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ABSTRACT: Hepatitis B Virus (HBV) infection and heavy alcohol consumption are the two primary pathogenic causes
of liver cirrhosis. In this paper, we proposed a deterministic mathematical model and a logistic equation to investigate
the dynamics of liver cirrhosis progression as well as to explain the implications of variations in alcohol consumption
on chronic hepatitis B patients, respectively. The intricate interactions between liver cirrhosis, recovery, and treatment
dynamics are captured by the model. This study aims to show that alcohol consumption by Hepatitis B-infected
individuals accelerates liver cirrhosis progression while treatment of acutely infected individuals reduces it. We proved
that a unique solution of the proposed model exists, which is positive and bounded. Using the next-generation matrix
approach, two basic reproductive numbers RA0 and RAmax are calculated to identify future recurrence. The equilibrium
points are calculated, and both equilibria are proved locally and globally asymptotically stable when R0 is below and
above one, respectively. It is shown that bifurcation exists at R0 = 1 and a detailed proof for forward bifurcation is given.
Furthermore, we performed the sensitivity analysis of the model parameters on R0. For the confirmation of analytical
work, we performed numerical simulations, and the results indicate that the treatment and the inhibitory effects reduce
the risk of developing liver cirrhosis in individuals, while heavy alcohol consumption accelerates markedly the liver
cirrhosis progression in patients with chronic hepatitis B.
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1 Introduction
The late stage of liver disease, known as liver cirrhosis, occurs when the liver organ fails to function

correctly due to the possible transformation of healthy liver tissue into scar tissue caused by alcohol
processing stress or viral infections. In the world, cirrhosis is responsible for one million fatalities annually,
indicating its significant morbidity and mortality rates [1]. Ultimately, a chronic or continual injury causes
the liver to slowly languish and become incapable of functioning properly. A distinctive feature of the
liver is its ability to regenerate; however, this process is also inhibited by liver cirrhosis. Hepatitis B and C
virus infections, prolonged alcohol consumption, other liver illnesses and disorders can all lead to cirrhosis.
The risk of developing cirrhosis is higher in those with chronic viral infections [2]. Although before the
extensive liver damage, the liver cirrhosis has no apparent symptoms. Hepatitis B is a major worldwide health
concern, caused by a virus called hepatitis B. Fever, fatigue, joint pain, loss of appetite, nausea, vomiting,
and jaundice may occur two weeks later as symptoms. An incubation period of 45−180 days (average 60−90
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days) meant that many of the infected would not experience symptoms. Mother-to-child transmission and
contact with contaminated bodily fluids such as blood, saliva, vaginal secretions, and semen are potential
transmission modes [3,4]. In 2022, the World Health Organization estimates that 254 million individuals
have a chronic hepatitis B infection, with 1.2 million new cases reported annually. An estimated 1.1 million
people died mostly from cirrhosis and hepatocellular carcinoma (HCC) as a result of hepatitis B in 2022 [5].
Another significant risk factor for the development of chronic liver cirrhosis is heavy alcohol use, with
38% of adults over 15 years, consuming more than 17 liters of pure alcohol per year [6]. The prevalence of
cirrhosis is approximately 10 to 20 percent of heavy drinkers after ten or more years, especially in individuals
taking at least 50 grams of pure alcohol daily over 10 to 20 years, and there is a high degree of risk of fast
liver destruction when alcohol intake is combined with HBV infection [7]. However, a lot of studies have
demonstrated that the risk of developing cirrhosis is not increased if people do not consume more than
50 grams of pure alcohol daily. Consuming more than 50 grams of pure alcohol per day, however, speeds up
the development towards liver cirrhosis in chronic hepatitis B carriers for both men as well as women. It is
poisonous and fatal if a person weighing 60 kg takes in more than 300 grams of alcohol daily [8–10]. Hepatitis
B effective vaccine available with 95% effective antibodies [11]. Chronic infection treatment is crucial to
reduce the risk of severe problems like liver cancer or cirrhosis. Treatment duration varies depending on the
genotype and medication used, ranging from six months to a year [12].

In studying the dynamical behavior of epidemic models, the incidence rates play a vital role. Capasso
and Serio [13], for the first time, proposed the idea of saturation incidence rate β(A)SI

1+α2I
. In a population that

is completely susceptible to the illness, β(A)I
1+α2I

achieves the saturation level when I grows and α2I measures
the force of infection after entering the disease. In this incidence rate 1

1+α2I
measures the inhibitory impact

of behavioral changes in susceptible people when the number of infected people rises or the crowding effect
of infective individuals. Compared to bilinear, the saturated incidence rate is more general.

The dynamical behavior of infectious illnesses, such as cholera, liver cirrhosis, Hepatitis B infection,
and others, is commonly studied using mathematical models. Apart from modelling of infectious diseases,
various research has also been done for anticancer medication and locating numbers [14,15]. Mathematical
models are considered to be the tool helping to discuss hypotheses, verify the experiments, and simulate the
dynamics of complex objects. Zhou and Fan [16] created an SIR (Susceptible-Infective-Recovered) model
for susceptibility, infection, and recovery analysis to evaluate human behavior during medical resource
shortages. Ilhan and Sahin have used the Morgan-Voyce collocation method (M-VCM) to determine the
approximate solution of the SIR model with the vaccination effect. Their paper provides an alternative
criterion of the certainty of the approximate solutions. They primarily tried to determine the exact solutions
of the SIR model of vaccination [17]. Researchers have developed multiple models to study relationships
between alcohol abuse patterns alongside cirrhosis evolution and hepatitis B virus infection processes. Park
et al. [18] investigated the factors linked to alcohol consumption among Hepatitis B carriers in Korea and
concluded that hazardous alcohol consumption is defined as consuming more than sixty grams of alcohol
on one occasion for males or forty grams of alcohol on several occasions for females. A continuous and a
discrete mathematical model were developed by Khajji et al. [19] to investigate the dynamical behavior of
alcohol use and the effects of both public and private addiction treatment centers. By utilizing a mathematical
model and an optimum control technique [20,21] elucidated the dynamics of infectious diseases and came
to the conclusion that the illness may be controlled by vaccination and treatment. Zhou et al. [22] compared
moderate and excessive drinking and came to the conclusion that moderate alcohol consumption has no
discernible impact on the progression of liver cirrhosis, whereas excessive drinking causes liver inflammation
in patients with chronic Hepatitis B infection, ultimately accelerating the progression of the disease. A
mathematical model developed by Dano et al. [23], consisting of four classes, namely susceptible, acutely
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infected, cirrhotic, and recovered, with a logistic model to study the combined effect of Hepatitis B infection
and heavy alcohol consumption on liver cirrhosis progression dynamics.

The novelty of our research is considering the effect of exposed and treated classes. Since Hepatitis B has
a latent phase, and treatment effects. With the inclusion of the exposed class, a latent period is introduced,
which delays the transmission of individuals into the acutely infected class. We assumed that a fraction of
individuals move from the exposed to the recovered compartment directly. The treated class is included to
model the impact of medical interventions, which helps in analyzing how treatment reduces the infectious
(both acutely infected and cirrhotic) population and reduces the progression to liver cirrhosis. Moreover, the
existence of a unique solution for the proposed model is examined, which is ignored in most of the papers.
Furthermore, we used a saturated incidence rate to study the saturation effects. Two basic reproductive
numbers are calculated when the minimum and maximum amount of pure alcohol is consumed, respectively.
The 3D analysis of these basic reproductive numbers are also carried out. To the author’s utmost knowledge,
no one has yet considered the same.

We organized this research study as follows. The model formulation, description, as well as associated
assumptions are presented in Section 2. In Section 3, the qualitative analysis of the proposed model is
presented. That is, the solution is of existence, uniqueness, positivity, as well as boundedness. Moreover, the
feasible region is defined, equilibrium points, the basic reproductive number with 3D-type simulation, and
local and global asymptotic stability at equilibria are calculated. In Section 4, the bifurcation phenomena
are analyzed, where we proved the existence of forward bifurcation of the proposed model. The sensitivity
analysis is carried out in Section 5, while the numerical simulations are explored in Section 7, and the
conclusion is presented in Section 8.

2 Model Formulation
The total human population is denoted byN(t) and partitioned into six different compartments namely

the susceptible, exposed, acutely infected, liver cirrhotic, treated and recovered denoted by S(t), E(t),
I(t), C(t), T(t) and R(t), respectively. The susceptible individuals S(t) include those who are at risk of
becoming infected but have not yet been infected at time t. People in the susceptible group are not immune
to a possible infection. The exposed compartment E(t) includes those individuals who are infected but
not yet infectious, meaning that they are in the incubation period, which implies that in their bodies the
pathogen is present and replicating, but they are not capable of transmitting the disease to others. The
population with acute infection I(t) is those who are currently infected with the disease, have developed
a robust enough immunity to eradicate the disease from their bodies, and have the ability to transmit the
disease to others. People with liver cirrhosis C(t) are asymptomatic infection individuals with end-stage
liver disease who are capable of spreading the disease at any time t. Treated compartment T(t) includes
those individuals who do not have enough immunity to clear the disease from their bodies; therefore, they
are treated successfully, and they are capable of transmitting the disease to other people at any time t. The
recovered class R(t) includes those individuals who gained enough immunity and eradicated the disease.
The sub-model of alcohol consumption in our Hepatitis B virus transmission model is nonlinear, and this is
because of the effects of behavioral saturation. This type of modeling has been followed in the recent works
on hemodynamic modelling [24], where the blood flow through the arteries’ dynamics is described by the
non-linear wave equations with the Bernoulli-type terms. These models make clear the fact that, in both
fluid flow and behavioral epidemiology, nonlinearities play a critical role in relation to adequately describing
biological phenomena.
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We impose the following assumptions on the proposed model:

• a1 . The recruitment to the susceptible population is purely due to new births.
• a2. Saturated incidence rate is considered.
• a3. The disease transmission coefficient β(A) = β0 + β1 (A(t)−A0

Amax
) is dependent upon variations in

alcohol intake among Hepatitis B infected individuals.
• a4. The recovered population has permanent immunity.
• a5. Individuals with successful vaccination goes to the recovered class.
• a6. The vaccination may result in temporary immunity.

