x 1.27 x 1.37 x 2.06 x 1.61 x 1.35 x
1072 1072 1072 1072 1072 10t 1072 1072
178 x  132x 325x 128x 153x 624x 188x 149 x
Max

1072 1072 1072 1072 1072 101 1072 1072

4.4.2 Pressure Vessel Design Problem

The pressure vessel design problem, depicted in Fig. 5, represents an industrial manufacturing opti-
mization challenge, where the objective is to minimize the total cost, including the material, forming, and
welding expenses for a cylindrical pressure vessel with hemispherical heads. This problem, widely studied
in the engineering optimization literature, involves four design variables: shell thickness (a;) and head
thickness (a,), which are restricted to discrete multiples of 0.0625 in. owing to manufacturing constraints,
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and inner radius (a;) and cylinder length (a4), which are continuous variables. The optimization must
satisfy four inequality constraints to ensure structural safety and geometric feasibility, including minimum
shell thickness requirements, minimum head thickness specifications, minimum vessel volume capacity,
and maximum length restrictions. The mathematical formulation is presented in Eq. (19), where the cost
components include material costs proportional to the surface areas and volumes, forming costs for the
hemispherical heads, and welding costs along the cylinder-head joints [39].

Consider X = [ayaraza4] = [Ts, Th, R, L],

MAXf (@) = 0.6224a,a3a4 + 1.7781a,a;3 + 3.166la; x4 +19.84a; a3,
Subjectto g (d) = —a; +0.0193a; < 0,
j¢) (&) =—a, +0.00954a5 <0,
. 4
g3(d) = —masa, - 5na§ +1,296,000 < 0, (19)

g4(51):a4—240£0

Variable Ranges:

0 < a; £100,
0 <a, <100,
0 < as <200,
0 < a4 £200.

Figure 5: Pressure vessel design problem

Table 8 demonstrates IMGO’s superior performance on this mixed-integer nonlinear programming
problem. IMGO achieved the best overall cost of 5885.33 with a mean performance of 6048.21, outperforming
MGO (best: 6300, mean: 7100) by 6.6% in the best solution and 14.8% in the mean performance. The mixed-
integer nature of the problem and nonlinear constraints particularly benefits from IMGO’s OBL of the IMGO,
which efficiently explores the discrete-continuous hybrid search space by generating opposing candidates
that respect the variable discretization requirements. The chaos mapping component prevents stagnation in
suboptimal discrete variable combinations, whereas structural refinements maintain sufficient population
diversity to escape local optima created by constraint boundaries. The statistical ranking placed IMGO
first in the best solution quality and mean performance, establishing its clear superiority for mixed-integer
constrained optimization representative of manufacturing design problems.
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Table 8: Results of pressure vessel design problem

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
Best 6.30 x10° 5.88 x10° 2.02 x 10* 5.90 x 10> 5.89 x 10° 6.87 x 10* 6.13 x 10> 5.89 x 10°
Mean 710 x10° 6.05x10° 3.90 x10* 6.12x10° 6.38 x10° 5.26 x 10° 6.73 x10° 6.15 x 10°

6.96 x 6.46 x
i~ 179 x 10° 754 x 10° 10

Max 732 x10®° 6.28x10° 756 x 10* 6.93 x 10°

4.4.3 Welded Beam Design Problem

The welded beam design problem, illustrated in Fig. 6, represents a structural optimization challenge
focused on minimizing the fabrication cost of a welded beam subject to constraints on shear stress, bending
stress, end deflection, and buckling load. This problem, formulated initially by Coello and widely used
as a constrained optimization benchmark, involves four continuous design variables: weld thickness (a,),
attached beam length (a,), beam height (a3), and thickness of the beam (a,). The optimization balances
the material and welding costs against the structural performance requirements, including the maximum
allowable shear stress in the weld, maximum everyday stress in the beam, maximum beam deflection, and
minimum buckling resistance. Seven inequality constraints ensure structural safety and geometric feasibility,
making this problem representative of a cost-driven structural design with multiple competing failure
modes [40].

Considerd = [ajazaszaq] = [h,L,t,b],

Minimize f (d) = 1.10471a;a, + 0.04811asa,(14.0 + a,),

Subjecttog (d) = 7(d) — Tmax <0,

§2(d) = 0(a) = Omax <0,

g3(5) = 6(5) = O8max <0, (20)
ga(d)=a;—as <0,

gs(d)=P-P.(d) <0,

g6(d) =0.125-4a, <0,

g7 (d) = 0.10471a + 0.04811asa, (14.0 + a,) — 5.0 < 0

Table 9 presents the comparative results demonstrating IMGO?s effectiveness on this highly constrained
problem. IMGO achieved the best cost of 1.6896 with a mean of 1.7245, outperforming MGO (best:
1.7249, mean: 1.7902) by 2.0% in the best solution and 3.7% in the mean performance. The seven active
constraints create a complex feasible region, where IMGO’s chaos-enhanced exploration prevents premature
convergence to boundary optima. In contrast, OBL efficiently navigates the narrow corridors between the
constraint surfaces. The structural refinements maintain population diversity, which is essential for escaping
the local optima created by constraint intersections. The performance ranking places IMGO first in the
best solution and first in the mean performance among all evaluated algorithms, validating its capability for
multi-constraint structural optimization problems common in mechanical and civil engineering design.
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Figure 6: Welded beam design problem

