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ABSTRACT: Much of the research has focused on identifying bridge frequencies for health monitoring, while the
bridge damping ratio also serves as an important factor in damage detection. This study presents an enhanced method
for identifying bridge damping ratios using a two-axle, three-mass test vehicle, relying on wheel responses captured by
only two mounted sensors. Damping ratio estimation formulas are derived using both the Hilbert Transform (HT) and
Wavelet Transform (WT), with a consistent formulation that confirms accurate estimation is achievable with minimal
instrumentation, particularly when addressing the support effect. A comparative analysis of the two signal processing
techniques reveals the superior performance of WT in identifying bridge damping ratios. The effectiveness of the
proposed procedure and formulas is validated through a detailed parametric study, demonstrating robustness across
bridges with varying modal damping ratios and different spans using minimal sensors. Moreover, the present study
shows that responses from only the first two spans of a multi-span bridge are sufficient for reliable damping estimation,
underscoring the practicality and scalability of the procedure for structural health monitoring applications.

KEYWORDS: Bridge damping ratio; vehicle-bridge interaction; signal processing; minimal instrumentation; multi-
span bridge

1 Introduction

Bridges have played a crucial role in the advancement of civilization, particularly since the twentieth
century. As construction technologies have rapidly evolved, a wide variety of bridge designs have emerged.
However, these structures inevitably degrade due to the impact of natural disasters and environmental
factors. This has made structural health monitoring of bridges an essential strategy for assessing their
condition and predicting their future performance. Traditionally, direct measurement has been the go-to
approach in civil engineering, which requires extensive sensor installation, large-scale data processing, and
traffic disruptions for bridge-specific testing, etc. The above issues indicate that the direct measurement has
become less practical for monitoring numerous bridges in developed countries. To address this challenge,
an alternative known as the Vehicle Scanning Method (VSM) was introduced [1]. This indirect approach
leverages vehicle-bridge interaction (VBI) systems to gather data, offering a more efficient and scalable
solution for bridge monitoring [2].

In VSM, a test vehicle equipped with a limited number of sensors can theoretically identify the modal
parameters of a bridge by simply traversing the structure. These modal parameters serve as critical indicators
of a bridge’s health condition when monitored over time. Consequently, the accurate and efficient identifi-
cation of these parameters has attracted significant research attention in recent years [3-5]. In the literature,
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much of the research has concentrated on the method development for identifying bridge frequencies [6,7].
For instance, the techniques such as the empirical mode decomposition [8] and the singular spectrum
analysis with a bandpass filter [9] were adopted to enhance bridge frequency identification. However, bridge
damping plays an equally vital role, as it directly influences structural safety and service life during both the
design and maintenance phases [10]. It has been shown that structural damping can reflect changes in the
spectral properties of a structure due to damage, which are not easily detected through natural frequencies
and mode shapes [11,12]. To date, no appropriate theoretical approach has been developed for estimating
structural damping during the design stage. Hence, modal damping ratios must be obtained from in-situ
dynamic tests on completed or under-construction bridges to ensure compliance with design requirements.

Operational Modal Analysis (OMA) has recently gained prominence for estimating modal damping
ratios especially in long-span bridges. OMA does not require artificial excitation; instead, it leverages ambient
vibrations caused by natural sources such as traffic and wind loads. Among various OMA techniques [13],
time domain identification methods use time-domain signals directly from structural responses for analysis
[14]. He et al. introduced a method employing two-connected vehicles and singularity spectrum analysis
to extract bridge frequency-related mono-components. The damping ratio was then estimated by fitting
the free-decay segments of these mono-components [15]. An orthogonal and recursive variational mode
decomposition in combination with the Hilbert transform (HT) was introduced to estimate the frequencies
and damping ratios of bridge structures [16]. Shang et al. proposed an enhanced logarithmic decrement
method, incorporating semantic segmentation of time series to isolate the free-decay segments from
recorded data for modal damping estimation [17]. However, this method demands high-quality monitoring
data, and its accuracy is sensitive to model training quality. More recently, Zhang et al. introduced an
advanced signal processing technique called the natural excitation technique to enhance the bridge damping
ratio identification by using the damped vibration of a non-moving VBI system excited by a moving vehicle
[18].

Lépez-Aragon et al. proposed a frequency-domain method that bypasses the traditional time-domain
logarithmic decrement approach [19]. Their technique involves comparing the amplitude reduction of the
spectrum over different segments of the same free-decay response to compute the damping ratio. Building on
this concept, several VSM-based approaches have been developed. One method employed a two-axle, rigid-
mass vehicle in combination with HT and several laser sensors to estimate bridge damping [20]. A simple
bridge damping formula was derived on the basis of the instantaneous amplitudes of a vehicle’s front and
rear contact responses by HT [21]. A two-axle, three-mass test vehicle equipped with multiple sensors was
introduced for the same purpose by considering support effect, in which HT with a bandpass filter was used
[22]. As the wavelet transform (WT) has good localization characteristics in time and frequency domains,
it is adopted in the identification of structural modal parameters [23-25] and bridge damage detection
[26,27]. Another method utilized WT with a bandpass filter, exploiting the correlation between front and
rear wheelsets of a two-axle vehicle to estimate damping by using contact-point responses [28].