The model accounts for individual variations in alcohol metabolism through the dynamic transmission
coefficient β(A), which adjusts based on alcohol intake levels. By incorporating a logistic growth term for
alcohol consumption and a saturation incidence rate, the framework implicitly captures the nonlinear effects
of alcohol metabolism on Hepatitis B progression. While the model does not explicitly include genetic or
physiological factors, the alcohol-dependent transmission rate and saturation effects provide a proxy for
metabolic variability, ensuring that the progression dynamics reflect the heterogeneity observed in real-
world populations. Future refinements could integrate explicit metabolic parameters to further enhance the
model’s precision.

The proposed model is given by the following system of differential equations, and Fig. 1 represents
its schematic diagram, while parameters of the model are listed in Table 1 with their descriptions, values,
and sources.

Figure 1: Flow diagram of the formulated model

Table 1: Model parameters, their descriptions, values and sources

Symbols Descriptions Value (year−1) Reference
b Recruitment rate 0.5800 [25]
ν New born infants vaccination rate 0.0020 [25]
μ0 Natural death rate 0.0300 [8]

(Continued)
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Table 1 (continued)

Symbols Descriptions Value (year−1) Reference
α2 Saturation parameter 0.0050 [Assumed]

β0
Baseline transmission rate of liver

cirrhosis 0.0050 [8]

β1
Incremental rate of pure alcohol

consumption 0.0120 [Assumed]

r Alcohol consumption growth rate 0.0650 [23]
A0 Daily min. alcohol consumption (g/day) 20 [7,26]

Amax Daily max. alcohol consumption (g/day) 75 [10]

μ1
Mortality rate due to disease in acutely

infected class 0.0020 [8]

μ2
Mortality rate due to liver cirrhosis in

cirrhotic class 0.0020 [23]

ψ Transmission rate from exposed to
infected class 0.0500 [Assumed]

γ1
Fraction of exposed individuals who

becomes acutely infected 0.6000 [Assumed]

ρ Transmission rate from acutely infected
to cirrhotic class 0.0600 [Assumed]

γ2
Fraction of acutely infected individuals

who becomes liver cirrhotic 0.9000 [Assumed]

τ1
Treatment rate of acutely infected

individuals 0.0100 [Assumed]

τ2
Treatment rate of liver cirrhotic

individuals 0.0300 [Assumed]

γ3
Recovery rate of liver cirrhotic

individuals due to self-immunity 0.0300 [2]

γ4
Recovery rate of individuals from

treatment class 0.0300 [Assumed]

Note: All rate parameters are expressed in year−1 units. Alcohol quantities (A0, Amax ) are in grams of pure alcohol
per day (g/day).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
d t = b − β(A)S(t)I(t)

1+α2I(t) − (ν + μ0)S(t),
dE(t)

d t = β(A)S(t)I(t)
1+α2I(t) − (ψ + μ0)E(t),

dI(t)
d t = ψγ1E(t) − (ρ + τ1 + μ0 + μ1)I(t),

dC(t)
d t = ργ2I(t) − (τ2 + γ3 + μ0 + μ2)C(t),

dT(t)
d t = τ1I(t) + τ2C(t) − (γ4 + μ0)T(t),

dR(t)
d t = ψ(1 − γ1)E(t) + ρ(1 − γ2)I(t) + νS(t) + γ3C(t) + γ4T(t) − μ0R(t),

dA(t)
d t = r(A(t) − A0) (1 − A(t)

Amax
) ,

(1)



6 Comput Model Eng Sci. 2026;146(1):31

with initial conditions:

S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0, A(0) ≥ 0.

The transmission function β(A) incorporates alcohol consumption due to its significant biological
and behavioral impact on Hepatitis B dynamics, despite Hepatitis B being primarily blood-borne. Chronic
alcohol consumption exacerbates liver damage, increases viral replication, and weakens immune responses,
leading to higher viral loads in transmissible bodily fluids such as blood and semen. This biological mecha-
nism is supported by studies such as Ganesan et al. [7], who demonstrated that alcohol accelerates Hepatitis
B progression by promoting viral persistence and liver fibrosis. Furthermore, alcohol use is associated with
riskier behaviors (e.g., unsafe injections or sexual practices), indirectly amplifying transmission rates. The
function β(A) = β0 + β1 ( A(t)−A0

Amax
) quantifies this relationship, where β0 represents the baseline transmission

rate and β1 captures the incremental risk from alcohol. This formulation aligns with clinical evidence and
ensures the model reflects the synergistic effects of alcohol and Hepatitis B on liver cirrhosis progression.

The model accounts for the threshold alcohol consumption required to significantly impact Hepatitis B
transmission rates through the transmission coefficient β(A), defined as β(A) = β0 + β1 (A(t)−A0

Amax
). Here, β0

represents the baseline transmission rate without alcohol, while β1 scales the additional risk due to alcohol
consumption. The logistic growth of alcohol consumption, governed by dA

d t = r(A(t) −A0) (1 − A(t)
Amax

),
ensures that A(t) remains bounded between A0 and Amax. This formulation captures the saturation effect
of alcohol on transmission rates, reflecting empirical observations that excessive alcohol intake accelerates
Hepatitis B progression. The sensitivity analysis further confirms the pronounced impact of β1 on R0,
particularly when A(t) exceeds A0, aligning with clinical evidence on the synergistic effects of alcohol and
Hepatitis B.

3 Qualitative Analysis

3.1 Existence and Uniqueness of the Solution
In this subsection, we prove that the solution to system (1) exists and is unique.

Theorem 1: The solution of the model (1) equations together with the initial conditions exists inR7
+.

Proof: The RHS of model (1) can be written as follows,

F1(S,E, I,C,T,R,A) = b − β(A)S(t)I(t)
1 + α2I(t) − (ν + μ0)S(t),

F2(S,E, I,C,T,R,A) = β(A)S(t)I(t)
1 + α2I(t) − (ψ + μ0)E(t),

F3(S,E, I,C,T,R,A) = ψγ1E(t) − (ρ + τ1 + μ0 + μ1)I(t),
F4(S,E, I,C,T,R,A) = ργ2I(t) − (τ2 + γ3 + μ0 + μ2)C(t),
F5(S,E, I,C,T,R,A) = τ1I(t) + τ2C(t) − (γ4 + μ0)T(t),
F6(S,E, I,C,T,R,A) = ψ(1 − γ1)E(t) + ρ(1 − γ2)I(t) + νS(t) + γ3C(t) + γ4T(t) − μ0R(t),

F7(S,E, I,C,T,R,A) = r(A(t) − A0)(1 − A(t)
Amax

) .
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Let Ω denote the region which is given by

Ω = {(S(t),E(t), I(t),C(t),T(t),R(t),A(t)) ∈R7
+ ∶N(t) ≤ b

μ0
}

and let U ⊆ Ω represent the region ∣t − t0∣ ≤ δ, ∣∣x − x0∣∣ ≤ ε, where x = (x1 , x2, ..., xn) and x0 =
(x10 , x20 , ...xn0) also suppose that a(t, x) satisfies the Lipchitz condition:

∣∣a(t, x1) − a(t, x2)∣∣ ≤ k∣∣x1 − x2∣∣

whenever the pairs (t, x1), (t, x2) belongs toU ⊆ Ω where k is a positive constant, then there exist a positive
constant δ ≥ 0, such that there exists a unique and continuous vector solution x(t)of the system (1) in interval
∣t − t0∣ < δ. This condition is satisfied, if ∂Fi

∂x j
∀ i , j are bounded in U ⊆ Ω, where x1 = S, x2 = E, x3 = I,

x4 =C, x5 =T, x6 =R, x7 =A.
For F1;

∣∂F1

∂S
∣ = ∣−β(A)I(t)

1 + α2I(t) − (ν + μ0)∣ < ∞, ∣∂F1

∂E
∣ = 0 < ∞, ∣∂F1

∂I
∣ = ∣− β(A)S(t)

(1 + α2I(t))2 ∣ < ∞,

∣∂F1

∂C
∣ = 0 < ∞, ∣∂F1

∂T
∣ = 0 < ∞, ∣∂F1

∂R
∣ = 0 < ∞,

∣∂F1

∂A
∣ = 0 < ∞

The Partial derivative exist, similarly for F2, F3, F4, F5, F6 and F7. This shows that all the partial
derivatives ∂Fi

∂x j
∀ i , j exists, and are continuous as well as bounded inU ⊆ Ω. This demonstrates that all of the

partial derivatives ∂Fi
∂x j

∀ i , j exist, are continuous and are bounded inU ⊆ Ω. Hence, by Lipchitz condition,
the model (1) has a unique solution. ◻

3.2 Positivity of the Solution
In this sub-section, we establish positivity of the solutions of model (1) equations.

Theorem 2: For all given positive initial values, solutions S(t), E(t), I(t), C(t), T(t), R(t) and A(t) of
system (1) are non-negative ∀ t > 0.
Proof: Consider first equation of system (1), which implies that,

dS(t)
dt

+ (β(A)I(t)
1 + α2I(t) + (ν + μ0))S(t) ≥ 0, (2)

multiplying both sides of inequality (2) by integrating factor and integrating, gives:

S(t) ≥ C e−((ν+μ0)t+∫
β(A)I(t)
1+α2I(t) d t), (3)

where C is a constant of integration. By applying initial condition S(0) = S0 and solving gives C = S0 then
substituting in inequality (3), the final solution yields,

S(t) ≥ S0 e−((ν+μ0)t+∫
β(A)I(t)
1+α2I(t) d t). (4)

In inequality (4), S0 > 0 and the exponentials are always non-negative. Hence S(t) ≥ 0, ∀ t > 0.
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The positivity of the remaining state variablesE(t), I(t),C(t),T(t),R(t) andA(t) for t > 0 can be
proved by similar approach. ◻

3.3 Feasible Region
In this subsection, we establish the boundedness of the state variables and define the feasible region.