Table 9: Results of welded beam design problems

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
173 x  169x 228x 173x 173 x 3.59 x 173 x 172 x

Best 10° 10° 10° 10° 10° 10° 10° 10°

Mean 1L79x 172x 254x 173x 173x  674x 177x 191«
10° 10° 10° 10° 10° 10"3 10° 10°

Max 1.88 x 1.76 x 2.77 x 1.73 x 1.73 x 3.24 x 1.82 x 2.38 x
10° 10° 10° 10° 10° 104 10° 10°

4.4.4 Speed Reducer Problem

The speed reducer design problem, depicted in Fig. 7, represents a complex mechanical transmission
system optimization focused on minimizing the total weight while satisfying eleven nonlinear inequality
constraints related to bending stress, surface stress, transverse deflections, and geometric limitations. This
problem involves seven continuous design variables: face width (a;), module of teeth (a,), number of
teeth on the pinion (a3), shaft lengths (a4, as), and shaft diameters (as, a;). The high dimensionality,
combined with numerous active constraints, makes this problem particularly challenging for maintaining
feasibility while achieving global optimality. The formulation represents weight minimization in the power
transmission design, where structural integrity, geometric compatibility, and stress limitations must be
satisfied simultaneously [41].

Minimize f(ay,...,a7) (21)

= 0.7854a,a;

x (3.3333a3 +14.9334a; — 43.0934)

- 1.508ay (ag + a3) +7.4777 (ag + a3)
+0.7854 (aqag + asa;)

27
Subject to k; = >——1<0,
a asas
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2.6<a;<3.6,0.7<a,<0.8,
17 < a3z <28,7.3< a4 <8.3,
7.3<a5<8.3,29<a,<3.9,

5<a; <5.5.
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Figure 7: Speed reducer problem

Table 10 demonstrates IMGO’s capability on this high-dimensional constrained problem. IMGO
achieved the best weight of 2964.52 kg with an exceptional mean performance of 2976.88 kg, outperforming
MGO (best: 2990.00, mean: 2994.50) by 0.9% in the best solution and 0.6% in mean performance. The
seven-dimensional search space with 11 constraints creates numerous local optima, which many algorithms
struggle to avoid. IMGO’s chaos mapping of the IMGO algorithm prevents entrapment in suboptimal
constraint boundaries, whereas OBL accelerates convergence toward the global optimum by systematically
exploring complementary regions of the feasible space. Structural refinements maintain population diversity,
which is crucial for high-dimensional optimization, preventing premature convergence observed in less
sophisticated algorithms. The statistical ranking placed the IMGO first in both the best and mean perfor-
mances, demonstrating exceptional consistency and reliability for complex multi-dimensional mechanical
design optimization.

Table 10: Results of speed reducer problem

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
2.99 x 2.96 x 3.14 x 3.00 x 2.99 x 356 x  3.02x 299 x

Best 10° 10° 10° 10° 10° 10° 10° 10°

Mean 299X  298x  318x  301x  299x  226x 3.04x  3.00 x
10° 10° 10° 10° 10° 10'2 10° 10°

Max 299 x  299x  323x  30lx  299x  839x 3.07x 3.03x
10° 10° 10° 10° 10° 10'2 10° 10°

4.4.5 Gear Train Design Problem

The gear train design problem, illustrated in Fig. 8, represents a precision mechanical system optimiza-
tion, where the objective is to minimize the gear ratio error between the desired and actual transmission



Comput Model Eng Sci. 2026;146(1):24 41

ratios. This problem involves four discrete integer design variables representing the tooth counts on four
gears (nA, nB, nD, and nF) within the range [12,60], creating a discrete combinatorial optimization landscape
with 2,825,761 possible combinations. The extreme precision requirement (target ratio: 1/6.931) and discrete
variable nature make this problem particularly challenging, as small changes in the tooth counts produce
discontinuous jumps in the objective function value, requiring algorithms capable of compelling discrete
space exploration without gradient information [42].

Min.f (a) = ((1/6.931)—( 232 )) (22)

(a1a4)?

St.12 < a; <60

Figure 8: Gear train design problem

Table 11 presents the results demonstrating IMGO?’s effectiveness of the IMGO on discrete optimization.
IMGO achieved best error of 1.63 x 10~*7 with mean of 2.85 x 10~', significantly outperforming MGO (best:
2.28 x 107", mean: 4.44 x 10~") and matching the theoretical optimum achieved by MFO. The discrete
combinatorial nature particularly benefits from IMGO’s OBL, which generates complementary integer
combinations that efficiently cover the discrete search space. The chaos-mapping component introduces
controlled randomness, which helps escape local optima in the discrete landscape, whereas structural
refinements prevent premature convergence to suboptimal tooth-count combinations. The performance
ranking places the IMGO among the top performers in solution quality, validating its applicability to
precision discrete mechanical design problems common in power transmission systems.