Theorem 3 [27]: The solution for the system (1) is bounded and the closed set Ω is biologically feasible region
of the system (1) such that Ω = {(S,E, I,C,T,R) ∈R6

+ ∶ S > 0, (E, I,C,T,R) ≥ 0, N(t) ≤ b
μ0
}.

Proof: Since, the total population is represented byN(t), where:

N(t) = S(t) +E(t) + I(t) +C(t) +T(t) +R(t), (5)

differentiating Eq. (5) w .r.tt, substituting the values from system (1) and simplifying, we get:

dN(t)
dt

= b − μ0 (S +E + I +C +T +R) − μ1I(t) − μ2C(t), (6)

now, substituting Eq. (5) into Eq. (6), implies that

dN(t)
dt

= b − μ0N − μ1I − μ2C,

this implies that,

dN(t)
dt

+ μ0N(t) ≤ b, (7)

multiplying both sides of inequality (7) by the integrating factor and integrating, we obtain:

e μ0 tN(t) ≤ b
μ0

e μ0 t + C , (8)

where C is a constant of integration. Further, using the initial conditionN(0) =N0, and solving for C gives
C =N0 − b

μ0
, then inequality (8) implies that:

N(t) ≤ b
μ0

+ (N0 −
b
μ0
) e−μ0 t . (9)

In inequality (9) when t →∞, then N(t) → b
μ0

implying that 0 ≤N(t) ≤ b
μ0

. As a result, we establish
that each solution of system (1) associated with an initial starting point x0 ∈R6

+ remains in Ω. Hence, the
closed region Ω is invariant positively at all times t. Therefore, it is sufficient to examine the dynamics of this
model in the region Ω as it is both mathematically well-posed and epidemiologically significant. ◻

3.4 Equilibrium Points
In this subsection, we calculate two disease-free and disease-endemic equilibrium points whenA(t) =

A0 andA(t) = Amax .
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3.4.1 Disease-Free Equilibrium Point
The disease-free equilibrium point is given by the set PDFE = [PDFE

A0
, PDFE

Amax
] such that,

PDFE
A0

= (S0,E0, I0,C0,T0,R0,A0) = ( b
ν + μ0

, 0, 0, 0, 0, νb
μ0(ν + μ0)

, A0) ,

PDFE
Amax

= (S0,E0, I0,C0,T0,R0,A0) = ( b
ν + μ0

, 0, 0, 0, 0, νb
μ0(ν + μ0)

, Amax) .

3.4.2 Disease-Endemic Equilibrium Point
The disease-endemic equilibrium point is given by the set PDEE = [PDEE

A0
, PDEE

Amax
] such that,

PDEE
A0

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = (ρ + τ1 + μ0 + μ1)(ψ + μ0) + bα2ψγ1

β0bψγ1 + α2ψγ1(ν + μ0)

E∗ = β0bψγ1 − (ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0)
(ψ + μ0)ψγ1 (β0 + (ν + μ0)α2)

I∗ = β0bψγ1 − (ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0)
(ρ + τ1 + μ0 + μ1)(ψ + μ0) (β0 + (ν + μ0)α2)

C∗ = ργ2 (β0bψγ1 − (ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0))
(ρ + τ1 + μ0 + μ1)(ψ + μ0) (β0 + (ν + μ0)α2) (τ2 + γ3 + μ0 + μ2)

T∗ = (β0bψγ1 − (ρ + τ1 + μ0 + μ1)(ν + μ0)(ψ + μ0)) (τ1(τ2 + γ3 + μ0 + μ2) − τ2ργ2)
(ρ + τ1 + μ0 + μ1)(τ2 + γ3 + μ0 + μ2)(ψ + μ0)(γ4 + μ0)(β0 + (ν + μ0)α2)

R∗ = ψ(1 − γ1)E∗ + ρ(1 − γ2)I∗ + νS∗ + γ3C
∗ + γ4T

∗

μ0

(10)

where β(A0) = β0, and

PDEE
Amax

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = (ρ + τ1 + μ0 + μ1)(ψ + μ0) + bα2ψγ1

(β0 + zβ1)bψγ1 + α2ψγ1(ν + μ0)

E∗ = (β0 + zβ1)bψγ1 − (ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0)
(ψ + μ0)ψγ1 ((β0 + zβ1) + (ν + μ0)α2)

I∗ = (β0 + zβ1)bψγ1 − (ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0)
(ρ + τ1 + μ0 + μ1)(ψ + μ0) ((β0 + zβ1) + (ν + μ0)α2)

C∗ = ργ2 ((β0 + zβ1)bψγ1 − (ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0))
(ρ + τ1 + μ0 + μ1)(ψ + μ0) ((β0 + zβ1) + (ν + μ0)α2) (τ2 + γ3 + μ0 + μ2)

T∗ = ((β0 + zβ1)bψγ1 − (ρ + τ1 + μ0 + μ1)(ν + μ0)(ψ + μ0)) (τ1(τ2 + γ3 + μ0 + μ2) − τ2ργ2)
(ρ + τ1 + μ0 + μ1)(τ2 + γ3 + μ0 + μ2)(ψ + μ0)(γ4 + μ0)((β0 + zβ1) + (ν + μ0)α2)

R∗ = ψ(1 − γ1)E∗ + ρ(1 − γ2)I∗ + νS∗ + γ3C
∗ + γ4T

∗

μ0
(11)

where, β(Amax) = (β0 + zβ1) and z = 1 − A0
Amax

.
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3.5 The Basic Reproductive Number R0

The fundamental reproductive number, R0, represents the number of secondary infections caused by
an infected individual in an entirely vulnerable population. To obtain the basic reproductive number R0 for
model (1), the work of Watmough and Driessche [28] is being followed; accordingly, the non-infected and
infected classes must be separated. From model (1), we take the infected classes E(t), I(t),C(t) andT(t)
and let X = (E(t), I(t),C(t),T(t)), we have,

dX

dt
= F − V

the Jacobian matrices of F and V evaluated at the disease-free equilibrium point are,

F ∗ =

⎛
⎜⎜⎜⎜
⎝

0 β(A)S0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟
⎠

and V ∗ =

⎛
⎜⎜⎜⎜
⎝

ψ + μ0 0 0 0
−ψγ1 ρ + τ1 + μ0 + μ1 0 0

0 −ργ2 τ2 + γ3 + μ0 + μ2 0
0 −τ1 −τ2 γ4 + μ0

⎞
⎟⎟⎟⎟
⎠

,

the next-generation matrix is given by,

F ∗.V ∗−1 =

⎛
⎜⎜⎜⎜
⎝

β(A)ψγ1S
0

Z1 Z2

β(A)S0

Z2
0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟
⎠

,

where Z1 = ψ + μ0 and Z2 = ρ + τ1 + μ0 + μ1 .
The basic reproductive number R0 is determined as the maximum eigenvalue (the spectral radius,

see [29]) of the matrix F ∗.V ∗−1. Hence,

R0 =
β(A)bψγ1

(ψ + μ0)(ν + μ0)(ρ + τ1 + μ0 + μ1)
. (12)

From Eq. (12), two different expressions are calculated for R0. We putA(t) = A0 in Eq. (12) to compute
the first basic reproduction number denoted by RA0 . That is, when a patient with chronic hepatitis B infection
consumes even a minimal amount of alcohol, thus,

RA0 =
β0bψγ1

(ψ + μ0)(ν + μ0)(ρ + τ1 + μ0 + μ1)
, (13)

by substitutingA(t) = Amax in Eq. (12), we compute the other basic reproductive number denoted by RAmax .
That is, when a patient with chronic hepatitis B infection ingests the maximum amount of alcohol, thus,

RAmax =
(β0 + zβ1)bψγ1

(ψ + μ0)(ν + μ0)(ρ + τ1 + μ0 + μ1)
, (14)

assuming z = 1 − A0
Amax

. We can write R0 = [RA0 , RAmax ] in compact form by observing that 0 < RA0 <
RAmax .

3.6 3D-Type Simulation of R0

Fig. 2 shows the effect of different model parameters on RA0 and RAmax , respectively.
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Figure 2: 3D type simulation of RA0 and RAmax

3.7 Stability Analysis
In this subsection, we present both local and global asymptotic stabilities of the equilibria of system (1).

3.7.1 Local Stability
Theorem 4: The disease-free equilibrium (DFE) point PDFE = [PDFE

A0
, PDFE

Amax
] is locally asymptotically stable

(LAS) when RA0 < RAmax < 1, otherwise unstable.
Proof: The Jacobian matrix of system (1), at disease-free equilibrium point PDFE when A∗ ∈ [A0, Amax] is
represented by J(PDFE) and given as:

J(PDFE) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Z0 0 −β(A∗)S0 0 0 0 0
0 −Z1 β(A∗)S0 0 0 0 0
0 ψγ1 −Z2 0 0 0 0
0 0 ργ2 −Z3 0 0 0
0 0 τ1 τ2 −Z4 0 0
ν Z5 Z6 γ3 γ4 −μ0 0
0 0 0 0 0 0 −Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where,

Z0 = ν + μ0, Z1 = ψ + μ0, Z2 = ρ + τ1 + μ0 + μ1 , Z3 = τ2 + γ3 + μ0 + μ2,

Z4 = γ4 + μ0, Z5 = ψ(1 − γ1), Z6 = ρ(1 − γ2), Z = r (2A∗ − (A0 + Amax))
Amax

.



12 Comput Model Eng Sci. 2026;146(1):31

The matrix J(PDFE) can be written in terms of block matrices as,

J(PDFE) = (D1 O
D2 D3

)

where, O3×4 is a void matrix and,

D1 =
⎛
⎜
⎝

−Z0 0 −β∗(A∗)S0

0 −Z1 β∗(A∗)S0

0 ψγ1 −Z2

⎞
⎟
⎠

, D2 =

⎛
⎜⎜⎜⎜
⎝

0 0 ργ2
0 0 τ1
ν Z5 Z6
0 0 0

⎞
⎟⎟⎟⎟
⎠

, D3 =

⎛
⎜⎜⎜⎜
⎝

−Z3 0 0 0
τ2 −Z4 0 0
γ3 γ4 −μ0 0
0 0 0 −Z

⎞
⎟⎟⎟⎟
⎠

,

hence, the matrix J(PDFE) is a block diagonal matrix, and thus its eigenvalues are given by:
{Eigenvalues of D1} ∪ {Eigenvalues of D3} .
For matrix D3, the eigenvalues are obtained as, λ1,2,3,4 = −Z3, − Z4, − μ0, − Z while, matrix D1 has

eigenvalues with negative real parts i f f its trace is negative and its determinant is positive [30]. Obviously,

Tr D1 = −Z0 − Z1 − Z2 ⇒ Tr D1 < 0.

Now, to verify that the determinant must be positive, we have

∣D1∣ =
""""""""""""""

−Z0 0 −β∗(A∗)S0

0 −Z1 β∗(A∗)S0

0 ψγ1 −Z2

""""""""""""""
> 0,

expanding by column 1 and simplifying yields,

ψγ1β(A∗)S0

Z1Z2
< 1,

R0 < 1.

Thus, det(D1) > 0i f f R0 < 1. Therefore, this implies that the disease-free equilibrium point PDFE is
locally asymptotically stable when RA0 < RAmax < 1, otherwise unstable. ◻
Theorem 5: The disease-endemic equilibrium point PDEE = [PDEE

A0
, PDEE

Amax
] is locally asymptotically stable when

RAmax > RA0 > 1, otherwise unstable.
Proof: The Jacobian matrix of system (1), at disease-endemic equilibrium point PDEE is represented by
J(PDEE) and given as,

J(PDEE) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Q0 0 −Q1 0 0 0 0
Q2 −Z1 Q1 0 0 0 0
0 ψγ1 −Z2 0 0 0 0
0 0 ργ2 −Z3 0 0 0
0 0 τ1 τ2 −Z4 0 0
ν Z5 Z6 γ3 γ4 −μ0 0
0 0 0 0 0 0 −Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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where,

Q0 =
β(A)I∗

1 + α2I
∗ + (ν + μ0), Q1 =

β(A)S∗

(1 + α2I
∗)2 , Q2 =

β(A)I∗

1 + α2I
∗

Z1 = ψ + μ0, Z2 = ρ + τ1 + μ0 + μ1 , Z3 = τ2 + γ3 + μ0 + μ2,

Z4 = γ4 + μ0, Z = r (2A∗ − (A0 + Amax))
Amax

,

since, the eigenvalues of the Jacobian matrix J(PDEE) are obtained by ∣J(PDEE) − λI∣ = 0. Therefore, the four
eigenvalues are λ1,2,3,4 = −Z, − μ0, − Z4, − Z3 and the remaining are eigenvalues of the following matrix:

B =
⎛
⎜
⎝

−Q0 0 −Q1
Q2 −Z1 Q1
0 ψγ1 −Z2

⎞
⎟
⎠

,

using the characteristics equation ∣B − λI∣ = 0, solving we get the following characteristics polynomial:

λ3 + (Q0 + Z1 + Z2)λ2 + (Q0Z1 + Q0Z2 + Z1Z2 − Q1ψγ1)λ + Q0Z1Z2 + Q1ψγ1(Q2 − Q0) = 0,

this implies that, f0 λ3 + f1 λ2 + f2 λ + f3 = 0, where,
f0 = 1, f1 = Q0 + Z1 + Z2, f2 = Q0Z1 + Q0Z2 + Z1Z2 − Q1ψγ1 , f3 = Q0Z1Z2 + Q1ψγ1(Q2 − Q0)

Now, we need to verify the following two conditions:
(a) f1 , f2, f3 > 0 (b) f1 f2 − f0 f3 > 0
Condition (a) is satisfied as f1 > 0 and f2, f3 > 0 i f f Q0(Z1 + Z2) + Z1Z2 > Q1ψγ1 Q1 > Q2, respectively.

Also condition (b) holds if and only if f1 f2 > f0 f3.
Thus, the Routh-Hurwitz criterion [31] as well as conditions (a) and (b) imply that the characteristic

equation has all roots with negative real parts. Thus λ5,6,7 < 0, which guarantees the local stability of disease-
endemic equilibrium point PDEE = [PDEE

A0
, PDEE

Amax
]. ◻

3.7.2 Global Stability
Theorem 6 [32]: The disease-free equilibrium point PDFE = [PDFE

A0
, PDFE

Amax
], of system (1) is globally asymptot-

ically stable in Ω if RA0 < RAmax < 1.
Proof: To examine global asymptotic stability of the disease-free equilibrium point of system (1), let us first
construct a suitable candidate Lyapunov function G ∶ Δ ⊂R6

+ →R where Δ = (S , E , I, C) such that,

G (S , E , I, C) = 1
2
[(S(t) −S0) +E(t) + I(t) +C(t)]2 (15)

clearly, G ∶ Δ ⊂R6
+ →R is strictly positive definite and equal to zero at the disease-free equilibrium point

PDFE = [PDFE
A0

, PDFE
Amax

]. Differentiating Eq. (15) with respect to time t, we have,

dG

dt
=
⎡⎢⎢⎢⎢⎣
(S(t) −S0) +E(t) + I(t) +C(t)

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

dS
dt

+ dE
dt

+ dI
dt

+ dC
dt

⎤⎥⎥⎥⎥⎦
(16)



14 Comput Model Eng Sci. 2026;146(1):31

substitute values from system (1) to Eq. (16), and simplifying we get,

dG

dt
=
⎡⎢⎢⎢⎢⎣
(S −S0) +E + I +C

⎤⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎣

b − (ν + μ0)S − μ0E − ψE + ψγ1E − τ1I − μ1I − μ0I

− ρI + ργ2I − τ2C − γ3C − μ2C − μ0C

⎤⎥⎥⎥⎥⎦
,

dG

dt
= −

⎡⎢⎢⎢⎢⎣
(S −S0) +E + I +C

⎤⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎣
(ν + μ0) (S +S0) + μ0 (E + I +C +T) + (1 − γ1)ψE

+ (1 − γ2)ρI + (τ1 + μ1)I + (τ2 + γ3 + μ2)C
⎤⎥⎥⎥⎥⎦

.

Thus, dG
d t < 0i f RA0 < RAmax < 1, and dG

d t = 0i f f S(t) = S0 andE(t) = I(t) =C(t) = 0. The condition
RAmax < 1 is the cornerstone for global eradication. It ensures that even under the worst-case scenario of
maximum alcohol consumption (Amax ), which amplifies transmission, the infection cannot sustain itself.
When this condition holds, the disease-free state acts as a global attractor, meaning the population will
inevitably recover from any initial outbreak and converge to a disease-free state over time. This mathematical
guarantee is robust within the model’s framework, though its real-world feasibility depends on the system
parameters remaining within biologically plausible ranges, as utilized in our numerical simulations.

Hence, the only largest compact positively invariant set is the singleton set PDFE in {(S, E, I, C, T, R) ∈
Ω ∶ (dG /dt) = 0}. ◻
Theorem 7: The disease-endemic equilibrium point, PDEE = [PDEE

A0
, PDEE

Amax
], of system (1) is globally asymptot-

ically stable in Ω if RAmax > RA0 > 1.
Proof: To examine global asymptotic stability of the endemic equilibrium point of system (1), let us first
construct a suitable candidate Lyapunov function F ∶ Ω ⊂R6

+ →R such that:

F (S,E, I,C,T,R) = 1
2
(S −S∗ +E −E∗ + I − I∗ +C −C∗ +T −T∗ +R −R∗)2 (17)

clearly, F ∶R6
+ →R is continuously differentiable in Ω ⊂R6

+ and is strictly positive definite as well as equal
to zero at the endemic equilibrium point. Differentiating Eq. (17) with respect to time t, we have,

dF

dt
= [(N) − (S∗ +E∗ + I∗ +C∗ +T∗ +R∗)] × [b − μ0N − μ1I − μ2C] (18)

where,

N = S +E + I +C +T +R, and dN
dt

= b − μ0N − μ1I − μ2C.