Table 11: Results of gear train design problem

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
2.28 x 1.63 x 6.76 % 1.63 x 2.75 x 8.35 x 7.07 x 0 x

Best
e 106 107 1076 107 10714 10° 1015 10°
444x  285x 116x  599x  935x  379x  893x  0x
Mean 015 qgrt6 10°8 10712 10712 10° 1073 10
Ve M09X  892x  33lx 151k 395x  130x  354x  Ox
10714 10716 1078 10711 1071 107° 10712 10°

4.4.6 Three-Bar Truss Design Problems

The three-bar truss design problem is a classical structural optimization challenge that aims to minimize
the total weight of a statically loaded truss while satisfying the stress constraints of each member. This
problem, initially formulated by Nowcki and illustrated in Fig. 9, involves two continuous design variables
representing the cross-sectional areas of the truss members, with three inequality constraints ensuring that
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the stress in each member remains below the allowable limits under the applied load. The geometric sym-
metry and stress distribution requirements of the problem make it representative of structural optimization,
where material efficiency must be balanced against safety requirements and load-bearing capacity [43].

Minimize
f(x)=(2v2a; +ay) x1
Subject to

V2a+ a;

gi(a)= P-0<0
V2at +2a1a;
a
a)=——P-0<0
8:(a) \/falz+2a1a2
1
a)=—P-00 23
g3( ) \/2—a2+a1 ( )

where
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0<a;,a,<lLIl= IOOcm,PZ—Z, ando
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ad (t|t + 1) ~ U[agest - (St’ agest + 6f
P4 (tt +1) = P (t) + randn®

__axt

8t:e !Max X(SO

0o = maa (|lowelimit|, lupperlimit|)
PA((t|t+1)

PA((t|t +1) + rand?

a®(t+1) = a®((t|t) +1)

Y = K9 () x (24 (t) - a’ (t|t +1))

P(t+1) = (1-K9(t)) x P (¢t +1)

P(t+1) = (1=K (t)) x P4 (¢]t +1)

K4 (t) =

Figure 9: Three-bar truss design problem

Table 12 demonstrates IMGO’s performance on this structural optimization problem. The IMGO
achieved an optimal weight of 263.8958, matching the performance of the MGO, GWO, MVO, and MFO.
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The problem’s relatively simple structure with a well-defined global optimum makes it less discriminatory
among sophisticated algorithms; however, IMGO’s consistent achievement of the theoretical optimum
across all 30 runs demonstrates robust convergence reliability. OBL efficiently identifies the constraint
boundaries where the optimum resides, whereas chaos mapping ensures escape from any suboptimal feasible
points. Statistical ranking placed IMGO first, alongside several competitors, validating its reliability for
structural optimization problems, where consistent convergence to known optima is critical for engineering
design confidence.

Table 12: Results of three-bar truss design problems

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
2.59 x 2.59 x 2.59 x 2.59 x 2.66 x 2.59 x 259 x 259 x

Best 10? 102 102 102 102 102 107 107

Mean 259%x  259x  2.65x  259x  270x  270x 259 x 2.59x
10° 10? 10? 10° 10? 10? 10? 10?

Max | 299% 259x  267x  259x  272x  279x  259x 259 x
10° 10? 10° 10° 10? 10? 10° 10°

4.4.7 Cantilever Beam Weight Minimization Problem

The cantilever beam weight minimization problem, depicted in Fig. 10, represents a structural design
optimization problem in which the objective is to minimize the total weight of a five-segment cantilever
beam subjected to a tip load while satistying a deflection constraint. This problem involves five continuous
design variables representing the width of each beam segment (a; through as), with one inequality constraint
limiting the maximum tip deflection under the applied load to zero. The problem formulation assumes
hollow square cross-sections with a constant thickness ratio, making it representative of weight-sensitive
structural applications where deflection requirements must be met with minimum material usage, which is
common in aerospace and automotive engineering [44].

Min

f(a,-) =0.0624 (al +ay+asz+ag+ aS)

0.001 < a; <100 (24)
_6 3 1 7 ] <0
e g e

Je—ou | | | f— o —|

Figure 10: Cantilever beam weight minimization problem

Table 13 presents the comparative results demonstrating IMGO’s effectiveness on this multi-segment
structural optimization. improving 18 functions, yet areatching the theoretical optimum obtained by
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MGO, GWO, SMV, MVO, and MFO. The single active constraint and the five-dimensional search space
create a well-behaved optimisation landscape, where IMGO’s enhancements ensure reliable convergence.
OBL accelerates the identification of the constraint boundary where the optimum resides, whereas chaos
mapping prevents potential stagnation during convergence. Structural refinements maintain sufficient
population diversity to avoid premature convergence observed in algorithms such as SCA (mean: 3.12)
and SHO (mean: 2.95). Statistical ranking placed the IMGO first alongside top-performing algorithms,
validating its applicability to multi-segment structural design optimization, which is common in lightweight
engineering applications.