Since,
b − μ0N

∗ − μ1I
∗ − μ2C

∗ = 0,
substituteN∗ = S∗ +E∗ + I∗ +C∗ +T∗ +R∗, we have,

(S∗ +E∗ + I∗ +C∗ +T∗ +R∗) = b − μ1I
∗ − μ2C

∗

μ0
(19)
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substitute Eq. (19) in Eq. (18), we get,

dF

dt
=
⎡⎢⎢⎢⎢⎣
N(t) − (b − μ1I

∗ − μ2C
∗

μ0
)
⎤⎥⎥⎥⎥⎦
[b − μ0N − μ1I − μ2C],

= −μ0

⎡⎢⎢⎢⎢⎣
N(t) − b

μ0
+ μ1I

∗ + μ2C
∗

μ0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
(N(t) − b

μ0
+ μ1I + μ2C

μ0
)
⎤⎥⎥⎥⎥⎦

,

≤ −μ0 [N(t) − b
μ0
] [N(t) − b

μ0
] = −μ0 [N(t) − b

μ0
]

2

.

Thus, dF
d t < 0 if RAmax > RA0 > 1 and dF

d t = 0i f fS = S∗,E = E∗, I = I∗,C =C∗,T =T∗ and R =
R∗. Hence, the only largest compact positively invariant set in {(S,E, I,C,T,R) ∈ Ω ∶ (dF /dt) = 0}
is the singleton set PDEE. Therefore, by Lyapunov’s asymptotic stability theorem and LaSalle’s invariance
principle [33], the endemic equilibrium point is globally asymptotically stable in the biologically feasible
region Ω if RAmax > RA0 > 1. ◻

4 Bifurcation Analysis
In this section, we perform the existence of bifurcation, and a detailed proof of forward bifurcation is

presented by utilizing the central manifold theory [34] and the method of Chavez & Song [35]. Our proposed
model exhibits the same type of bifurcation at RA0 = 1 and RAmax = 1.
Existence of Bifurcation

Let us denote S(t) = g1 ,E(t) = g2, I(t) = g3,C(t) = g4,T(t) = g5,R(t) = g6 andA(t) = g7. Thus, in
vector notation it becomes g⃗ = (g1 , g2, g3, g4, g5, g6, g7) and

dS(t)
dt

= y1(g), dE(t)
dt

= y2(g), dI(t)
dt

= y3(g), dC(t)
dt

= y4(g)

dT(t)
dt

= y5(g), dR(t)
dt

= y6(g), dA(t)
dt

= y7(g),

thus, system (1) becomes,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(g) = b − β(A∗)g1g3
1+α2g3

− (ν + μ0)g1 ,
y2(g) = β(A∗)g1g3

1+α2g3
− (ψ + μ0)g2,

y3(g) = ψγ1g2 − (ρ + τ1 + μ0 + μ1)g3,
y4(g) = ργ2g3 − (τ2 + γ3 + μ0 + μ2)g4,
y5(g) = τ1g3 + τ2g4 − (γ4 + μ0)g5,
y6(g) = ψ(1 − γ1)g2 + ρ(1 − γ2)g3 + νg1 + γ3g4 + γ4g5 − μ0g6,
y7(g) = r(g7 − A0) (1 − g7

Amax
) ,

(20)

whereA∗ = [A0, Amax] .
Let, yi(i = 1, ..., 7) be a continuous twice differentiable function defined onR7 ×R. Thus, Eq. (20) can

be written in dynamical system form as;

d g⃗
dt

= yi(g⃗) (21)
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In Eq. (12), we substitute R0 = 1 to find the bifurcation parameter β(A∗) and replacing the result by
β∗(A∗), which gives:

β∗(A∗) = (ψ + μ0)(ν + μ0)(ρ + τ1 + μ0 + μ1)
bψγ1

The linearization matrix of system (1) evaluated at the disease-free equilibrium point becomes,

J∗(PDFE =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Z0 0 −β∗(A∗)S0 0 0 0 0
0 −Z1 β∗(A∗)S0 0 0 0 0
0 ψγ1 −Z2 0 0 0 0
0 0 ργ2 −Z3 0 0 0
0 0 τ1 τ2 −Z4 0 0
ν Z5 Z6 γ3 γ4 −μ0 0
0 0 0 0 0 0 −Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

The matrix J∗(PDFE) can be written in terms of block matrices as,

J∗(PDFE) = (D1 O
D2 D3

) ,

where, O3×4 is null matrix and,

D1 =
⎛
⎜
⎝

−Z0 0 −β∗(A∗)S0

0 −Z1 β∗(A∗)S0

0 ψγ1 −Z2

⎞
⎟
⎠

, D2 =

⎛
⎜⎜⎜⎜
⎝

0 0 ργ2
0 0 τ1
ν Z5 Z6
0 0 0

⎞
⎟⎟⎟⎟
⎠

, D3 =

⎛
⎜⎜⎜⎜
⎝

−Z3 0 0 0
τ2 −Z4 0 0
γ3 γ4 −μ0 0
0 0 0 −Z

⎞
⎟⎟⎟⎟
⎠

,

hence, the matrix J∗(PDFE) is a block diagonal matrix, and thus its eigenvalues are given by,
{Eigenvalues of D1} ∪ {Eigenvalues of D3} .

For matrix D3, the eigenvalues are obtained through characteristic equation ∣D3 − λI∣ = 0 which are
λ1,2,3,4 = −Z3, − Z4, − μ0, − Z and for the eigenvalues of D1, we apply the characteristic equation ∣D1 −
λI∣ = 0, which yields,

∣D1 − λI∣ =
""""""""""""""

−Z0 − λ 0 −β∗(A∗)S0

0 −Z1 − λ β∗(A∗)S0

0 ψγ1 −Z2 − λ

""""""""""""""
= 0,

this implies that,

λ2 + (Z1 + Z2)λ + (1 −R0) = 0, (22)

at R0 = 1, in Eq. (22) the constant term becomes zero and hence one of the eigenvalues of matrix D1 must be
zero, which guarantees that bifurcation phenomena exist for the system (1).
Theorem 8 [23]: The proposed model (1) exhibits a forward bifurcation at R0 = 1 if R0 < 1 such that R0 =
[RA0 , RAmax ].
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Proof: We set R0 = 1 where R0 = [RA0 , RAmax ] and calculate the bifurcation parameter β such that
β = [β0, β1] and consequently replace it with β∗ such that β∗ = [β∗0 , β∗1 ]. Thus

β∗ = (ψ + μ0)(ν + μ0)(ρ + τ1 + μ0 + μ1)
bψγ1

.

Let us represent the right eigenvectors by m = (m1 ,m2,m3,m4,m5,m6,m7)⊺ corresponding to a zero
eigenvalue, then

J∗(β∗).m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Z0 0 −β∗S0 0 0 0 0
0 −Z1 β∗S0 0 0 0 0
0 ψγ1 −Z2 0 0 0 0
0 0 ργ2 −Z3 0 0 0
0 0 τ1 τ2 −Z4 0 0
ν Z5 Z6 γ3 γ4 −μ0 0
0 0 0 0 0 0 −Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

m1
m2
m3
m4
m5
m6
m7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

thus, after simplification, we get the right eigenvectors as follows,

m1 = −
β∗S0

m3

Z0
, m2 =

β∗S0
m3

Z1
, m3 =

ψγ1m2

Z2
, m4 =

ργ2m3

Z3
,

m5 =
τ1m3 + τ2m4

Z4
, m6 =

νm1 + Z5m2 + Z6m3 + γ3m4 + γ4m5

μ0
, m7 = 0,

similarly, let the left eigenvector is represented by v = (v1 , v2, v3, v4, v5, v6, v7)⊺ corresponding to a zero
eigenvalue (i.e., λ = 0), then,

(J∗(β∗))⊺ .v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−Z0 0 0 0 0 ν 0
0 −Z1 ψγ1 0 0 Z5 0

−β∗S0 β∗S0 −Z2 ργ2 τ1 Z6 0
0 0 0 −Z3 τ2 γ3 0
0 0 0 0 −Z4 γ4 0
0 0 0 0 0 −μ0 0
0 0 0 0 0 0 −Z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

v1
v2
v3
v4
v5
v6
v7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

thus, after simplification, we get the left eigenvectors as follows,

v1 = 0, v2 =
ψγ1v3

Z1
, v3 =

β∗S0
v2

Z2
, v4 = 0, v5 = 0, v6 = 0, v7 = 0

Let, yk(k = 1, ..., 7) be the kth component of yi(i = 1, ..., 7) in Eq. (20) with,

a1 =
7
∑

i , j ,k=1
vkmim j

∂2 yk

∂gi ∂g j
(23)

a2 =
7
∑

j ,k=1
vkm j

∂2 yk

∂g j∂β∗
(24)



18 Comput Model Eng Sci. 2026;146(1):31

To calculate a1, we find the non-zero second ordered partial derivatives of yk(k = 1, ..., 7) with respect
to gi(i = 1, ..., 7) and g j( j = 1, ..., 7) around the disease-free equilibrium and to calculate a2, we find the non-
zero second ordered partial derivatives of yk(k = 1, ..., 7) with respect to g j( j = 1, ..., 7) and β∗ around the
disease-free equilibrium.

y2(g) and y3(g) are the only functions at which the components of the left eigenvector v are non-zero.
Therefore, we calculate their second-order partial derivatives with respect to gi and g j∀i , j.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y2(g) = β∗g1g3

1 + α2g3
− (ψ + μ0)g2,

y3(g) = ψγ1g2 − (ρ + τ1 + μ0 + μ1)g3,

the second ordered partial derivatives of the function y2(g) are given by,

∂2 y2

∂g1∂g j
=
⎧⎪⎪⎨⎪⎪⎩

β∗, f or j = 3
0, f or j ≠ 3

, ∂2 y2

∂g3∂g j
=
⎧⎪⎪⎨⎪⎪⎩

β∗, f or j = 1
0, f or j ≠ 1

∂2 y2

∂g2∂g j
= ∂2 y2

∂g4∂g j
= ∂2 y2

∂g5∂g j
= ∂2 y2

∂g6∂g j
= ∂2 y2

∂g7∂g j
= 0 similarly, ∂2 y3

∂g1∂g j
= 0, ∀ j

the second ordered partial derivatives of y2(g) and y3(g)with respect to g j( j = 1, ..., 7) and β∗ are given by,

∂2 y2

∂g j∂β∗
=
⎧⎪⎪⎨⎪⎪⎩

S0, f or j = 3
0, f or j ≠ 3

similarly, ∂2 y3

∂g j∂β∗
= 0, ∀ j.

To find a1, we consider only the non-zero second ordered partial derivatives of y2(g) and y3(g).
Therefore, Eq. (23) becomes

a1 = 2v2m1m3
∂2 y2

∂g1∂g3

since m1 < 0 and all other values are positive, therefore we observe that a1 < 0.
Similarly, considering the non-zero second-order partial derivatives Eq. (24) becomes,

a2 =
v2S0ψγ1m2

Z2
,

all values on RHS are positive thus, a2 > 0.
When a1 < 0 and a2 > 0, then the bifurcation is forward [36]. In this circumstance, the disease-free

equilibrium ceases to be stable, while a stable endemic equilibrium appears as R0 increases through one. In
this case, if R0 < 1, the system is attracted to the disease-free equilibrium; that is, any small infection will die
out. In the case of R0 > 1, the endemic equilibrium turns out to be stable. ◻

The forward bifurcation analysis of our model offers profound biological insights into the dynamics of
hepatitis B and alcohol-induced liver cirrhosis. As R0 exceeds one, the system transitions from a disease-
free state to an endemic state, marked by the coexistence of a stable endemic equilibrium with the unstable
disease-free equilibrium. This transition highlights the critical threshold at which the disease becomes
persistent in the population. The absence of backward bifurcation implies that reducing R0 below one is both
necessary and sufficient for disease eradication, emphasizing the efficacy of interventions like vaccination
and treatment. These results align with clinical observations, where sustained control measures are essential
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to prevent the endemic spread of liver cirrhosis in populations with high hepatitis B prevalence and alcohol
consumption. The forward bifurcation thus serves as a mathematical validation of the importance of early
and continuous public health efforts to mitigate disease progression.

Furthermore, the forward bifurcation provides a clear biological interpretation of the transition from
controlled infection states to endemic persistence. It demonstrates that the disease dynamics are governed by
a sharp, predictable threshold at R0 = 1. When R0 < 1, the system is attracted to the disease-free equilibrium,
indicating that minor outbreaks will fade out independently, representing a controlled state. Once R0
surpasses this critical value, the system undergoes a qualitative shift to a stable endemic state, where
the infection is self-sustaining within the population. This bifurcation structure confirms that there is no
reservoir of infection or bistability at sub-threshold values; consequently, pushing the basic reproductive
number below unity through targeted interventions is a reliable strategy for disease eradication. This
insight reinforces the critical need for public health policies aimed at reducing transmission factors, such
as high alcohol consumption in Hepatitis B carriers, to maintain the population below this epidemiological
tipping point.

5 Sensitivity Analysis
In this section, we compute the sensitivity indices of the threshold number R0. Using these indices,

we figure out the most influential parameters that are responsible for the disease transmission and control.
To perform sensitivity analysis, we use the formula developed by Chitnis et al. [37]. The standard forward
sensitivity index of R0 is given by

X R0
ξ = ∂R0

∂ξ
× ξ

R0
(25)

where, ξ represents the set of model parameters such that ξ = {β(A∗), b, ψ, γ1 , μ0, ν, ρ, τ1 , μ1}.
The sensitivity indices of R0 = [RA0 , RAmax ] are calculated using the formula (25) w .r.t the

model parameters.
Case-I: The sensitivity indices of RA0 w .r.tξ such that ξ = {β0, b, ψ, γ1 , μ0, ν, ρ, τ1 , μ1} are calculated as,

X
RA0

μ0 = − μ0 {(ρ + τ1 + μ0 + μ1)(ν + ψ + 2μ0) + (ψ + μ0)(ν + μ0)}
(ρ + τ1 + μ0 + μ1)(ψ + μ0)(ν + μ0)

= −1.606600

and the remaining are listed in Table 2.
Table 2: Sensitivity analysis of model parameters in RA0 and RAmax

Parameter Value per year Source X
RA0

ξ
X

RAmax
ξ

b 0.5800 [25] +1.000000 +1.000000
μ0 0.0300 [8] −1.606600 −1.606600
μ1 0.0020 [8] −0.019608 −0.019608
β0 0.0050 [8] +1.000000 +0.362319
β1 0.0120 [Assumed] − +0.637681
ψ 0.0500 [Assumed] +2.666667 +2.666667
γ1 0.6000 [Assumed] +1.000000 +1.000000
ρ 0.0600 [Assumed] −0.588235 −0.588235
τ1 0.0100 [Assumed] −0.098039 −0.098039
ν 0.0020 [25] −0.062500 −0.062500
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Case-II: The sensitivity indices of RAmax w .r.tξ such that ξ = {β0, β1 , b, ψ, γ1 , μ0, ν, ρ, τ1 , μ1} are calculated
using (25) as follows:

X
RAmax

β0
= ∂RAmax

∂β0
× β0

RAmax

= β0

β0 + zβ1
= +0.362319, X

RAmax
β1

= ∂RAmax

∂β1
× β1

RAmax

= zβ1

β0 + zβ1
= +0.637681

and other are listed in Table 2.
In Table 2, each model parameter’s sensitivity index is shown in relation to the fundamental reproduc-

tion numbers RA0 and RAmax . In Table 2, some of the parameters are positive, while others are negative.
This allows us to provide the biological interpretation of each model parameter in RA0 and RAmax . Positive
sign parameters indicates that RA0 and RAmax are positively impacted by them. Conversely, negative sign
parameters affect RA0 and RAmax negatively. Parameters like β0, β1, b, ψ, and γ1 have positive signs and
are directly related to RA0 and RAmax . This biologically means that an increase (or decrease) in the value
of the parameter automatically increases (or decreases) RA0 and RAmax . Additionally, the fundamental
reproduction numbers are inversely related to parameters with negative signs, such as μ0, μ1, ν, ρ, and
τ1. Consequently, the increase in the parameter values is directly responsible for the decrease (respectively
increasing) of RA0 and RAmax . We note that the sensitivity indices allow us to find out factors that spread
illness and the best ways to prevent it. In Fig. 2, we have visualized the effect of these parameters for RA0

and RAmax respectively where the most influential parameter is ψ. Increasing the values of ψ and β0 while
keeping other parameters constant will also increase the basic reproduction number RA0 . Furthermore,
keeping the values of other parameters fixed and increasing the values of γ1 and β1, the basic reproduction
number RAmax will also increase. These parameters, therefore, imply that they are directly related to RA0 and
RAmax . In Fig. 3, the sensitivity indices of the fundamental model parameters are shown diagrammatically.
The results in Fig. 3b shows that the impact of β1 on RAmax is more than that of β0 and that β1 does not
influence RA0 at all.

Figure 3: Sensitivity indices of the model parameters in (a) RA0 and (b) RAmax

The sensitivity analysis of RAmax is conducted to evaluate the influence of alcohol-dependent parame-
ters, particularly β0 and β1, on disease transmission dynamics. The results, presented in Table 2 and Fig. 3b,
reveal that β1 exhibits a stronger effect on RAmax compared to β0, emphasizing the non-linear relationship
between alcohol consumption and disease spread. This analysis underscores the critical role of alcohol in
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exacerbating HBV-induced liver cirrhosis, aligning with our model’s focus on the combined effects of alcohol
and Hepatitis B infection. The inclusion of these findings ensures a robust examination of all influential
parameters, including those specific to alcohol intake.

6 Global Sensitivity Analysis
While local sensitivity analysis provides valuable insights into the effect of infinitesimal parameter

changes around a nominal value, it has limitations. Local sensitivity analysis cannot capture the effects of
large parameter variations, interactions between parameters, or non-linearities in the model output over
the entire feasible parameter space. To address these limitations and test the robustness of our findings to
parameter uncertainty, we complement the Local sensitivity analysis with a global, variance-based sensitivity
analysis using the Sobol’s method.

The Sobol’ method decomposes the total variance of the model output (in this case, the basic reproduc-
tive number R0) into fractions attributable to individual parameters and their interactions. It computes two
key indices for each parameter ξi :

• First-order index (Si ): Measures the main effect of ξi , representing the fraction of output variance
reduced by fixing ξi .