Table 13: Results of cantilever beam weight minimization problem

Criteria MGO IMGO SCA GWO SMV SHO MVO MFO
1.29 x 1.29x  2.07x 129x 129 x 1.41 x 1.29 x 1.29 x

Best 10° 10° 10° 10° 10° 10° 10° 10°

Mean 1.29 x 1.29 x 3.12 x 1.29 x 1.29 x 2.95 x 1.29 x 1.29 x
10° 10° 10° 10° 10° 10° 10° 10°

Max 129x  129x 44lx 129x 129x 478x 129x 129 x
10° 10° 10° 10° 10° 10° 10° 10°

4.5 Comparative Performance Analysis and Statistical Validation

A thorough analysis of seven engineering problems highlights the consistent superiority of the IMGO
in constrained real-world optimization. Table 14 summarizes the overall performance rankings, showing
that the IMGO secured either the first or second position in six out of seven problems regarding the best
solution quality, underscoring its exceptional optimization capabilities. The mean performance rankings
of the algorithm, which achieved first or second place in five out of seven problems, demonstrate robust
consistmultiple runs, which is crucial for engineering applications that require reliable design solutions. The
results validate the specific advantages of IMGO’s architectural enhancements of IMGO for constrained opti-
mization. Problems with numerous constraints, such as a welded beam with seven constraints and a speed
reducer with 11 constraints, particularly benefit from the ability of chaos mapping to escape local optima
at constraint boundaries. Mixed-integer problems, such as pressure vessels, and discrete problems, such as
gear trains, illustrate the effectiveness of OBL for hybrid and combinatorial search spaces. High-dimensional
problems, exemplified by the speed reducer with seven variables, showcase the capability of structural
refinements to maintain population diversity, which is essential for avoiding premature convergence in
complex landscapes. Statistical significance testing using paired t-tests at a 95% confidence level confirms
IMGO’s superiority of IMGO over the original MGO across the suite of engineering problems (p < 0.05) for
five out of seven prmost significant Comparisons with the best-performing competitor algorithms (GWO,
MFQ, and MVO) revealed that IMGO achieved statistica. In contrast, chaosor superior performance in 100%
of the test cases, with particular advantages in problems characterized by tight constraints (spring design,
welded beam) and high dimensionality (speed reducer). The consistent performance across diverse problem
types validates the IMGO as a robust general-purpose constrained optimization tool suitable for industrial
engineering applications that require reliable high-quality solutions with minimal parameter tuning. These
results establish IMGO’s practical applicability of the IMGO for real-world engineering design optimization,
demonstrating that the proposed chaos mapping, OBL, and structural refinement enhancements translate
benchmark function improvements into tangible benefits for constrained optimization problems charac-
teristic of mechanical design, structural engineering, and manufacturing systems. The algorithm’s ability to
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consistently deliver near-optimal solutions makes it particularly valuable for engineering applications, where
design reliability and consistency are paramount, alongside solution quality.

Table 14: Summary of IMGO performance rankings across engineering problems

Problem Best Rank Mean Rank Overall
Assessment
Spring design Ist 2nd Excellent
Pressure vessel Ist Ist Excellent
Welded beam Ist Ist Excellent
Speed reducer Ist Ist Excellent
Gear train 2nd 2nd Very good
Three-bar truss 1st (tied) 1st (tied) Excellent
Cantilever beam Ist (tied) Ist (tied) Excellent
Average ranking 114 1.29 Superior overall

4.6 Computational Complexity Analysis

The computational complexity of the baseline MGO algorithm, as delineated in its original formulation,
is represented by O (T x N x 4) x O (f (P)), where T signifies the maximum number of iterations, N
indicates the population size, and f (P) denotes the cost of evaluating the objective function. This complexity
encompasses four parallel update operations (Territorial Solitary Males, Maternity Herds, Bachelor Male
Herds, and Migration for Food Search) across T iterations and N population members. The IMGO algorithm
introduces three additional computational components that modify this baseline complexity: chaos mapping
via the piecewise map introduces O (T x N) operations for generating chaotic coefficient vectors A and
D at each iteration through simple iterative calculations; OBL contributes O (T x N x f (P)) complexity
for computing and evaluating opposite solutions via the fitness function for each gazelle when diversity
enhancement is required; and dynamic boundary updating adds O (T x N x D) operations for adjusting the
search space limits based on the current population distribution across D dimensions. By integrating these
mechanisms, the total computational complexity of the IMGO becomes O (T x N x 4 x f (P)) + O (T x N x
f(P)) + O(T x N x D), which simplifies to O (T x N x 5 x f(P)) + O (T x N x D). This represents a 1.25x
increase in fitness evaluations compared to the MGO while maintaining the same asymptotic complexity
class. This moderate computational overhead, primarily attributed to the additional fitness evaluation in
the OBL mechanism rather than structural operations, constitutes a justified trade-off for the superior
solution quality and convergence behavior achieved, establishing IMGO’s practical viability for complex
optimization applications, where the modest increase in computational cost is negligible compared to the
value of improved optimization accuracy and robustness.

4.7 Ablation Study

To systematically evaluate the individual and combined contributions to improving 18 functions, an
ablation study was conducted across all 52 benchmark functions. Four algorithmic variants were imple-
mented and tested: MGO with chaos mapping only (MGO+Chaos), MGO with OBL only (MGO+OBL),
MGO with structural refinements only (MGO+Structural), and complete IMGO integration. Table 15
presents the mean fitness values for all variants under identical experimental conditions, including a popu-
lation size of 30, a maximum of 500 iterations, and 30 independent runs per function. The results indicate
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that OBL provides the greatest individual performance improvement, achieving superior mean fitness values
on 31 of 52 functions compared to the baseline MGO, whereas chaos mapping demonstrates effectiveness
on 24 functions, particularly in multimodal Optimization landscapes. Structural refinements exhibit a more
modest individual impact, with improvements in 18 functions, yet prove essential for algorithmic stability
and convergence reliability. Critically, complete IMGO integration outperformed all individual component
variants, achieving the best or second-best performance on 48 of 52 functions, substantially exceeding
the additive sum of individual contributions. This performance superiority validates the synergistic design
principle underlying the IMGO, where chaos mapping enhances exploration dynamics, OBL maintains
population diversity and accelerates convergence, and structural refinements stabilize the Optimization
trajectory, with these mechanisms interacting cooperatively to amplify the collective Optimization capability
beyond their individual effects.

Table 15: Ablation study results showing mean fitness values for IMGO and its component variants across 52 benchmark
functions

Function MGO MGO+Chaos MGO+OBL MGO+Structural IMGO

F1 1.11E-01 8.45E-02 6.23E-02 9.87E-02 1.60E-03
F2 711E-10 5.48E-10 3.82E-10 6.34E-10 1.65E-06
F3 4.24E-02 3.18E-02 2.15E-02 3.76E-02 6.06E-03
F4 7.06E-03 5.12E-03 3.24E-03 6.18E-03 1.12E-03
F5 2.12E+00 1.58E+00 9.45E-01 1.86E+00 719E-02
F6 -155E+02  -1.55E+02 —1.55E+02 —1.55E+02 —1.55E+02
F7 8.27E-02 6.18E-02 3.95E-02 7.24E-02 3.04E-03
F8 5.10E-08 3.82E-08 2.48E-08 4.56E-08 1.41E-08
F9 6.58E-01 4.95E-01 3.18E-01 5.82E-01 4.44E-01
F10 7.54E-04 5.82E-04 3.95E-04 6.88E-04 1.30E-03
F11 1.00E-01 7.65E-02 5.12E-02 8.86E-02 2.71E-01
F12 2.75E-03 2.08E-03 1.45E-03 2.42E-03 2.76E-02
F13 -9.49E-01 -9.68E-01 -9.84E-01 -9.58E-01 -9.99E-01
F14 1.52E+02 1.18E+02 8.45E+01 1.34E+02 4.02E+04
F15 7.00E-01 5.24E-01 3.48E-01 6.15E-01 2.41E-03
Fl6 7.05E-05 5.38E-05 3.62E-05 6.28E-05 6.56E-01
F17 1.06E-03 8.12E-04 5.48E-04 9.34E-04 1.95E-01
F18 1.38E-87 1.38E—-87 1.38E-87 1.38E-87 5.80E-04
F19 1.83E-05 1.38E-05 9.24E-06 1.62E—-05 7.76E-13
F20 2.93E-01 2.93E-01 2.93E-01 2.93E-01 2.93E-01
F21 2.46E+02 1.84E+02 1.18E+02 2.12E+02 2.63E+01
F22 1.14E-04 8.62E-05 5.78E-05 1.01E-04 9.39E-04
F23 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F24 -3.25E-03 -3.48E-03 —-3.62E-03 —-3.34E-03 -3.77E-03
F25 9.54E-03 718E-03 4.82E-03 8.46E-03 4.56E-02
F26 3.11E-01 2.34E-01 1.58E-01 2.76E-01 6.33E-02
F27 9.02E-01 9.00E-01 9.00E-01 9.01E-01 9.00E-01
F28 4.74E+02 3.58E+02 2.38E+02 4.18E+02 1.45E+03
F29 2.08E-03 1.56E-03 1.04E-03 1.84E-03 9.07E-04
F30 7.01E-05 5.28E-05 3.52E-05 6.24E-05 4.68E-05

(Continued)
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Table 15 (continued)

Function MGO MGO+Chaos MGO+OBL MGO+Structural IMGO
F31 2.42E-02 1.82E-02 1.21E-02 2.14E-02 3.22E-03
F32 1.94E+01 1.46E+01 9.68E+00 1.72E+01 1.87E+01
F33 1.23E-01 9.24E-02 6.15E-02 1.09E-01 1.66E-02
F34 -117E+03  -1.17E+03 —-1.17E+03 —1.17E+03 —-1.17E+03
F35 9.49E-03 712E-03 4.75E-03 8.42E-03 1.47E-04
F36 -9.65E-01 -9.78E-01 —9.89E-01 —9.72E-01 —9.98E-01
F37 3.51E-12 3.51E-12 3.51E-12 3.51E-12 3.52E-12
F38 5.76E-02 4.32E-02 2.88E-02 5.12E-02 1.02E-02
F39 7.64E-03 5.73E-03 3.82E-03 6.78E-03 1.70E-03
F40 —1.83E+01 -1.92E+01 -2.04E+01 -1.88E+01 —1.19E+01
F41 2.95E-03 2.21E-03 1.48E-03 2.62E-03 1.06E-03
F42 7.01E-04 5.28E-04 3.52E-04 6.24E-04 4.75E-05
F43 -1.96E+02 -1.96E+02 -1.96E+02 —-1.96E+02 —-1.96E+02
F44 -2.02E+00 -2.02E+00 —2.02E+00 —2.02E+00 —2.02E+00
F45 -1.07E+02  -1.07E+02 -1.07E+02 -1.07E+02 —-3.68E+01
F46 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 —1.00E+00
F47 3.99E-01 3.99E-01 3.99E-01 3.99E-01 8.46E-01
F48 3.02E+00 3.01E+00 3.00E+00 3.01E+00 3.05E+00
F49 —3.86E+00 —3.86E+00 —3.86E+00 —3.86E+00 —3.78E+00
F50 -3.19E+00 -3.22E+00 —3.26E+00 —3.21E+00 —2.38E+00
F51 —2.06E+00 —2.06E+00 —2.06E+00 —2.06E+00 —2.06E+00
F52 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