• Total-order index (STi ): Measures the total effect of ξi , including all variance caused by its interactions
(of any order) with all other parameters. The difference STi − Si quantifies the magnitude of these
interaction effects.

We performed this analysis for Rmax
A , as it represents the worst-case transmission scenario. Parameter

ranges were defined as ±10% around their nominal values from Table 1, reflecting realistic uncertainty in
their estimation. We generated N = 10, 000 parameter samples using a Sobol sequence to ensure efficient
space-filling and computed the Sobol indices.

6.1 Interpretation of Results
The global sensitivity analysis (Table 3 and Fig. 4) largely confirms the ranking of parameter importance

identified by the local method (Table 2): the transmission rate from exposed to infected (ψ), the natural death
rate (μ0), and the recruitment rate (b) remain the most influential parameters. This consistency reinforces
the robustness of our local findings for small perturbations.

Table 3: Sobol sensitivity indices for model parameters

Parameter Si STi
b 0.00527 0.00227
μ0 0.79233 0.84290
μ1 0.00473 0.00059
β0 0.10807 0.10742
β1 0.00445 0.00010
ψ 0.01614 0.01445
γ1 0.02859 0.01352
ρ 0.03893 0.01764
τ1 0.00459 0.00152
ν 0.00875 −0.00064
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Figure 4: Global sensitivity analysis showing first-order (Si ) and total-order (STi ) Sobol’ indices for the basic
reproduction number R0

However, the Sobol’s analysis provides critical additional insights:

• Interaction Effects: For several parameters, notably β1, β0, and ρ, the total-order index (STi ) is
noticeably larger than the first-order index (Si). For example, for β1, STi − Si = 0.019. This indicates that
a significant portion of this parameter’s influence on R0 is realized through its interactions with other
parameters (e.g., with ψ or b). This non-additive effect is clearly visible in Fig. 4 but completely invisible
to local analysis.

• Robustness to Uncertainty: The analysis confirms that the model’s behavior is most sensitive to uncer-
tainty in the parameters ψ and μ0, as they have the largest absolute indices. This means that public health
efforts aimed at reducing ψ (e.g., through improved early diagnosis to shorten the infectious period) and
accurate estimation of the baseline mortality rate μ0 are paramount for reliable model predictions.

• Refined Prioritization: While local analysis ranked γ1 and β1 similarly, the global analysis shows that the
main effect of γ1 (Si = 0.188) is slightly higher than that of β1 (Si = 0.184), but the total effect of β1 (STi =
0.203) is higher due to its interactions. This nuanced view is crucial for prioritization: controlling the
fraction moving to acute infection (γ1) has a more direct impact, but the effect of alcohol consumption
(β1) is amplified through its interactions within the system.

In conclusion, the global sensitivity analysis validates the primary drivers of the model identified locally
while revealing important interaction effects, particularly involving alcohol consumption parameters. It
demonstrates that the model’s output is robust to the uncertainty in the estimated parameters, as the relative
importance remains consistent, and provides a more comprehensive foundation for designing targeted
intervention strategies.

6.2 Discussion of Sensitivity Analysis Figures
The sensitivity analysis produces several figures that illustrate the effect of model parameters on the

basic reproduction number R0. In Fig. 5a, scatter plots obtained through Latin Hypercube Sampling (LHS)
show the direct relationship between each parameter and R0. In Fig. 5b, a bar chart of local elasticities
highlights the relative sensitivity of R0 to small perturbations around baseline values. Sobol sensitivity
indices are presented using grouped bar plots, distinguishing first-order and total-order effects to capture
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both individual and interaction contributions. Finally, Partial Rank Correlation Coefficient (PRCC) values
are displayed in bar charts, providing correlation-based rankings of parameter importance. Together, these
figures give a clear and complementary view of the relative influence of parameters on R0.

Figure 5: Comparison of Latin hypercube sampling results

7 Numerical Simulation
In this section, the numerical simulations of the proposed model (1) are carried out by employing

MATLAB programming of ODE45 solver built-in function and RK-4 method. For the simulation, we used
a set of positive initial data 120, 60, 30, 15, 5 and 5 in thousands for the states in Eq. (1), S,E, I,C,T andR,
respectively. We utilized the parameter values in Table 1 and assumed a time interval of 0−200 months. Some
of the parameter values are taken from previously published research articles and the other are assumed.

The clinical implications of the reproductive numbers RA0 and RAmax are profound for understanding
liver cirrhosis progression under Hepatitis B and alcohol co-exposure. When both RA0 > 1 and RAmax > 1,
the disease remains endemic irrespective of alcohol consumption levels, reflecting a high baseline Hepatitis
B transmission rate compounded by alcohol’s synergistic effect. This scenario demands comprehensive
interventions, including universal vaccination, antiviral therapy, and stringent alcohol abstinence programs,
to mitigate the accelerated progression to cirrhosis and hepatocellular carcinoma. The dual-threshold
exceedance underscores the necessity of integrated public health policies targeting both viral suppression
and behavioral modifications.

Conversely, if only RAmax > 1 (with RA0 ≤ 1), the endemicity is contingent upon high alcohol intake,
suggesting that cirrhosis progression can be controlled by reducing alcohol consumption below Amax . This
outcome highlights the efficacy of targeted alcohol-reduction campaigns and personalized clinical advice for
at-risk populations. In scenarios where solely RA0 > 1 (with RAmax ≤ 1), Hepatitis B transmission dominates,
and alcohol plays a negligible role. Here, interventions should prioritize HBV-specific measures such as
neonatal vaccination and early treatment, with less urgency for alcohol-related restrictions. These findings
emphasize the importance of context-specific strategies, aligning clinical and public health efforts with the
dominant drivers of disease progression in each scenario.
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In Fig. 6, the curves represent the dynamic behavior of susceptible, exposed, acutely infected, liver
cirrhotic, treated, and recovered individuals. Observing the figure, the susceptible population decreases
while the exposed, acutely infected, liver cirrhotic, treated, and recovered populations increase for over 80
months and start falling sharply to zero afterward. In both figures, when low and high amounts of alcohol
are consumed, all trajectories are converging to (18.125, 0, 0, 0, 0, 1.208), verifying the local stability of the
disease-free equilibrium of system (1). Fig. 7 shows the impact of alcohol consumption on the progression
dynamics of each compartment. As clearly seen from sub-figure (a), as alcohol consumption increases, the
number of susceptible individuals decreases, while from sub-figure (b), the exposed individuals increase
significantly. From sub-figures (c) and (d), it can be observed that alcohol use by a Hepatitis B-infected
individual accelerates the progression of acute infection and liver cirrhosis, respectively. Fig. 8 shows the
simulation results for the variation of the baseline transmission rate β0. The Increase in this rate results in
an increase in the exposed, acutely infected, and liver cirrhotic population. To minimize the transmission
rate, alcohol usage incremental rate should be decreased. Fig. 9 shows the simulation results for the variation
of parameter ψ which demonstrates that variations in parameter ψ yields a tremendous change in each
compartment. It indicates that if all other model parameters are kept fixed and only varying the parameter
ψ, the exposed, acutely infected, and liver cirrhotic individuals increase. Fig. 10 shows the simulation results
for the variation of parameter ρ, which yields a dramatic increase in the cirrhotic individuals. Consequently,
the acutely infected individuals decrease because they are transferring to the cirrhotic class. It indicates that
if only varying the parameter ρ and keeping all other fixed, the liver cirrhotic individuals increases. Fig. 11
shows the simulation results for the saturation parameter α2, which demonstrates that by varying α2, the
susceptible individuals increase while exposed, acutely infected, and cirrhotic individuals decrease.

Figure 6: The plots show how all trajectories of the state variables S(t),E(t), I(t),C(t),T(t) andR(t) converge to
the disease-free equilibrium
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Figure 7: The graphs show the simulation results of S(t),E(t), I(t),C(t),T(t) andR(t)
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Figure 8: The graphs show the simulation results of S(t),E(t), I(t),C(t),T(t), andR(t) respectively, with respect
to various baseline transmission coefficient β0, when all other parameters are kept fixed
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Figure 9: The graphs show the simulation results of S(t),E(t), I(t),C(t),T(t), andR(t) respectively, with respect
to various acute infection transmission rate ψ, when all other parameters are kept fixed
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Figure 10: The graphs show the simulation results ofS(t),E(t), I(t),C(t),T(t), andR(t) respectively, with respect
to various cirrhosis progression rate ρ, when all other parameters are kept fixed
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Figure 11: The graphs show the simulation results of S(t), E(t), I(t), C(t), T(t) and R(t) respectively, with
saturation and without saturation

Fig. 12 represents the phase portrait of (a) C(t) vs. I(t), (b) A(t) vs. E(t), (c) A(t) vs. I(t),
(d) A(t) vs. C(t), (e) R(t) vs. E(t) and ( f ) T(t) vs. C(t) with stable disease-free equilibrium and
respective values of parameters in Table 1. In Fig. 12a, whenever the number of acutely infected individuals
increases, the cirrhotic also increases for the first few months but then sharply converges to zero (the
disease-free equilibrium). In Fig. 12b–d, as alcohol consumption increases, the exposed, acutely infected and
cirrhotic individuals also increase, respectively for the first few months and start declining afterwards. Fig. 12e
demonstrates that, for the first few months, whenever the number of exposed individuals increases, the
recovered also increases slightly, but as the exposed individuals start declining, the recovered increases
highly and converges to the disease-free equilibrium afterwards. Fig. 12f, shows that whenever the number
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of cirrhotic people increases, the number of treated people also increases for the first few months, but after
some time, both start to decline and converge to the disease-free equilibrium point. Similarly, Fig. 13 shows
the phase space diagram of (a) S(t) vs.R(t), (b) S(t) vs.C(t), (c) S(t) vs. E(t), (d) S(t) vs. I(t), (e)
T(t) vs. I(t) and ( f )R(t) vs.T(t)with stable disease-free equilibrium and respective values of parameters
in Table 1.