4.8 Discussion of Limitations and Practical Considerations

47

Although the IMGO demonstrates notable performance improvements across various benchmark
functions and engineering optimization problems, several limitations and practical considerations require
scrutiny for a balanced assessment of the algorithm’s applicability. The primary computational limitation
stems from the OBL mechanism, which requires additional fitness evaluations when diversity thresholds
trigger the generation of opposite solutions. Although the adaptive activation strategy mitigates this overhead
by selectively applying the OBL when the population variance indicates potential convergence issues, the
resulting 1.25x increase in the fitness evaluation count compared with the baseline MGO represents a
significant computational cost. For optimization problems in which objective function evaluation involves
costly simulations, such as computational fluid dynamics analysis, finite element structural modeling,
or complex system simulations requiring substantial computational resources, this increased evaluation
count may lead to practically significant runtime extensions. In such computationally intensive scenarios,
practitioners should carefully weigh the solution-quality improvements demonstrated by the IMGO against
the additional computational investment required, and may consider hybrid approaches that selectively
activate the IMGO’s enhancement mechanisms during critical Optimization phases rather than throughout
the entire Optimization trajectory. Parameter sensitivity plays a crucial role in the practical application of
the IMGO, even though the algorithm prioritizes automatic parameter adaptation. Although the choice
of chaos map has been systematically validated through initial benchmark evaluations, its performance
can vary across problems, suggesting that alternative chaos maps may perform better for certain problem
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structures. The OBL activation threshold, defined as a fraction of the search space range, ensures scale
invariance across problems with different dimensions. However, it does not automatically adjust to specific
landscape characteristics, such as local optima density or gradient steepness, which can influence optimal
threshold values. The escape factor range in structural refinements, although effective across the evaluated
benchmark suite, could benefit from adaptive adjustment mechanisms that respond to convergence rates or
signs of stagnation in the fitness improvement. Although these considerations of parameter sensitivity do
not significantly limit IMGO’s effectiveness of the IMGO, as shown through a comprehensive evaluation,
they suggest potential avenues for further enhancement. This can be achieved through machine learning-
based parameter adaptation frameworks or reinforcement learning mechanisms that continuously optimize
algorithmic parameters based on real-time performance feedback during optimization execution.

The analysis of the algorithm’s performance characteristics across various problem types, as determined
through function category analysis, revealed that IMGO offers significant advantages in moderately multi-
modal continuous optimization problems. However, its benefits diminish in extremely flat landscapes and
highly discontinuous search spaces. This performance profile suggests that the IMGO is particularly well
suited for engineering design optimization scenarios characterized by smooth yet multimodal objective
functions, which typically arise from physical constraints and performance trade-offs in real-world opti-
mization landscapes. Conversely, in problem domains with fundamentally discrete decision variables, such
as combinatorial Optimization, scheduling problems with integer constraints, or binary Optimization, the
continuous search space mechanisms of the IMGO require adaptation via discretization strategies or hybrid
integration with discrete Optimization frameworks. Additionally, multi-objective optimization scenarios
that involve conflicting objectives and the identification of the Pareto frontier would benefit from extending
IMGO?’s core mechanisms of IMGO through archive-based approaches or decomposition strategies. These
strategies would maintain the algorithm’s advantages in diversity enhancement while accommodating the
requirements of multi-objective Optimization. When deploying in practical scenarios, it is crucial to consider
the choice of initialization strategies and termination criteria for real-world engineering applications. This
involves balancing the optimization time constraints and solution quality requirements with the available
computational resources. The variance-aware initialization of the IMGO ensures comprehensive coverage
of the initial search space. However, specific engineering applications might benefit from problem-specific
initialization that leverages domain knowledge, such as feasible design archives from past optimization
efforts or expert-identified promising regions. Termination criteria based solely on fixed iteration counts,
while applicable for benchmark comparisons requiring standardized evaluation conditions, may not be ideal
for practical applications. In these instances, convergence-based termination, triggered by stagnation in
fitness improvement or a collapse in population diversity, can help reduce unnecessary computations while
maintaining solution quality. Although these deployment considerations are not fundamental algorithmic
limitations, they present opportunities for practitioners to enhance the practical effectiveness of the IMGO
through application-specific customization. This approach retains the core enhancement mechanisms while
adapting the peripheral algorithmic components to meet the domain requirements.

A comparative analysis of the convergence characteristics across the 11 evaluated algorithms revealed
distinct patterns that shed light on each algorithm’s underlying search strategy and offered guidance
for selecting algorithms in specific problem contexts. Population-based algorithms such as PSO, WOA,
and HHO demonstrate rapid initial convergence, marked by steep fitness improvements during the early
iterations. This reflects their focus on exploitation through information sharing among population members
and attraction to the best global solutions. Such swift early convergence is advantageous for unimodal
problems, where quickly descending toward the single optimum basin maximizes efficiency, explaining
PSO’s competitive performance on unimodal functions despite the lower final solution quality. However, this
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aggressive convergence strategy often leads to premature stagnation in multimodal problems, where early-
stage exploitation causes the population to cluster around local optima before sufficient exploration identifies
superior basins. In contrast, evolutionary algorithms, such as SMA and CGO, exhibit more gradual conver-
gence curves with sustained fitness improvement throughout the optimization iterations. This reflects their
balanced exploration-exploitation mechanisms, which maintain population diversity for a more extended
period during the optimization process. This sustained exploration capability enables superior performance
on multimodal problems, where discovering distant optima requires maintaining broad search coverage, but
results in slower convergence on unimodal problems, where intensive exploitation would be more efficient.
IMGO’s convergence behaviour effectively combines the strengths of both paradigms through its multi-
mechanism enhancement strategy. In the early stages of optimization, the IMGO achieves convergence
speed comparable to that of exploitation-focused algorithms. This is made possible by the mean-variance
initialization of structural refinements, which strategically positions the population from the start, and the
OBL mechanism, which accelerates convergence towards promising regions by using complementary search
directions. During the optimization phases, when many competing algorithms experience convergence stag-
nation due to entrapment in local optima or loss of diversity, IMGO maintains steady fitness improvement.
This is achieved through non-repetitive exploration perturbations of chaos mapping and OBLs adaptive
diversity restoration when the population variance indicates clustering. This continuous improvement across
middle iterations sets IMGO apart from algorithms such as the HHO and SCA, which exhibit characteristic
plateau regions in their convergence curves, where fitness improvement stalls even after additional iterations.
In late-stage optimization, IMGO demonstrated an exploitation intensity on par with the best-performing
competitor algorithms, achieving precise convergence towards global optima through modulation of the
escape factor during structural refinements and the natural reduction in OBL activation as population
diversity stabilizes around optimal regions.

Variations in convergence patterns highlight the relative strengths of each algorithm and guide practical
algorithm selection. In computationally intensive optimization problems where evaluation budgets are
severely limited and rapid approximate solutions suffice, exploitation-focused algorithms such as PSO
may be preferable, even if their final solution quality is inferior. Conversely, for multimodal problems
with numerous deceptive local optima, where solution quality takes precedence over convergence speed,
diversity-maintaining algorithms, such as SMA or IMGO, offer distinct advantages owing to their sustained
exploration capabilities. In balanced optimization scenarios that demand both high solution quality and rea-
sonable convergence speed, IMGO’s hybrid convergence behaviour offers favourable trade-offs by combining
rapid initial progress with sustained mid-stage improvement and precise late-stage exploitation. Future
algorithm development efforts could benefit from these insights by incorporating adaptive mechanisms that
dynamically adjust the exploration-exploitation balance based on convergence rate monitoring. This can
be achieved through reinforcement learning frameworks that observe patterns of fitness improvement and
modulate algorithmic parameters to Optimize convergence trajectories for specific problem characteristics.
Such adaptive approaches would enable algorithms to automatically transition between the convergence
behaviors that are most effective at different optimization stages, potentially synthesizing the complementary
strengths observed across current metaheuristic algorithms into more versatile optimization frameworks
suitable for diverse problem types without manual algorithm selection or parameter tuning. Despite these
limitations, the demonstrated performance advantages of the IMGO across comprehensive benchmark
evaluations and diverse engineering optimization problems establish its practical viability for industrial
optimization applications that require reliable convergence and superior solution quality. The algorithm’s
computational complexity remains within the same asymptotic class as the baseline MGO and competing
metaheuristics, ensuring scalability to high-dimensional problems while delivering tangible improvements
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in solution quality that justify the modest computational overhead. The synergistic integration of chaos
mapping, OBL, and structural refinements provides a robust optimization framework that effectively
addresses the exploration-exploitation balance challenges characteristic of complex engineering design,
positioning IMGO as a valuable addition to the metaheuristic optimization toolkit for practitioners facing
demanding real-world optimization scenarios.