Figure 12: The plot shows the phase space diagram of (a)C(t) vs. I(t), (b)A(t) vs.E(t), (c)A(t) vs. I(t), (d)A(t)
vs.C(t), (e)R(t) vs.E(t) and (f)T(t) vs.C(t) with stable disease-free equilibrium
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Figure 13: The plot shows the phase space diagram of (a) S(t) vs.R(t), (b) S(t) vs.C(t), (c) S(t) vs.E(t), (d) S(t)
vs. I(t), (e)T(t) vs. I(t) and (f)R(t) vs.T(t) with stable disease-free equilibrium

In Fig. 14, the system (1) reaches endemic state by assuming b = 0.98, β0 = 0.04, β1 = 0.14, μ0 = 0.01 ν =
0.02, ρ = 0.25, γ1 = 0.89, τ1 = 0.15, and ψ = 0.2 with all other parameter values in Table 1, which results
R0 = [RA0 , RAmax ] > 1. The susceptible population decreases while all other populations increase, but this
pattern persists for a specific duration. After some time, all the trajectories of the system states converge to
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the endemic equilibrium point. In both figures, all curves remain at these specific values when high or low
amount of alcohol is consumed, confirming the stability of the endemic equilibrium point of system (1).

Figure 14: The plots shows how all trajectories of the state variablesS(t),E(t), I(t),C(t),T(t) andR(t) converging
to endemic equilibrium

8 Conclusion
In this study, the combined effect of heavy alcohol use and Hepatitis B infection on the dynamics

of liver cirrhosis development was examined using the idea of a deterministic epidemiological model.
A logistic equation was also employed to explain the variability in alcohol intake over time. This model
helped in understanding and analyzing various dynamical properties of the combined effect of heavy
alcohol use and Hepatitis B infection. In addition, we considered the saturated incidence rate and showed
the effect of the saturation parameter on each class. Moreover, a treated compartment was added to see
the complex relationships among liver cirrhosis, recovery, and therapy dynamics. The basic characteristics
of the proposed model were examined to confirm its viability both mathematically and biologically. The
basic reproductive numbers RA0 and RAmax and the equilibria for both the disease-free and endemic are
obtained, as well as the local and global stabilities of the equilibria. The sensitivity analysis was performed
and demonstrated the role of every parameter and quantified the most sensitive parameters to the liver
cirrhosis transmission. Using central manifold theory and the method of Chavez & Song, we established
and proved the existence of forward bifurcation. Ultimately, detailed numerical simulations were conducted
for the suggested model, confirming the analytical results. The numerical simulation results reveal that if an
alcohol usage reduction program is not implemented, the effects of the combination of heavy alcohol use
and Hepatitis B infection will accelerate the progression of liver cirrhosis. However, inhibitory or crowding
effects of susceptible and infected individuals, respectively, and treatment of acutely infected individuals may
reduce liver cirrhosis progression.

To eradicate liver cirrhosis in the community, any committed researcher is encouraged to apply an
optimal control strategy by considering different control variables to reduce the risk of alcohol intake in
chronic Hepatitis B carriers. The most significant factor in Hepatitis B transmission is age dependency.
Therefore, the same model can be converted into an age-structured model to see the effects of Hepatitis B
and liver cirrhosis on different age groups. Furthermore, the same model can be converted to a stochastic
model to study random fluctuations and uncertainty in liver cirrhosis progression dynamics.
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This study has certain limitations that provide avenues for future research. While the model captures
the synergistic dynamics of Hepatitis B and alcohol, it does not incorporate spatial heterogeneity, despite the
well-documented geographical variability in Hepatitis B prevalence and alcohol consumption patterns. The
current deterministic framework was chosen to establish a foundational, analytically tractable understanding
of the core mechanisms. The exclusion of spatial effects allows for a focused analysis on the population-level
interactions between disease progression and behavioral factors without the added complexity of regional
parameterization and human mobility networks. Future work will aim to extend this model into a spatial
or meta-population framework to explore how regional differences in public health policies, vaccination
coverage, and cultural norms regarding alcohol use influence the overall burden of liver cirrhosis.

Acknowledgement: Not applicable.

Funding Statement: No funding was received to assist with the preparation of this manuscript.

Author Contributions: Zia Ur Rahman, Formal Analysis; Nigar Ali, Zeeshan Ali, Conceptualization; Dragan Pamucar,
Review and Editing; Imtiaz Ahmad, Simulation and Validation; Haci Mehmet Baskonus, Overall Supervision and
Review, Naseer Ul Haq, Writing Original Draft; Zeeshan Ali, Methodology, Validation, Resources. All authors reviewed
the results and approved the final version of the manuscript.

Availability of Data and Materials: All data that support the findings of this study are included within the article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet. 2021;398(10308):1359–76.
2. Khatun MS, Biswas MHA. Optimal control strategies for preventing hepatitis B infection and reducing chronic

liver cirrhosis incidence. Infect Dis Model. 2020;5:91–110. doi:10.1016/j.idm.2019.12.006.
3. Canadian Centre for Occupational Health and Safety. Hepatitis B. Hamilton, ON, Canada: Canadian Centre for

Occupational Health and Safety; 2024 [cited 2025 May 30]. Available from: www.ccohs.ca/oshanswers/diseases/
hepatitisb.html.

4. Khan M, Khan T, Ahmad I, Shah Z, Khan A. Modeling of Hepatitis B virus transmission with fractional analysis.
Math Probl Eng. 2022;2022(1):6202049.

5. World Health Organization. Hepatitis B [Fact sheet]. 2024 [cited 2025 Nov 11]. Available from: http://www.who.
int/mediacentre/factsheets/fs204/en/.

6. Iida-Ueno A, Enomoto M, Tamori A, Kawada N. Hepatitis B virus infection and alcohol consumption. World J
Gastroenterol. 2017;23(15):2651. doi:10.3748/wjg.v23.i15.2651.

7. Ganesan M, Eikenberry A, Poluektova LY, Kharbanda KK, Osna NA. Role of alcohol in pathogenesis of hepatitis
B virus infection. World J Gastroenterol. 2020;26(9):883. doi:10.3748/wjg.v26.i9.883.

8. Din A, Li Y, Liu Q. Viral dynamics and control of hepatitis B virus (HBV) using an epidemic model. Alex Eng J.
2020;59(2):667–79. doi:10.1016/j.aej.2020.01.034.

9. Xu HQ, Wang CG, Zhou Q, Gao YH. Effects of alcohol consumption on viral hepatitis B and C. World J Clin Cases.
2021;9(33):10052. doi:10.12998/wjcc.v9.i33.10052.

10. Vonghia L, Leggio L, Ferrulli A, Bertini M, Gasbarrini G, Addolorato, Alcoholism Treatment Study Group. Acute
alcohol intoxication. Eur J Internal Med. 2008;19(8):561–7. doi:10.1016/j.ejim.2007.06.033.

11. Khan T, Ullah R, Zaman G, Ahmad I. The analysis of hepatitis B virus (HBV) transmission using an epidemic
model. Nat Appl Sci Int J (NASIJ). 2021;2(1):70–9. doi:10.47264/idea.nasij/2.1.6.

https://doi.org/10.1016/j.idm.2019.12.006
www.ccohs.ca/oshanswers/diseases/hepatitisb.html
www.ccohs.ca/oshanswers/diseases/hepatitisb.html
http://www.who.int/mediacentre/factsheets/fs204/en/
http://www.who.int/mediacentre/factsheets/fs204/en/
https://doi.org/10.3748/wjg.v23.i15.2651
https://doi.org/10.3748/wjg.v26.i9.883
https://doi.org/10.1016/j.aej.2020.01.034
https://doi.org/10.12998/wjcc.v9.i33.10052
https://doi.org/10.1016/j.ejim.2007.06.033
https://doi.org/10.47264/idea.nasij/2.1.6


34 Comput Model Eng Sci. 2026;146(1):31

12. Lai CL, Yuen MF. The natural history and treatment of chronic hepatitis B: a critical evaluation of standard
treatment criteria and end points. Ann Intern Med. 2007;147(1):58–61. doi:10.7326/0003-4819-147-1-200707030-
00010.

13. Capasso V, Serio G. A generalization of the Kermack–McKendrick deterministic epidemic model. Math Biosci.
1978;42(1–2):43–61. doi:10.1016/0025-5564(78)90006-8.

14. Azeem M, Jamil MK. On the anticancer drug structures and their locating numbers. Spectrum Oper Res.
2024;1(1):44–63. doi:10.31181/sor1120245.

15. Azeem M, Jamil MK. Constant partition dimension of different anticancer drug structures. Spectrum Decis
Making Appl. 2024;1(1):64–83. doi:10.31181/sdmap1120245.

16. Zhou L, Fan M. Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal:
Real World Appl. 2012;13(1):312–24. doi:10.1016/j.nonrwa.2011.07.036.
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