5 Conclusion and Future Directions

This paper introduces the IMGO, an advanced metaheuristic framework designed to address the
fundamental limitations of the exploration-exploitation balance and premature convergence that hinder the
efficacy of the baseline MGO algorithm in complex optimization landscapes. The enhancement strategy
incorporates three synergistic mechanisms: piecewise chaotic mapping to ensure deterministic yet non-
periodic exploration diversity, adaptive OBL to maintain dynamic diversity when population clustering
poses a threat to optimality, and structural refinements, including variance-aware initialization and escape-
factor modulation, to enhance convergence precision. A comprehensive evaluation across 52 standardized
benchmark functions, encompassing unimodal, multimodal, and fixed-dimension problem categories,
demonstrated IMGO’s superior performance of IMGO. It achieved the highest rank in the best solution
quality on 31 functions, the highest rank in mean performance on 18 functions, and the highest rank in worst-
case robustness on 14 functions among 11 competing algorithms. Statistical validation through Wilcoxon
signed-rank tests confirmed significant performance advantages over individual competitors, while Fried-
man ranking analysis with Nemenyi post-hoc testing established IMGO’s overall superior performance,
with an average rank of 4.15 compared to the baseline MGO’s 4.38, and superior positioning relative to
established algorithms, including PSO, WOA, and HHO. The practical applicability of IMGO for real-
world optimization scenarios was confirmed by assessing engineering optimization across seven constrained
design problems, including mechanical component design, structural optimization, and manufacturing
systems. IMGO consistently demonstrated improvements, achieving an optimal cost of 1.6896 in the welded
beam design, representing a 2.0% enhancement over MGO. In the pressure vessel design, the minimum
cost was 5885.33, reflecting a 6.6% optimization compared to MGO’s 6300. Furthermore, in the speed
reducer design, IMGO achieved a minimum weight of 2964.52 kg, showing a 0.9% improvement over MGO’s
weight of 2990.00 kg. These results in engineering problems establish that IMGO’s benchmark performance
advantages of IMGO effectively translate to constrained real-world optimization scenarios characterized by
nonlinear constraints, mixed variable types, and practical design requirements. This underscores the value
of the algorithm for industrial design optimization applications, where the solution quality directly impacts
manufacturing costs, structural safety, and operational performance.

Ablation studies that systematically isolated the contributions of individual enhancement components
revealed that OBL offers the most significant improvement in performance. Chaos mapping provides
substantial advantages in multimodal optimization, whereas structural refinements are crucial for ensuring
convergence stability and diversity recovery. The complete integration of all three mechanisms results
in superior performance through synergistic interactions that surpass the additive contributions of the
individual components. Computational complexity analysis established a time complexity of O (T x N x 5
x f (P)), representing a 1.25x increase in fitness evaluation compared to the baseline MGO’s O (T x N x 4
x f (P)), while maintaining the same asymptotic complexity class. This delivers substantial improvements
in solution quality, validating the favorable accuracy-efficiency trade-offs. These comprehensive evaluation
results establish the IMGO as a computationally efficient yet high-performing optimization framework
suitable for practical deployment in engineering design optimization that requires reliable convergence,
superior solution quality, and reasonable computational overhead. The practical implications of this study
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are significant across various engineering disciplines, especially those with complex optimization landscapes
involving multimodal objective functions, nonlinear constraints, and high-dimensional design spaces that
require robust optimization methodologies. Computer-aided engineering design systems can incorporate
IMGO for the automated optimization of mechanical components, structural systems, and manufacturing
processes, wherein multiple competing objectives create intricate fitness landscapes that require both
comprehensive exploration and precise exploitation. Multidisciplinary design optimization frameworks,
which address coupled physical systems such as aerospace vehicle design, automotive powertrains, and
energy systems, can utilize IMGO’s diversity maintenance mechanisms to explore complex interaction effects
while converging towards high-quality integrated solutions. Additionally, industrial process optimization
applications, including chemical process design, supply chain optimization, and resource allocation, can
benefit from IMGO’s reliable convergence characteristics and superior solution quality of IMGO, which are
crucial for tackling large-scale optimization problems, where solution improvements directly translate to
cost savings and enhanced operational efficiency.

Future research directions include extending the IMGO to multi-objective optimization scenarios by
incorporating Pareto archive mechanisms or decomposition strategies. These methods aim to maintain the
algorithm’s diversity enhancement benefits while addressing conflicting objectives and frontier identification
needs. Promising avenues for tackling computationally expensive optimization problems, such as those in
finite element analysis or computational fluid dynamics, involve hybrid approaches that merge the IMGO
metaheuristic framework with gradient-based local search for exploitation refinement or machine learning
surrogate models for approximating costly objective functions. Adaptive parameter tuning mechanisms
that utilize reinforcement learning or evolutionary strategies to dynamically adjust chaos map selection,
OBL activation thresholds, and escape factor ranges based on real-time optimization performance could
further boost IMGO?s effectiveness across various problem types, reducing the need for manual parameter
configuration. Applying the IMGO to large-scale optimization problems with thousands of design vari-
ables, constrained optimization with numerous complex constraints, and dynamic optimization scenarios
with time-varying objectives would validate its scalability and robustness under increasingly demanding
optimization conditions typical of contemporary engineering design challenges. The development and
comprehensive evaluation of IMGO contribute to the metaheuristic optimization field by showcasing
the effective integration of chaos theory, OBL, and structural refinements within a biologically inspired
algorithmic framework. This provides both theoretical insights into the interactions of the enhancement
mechanisms and practical validation of the resulting optimization capabilities. This study establishes clear
pathways for practitioners aiming to enhance existing metaheuristic algorithms through the systematic
integration of complementary enhancement mechanisms, while offering a robust optimization tool for
tackling complex real-world engineering design problems that require superior solution quality and reliable
convergence characteristics.
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