The damping identification frameworks were established on the basis of installing several sensors
(i.e., six) on a test vehicle in Refs. [20,22]. In view of operational efficiency for VSM-based damping
estimation, the present study conducts a comparative analysis using both HT and WT techniques by only
two mounted sensors. Notably, the sensors are installed in the front and rear wheel locations of the test
vehicle. Corresponding formulations for estimating the damping ratio using both HT and WT are derived
and analyzed. The arrangement of this paper is given below: Section 2 formulates the test vehicle-bridge
system. Dealing with pavement irregularity in the finite element method (FEM) is introduced in Section 3.
A comparative analysis is conducted in Section 4. Section 5 presents the investigation of key factors. The
concluding remarks are drawn in Section 6.
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2 Formulation of Test Vehicle-Bridge System
2.1 Closed-Form Solution for Bridge

As depicted in Fig. 1, a three-mass test vehicle [29] is adopted to scan the damping ratio of a bridge. For
illustration purpose, the test vehicle is assumed to move at a constant velocity v on a simply supported bridge.
For the bridge, it has mass of mL, flexure rigidity of EI, and a damping coefficient c. For the test vehicle, it
has rigid mass of m, and two unsprung mass of m,, and m,,, as spanned by axle distance d, in which m,
has vertical and pitching degrees of freedom (DOFs) g, and 6,, respectively, and m,,; and m,,, have vertical
DOFs g1 and q,,,, respectively. In this study, the subscripts 1 and 2 refer to physical quantities related to the
front and rear wheels. For each suspension unit, it has a spring constant k,; and a damping coeflicient ¢, ;.
As a general description, the centroid of the test vehicle is located with distance d; from the front wheel such
thatd = d, + d,.

d

d” dl |

;91-
m, LT o, m_
sensor —

v2 :E kl- lf"\'l I;;I

Figure 1: A three-mass test vehicle moving on a simply supported bridge

In the test vehicle, the two sensors (denoted by blue dots) are used to scan the bridge responses at the
scanning points (SPs) (denoted by red dots) along the bridge. The identification of bridge damping ratio will
be detailed in the following.

By adopting the Euler-Bernoulli beam theory, the equation of motion of a damped bridge with lateral
displacement u (x, t) can be expressed as

mii (x,t) +cu(x,t) + Eu"" (x,t) = —fi6 (x —vt) - f2 (x -y (t— g)) (1)

where § is the Dirac delta function; the derivatives of time and position are respectively denoted by a dot and
an apostrophe in this study. For the present purpose, it is assumed that the mass of the vehicle is much smaller
than that of the bridge. Thus, the effects of moving mass [30], which arise from the high suspension stiffness
of the VBI system and the large vehicle-to-bridge mass ratio, can be neglected, resulting in the simplified
force terms on the right-hand side of Eq. (1). By assuming the direct contact between the wheels and bridge
pavement, the contact forces f; and f, are given by

d d
f1=(gzmﬁmwl)g,fz:(jmwmwz)g (2)
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where g is the gravitational acceleration.

Upon introducing the modal superposition, the vertical displacement of the bridge can be written by
the modal coordinate g, () and mode shape as follows:

N
u (1) = 3 don (#) sin = 3)
n=1

Substituting Eq. (3) to Eq. (1) and following the procedure given in Ref. [30] yield the modal equation:

nﬂvtk) (4)

) . 2 &
9on (t) + zflmwbnqhn (t) + withn (t) Ealia—— ka sm(
mL et

where w;,, denotes the nth bridge angular frequency as wy, = (%)2 %; &pn denotes the nth bridge
str=t-4% (k —1) for readability.

For a two-axle vehicle load acting on the bridge, the load on the right-hand side of Eq. (4) can be
decomposed into three scenarios [29]: (1) f; on the bridge for ¢ < ; (2) f1 and f, on the bridge for £<t<
V, (3) f> on the bridge for % <t< Ltd. For simplicity, the method of superposition [31] for two- axle loads

is adopted, in which a single axle load (i.e., fi) is firstly considered in the following derivation with zero
initial conditions.

damping ratio as &, = 2w =

The homogeneous solution of Eq. (4) is assumed to be
Gon (1) = Cret (5)

where A =-&,,wp, £+ iwg,, in which wg, = wp,\/1- 5;,,,2 denoting the damped bridge angular fre-
quency. Eq. (5) can be further written as

qlgn (1) = e~ Son@ont [A ik cos (wgnt) + Bugsin (wg,t)] (6)

The particular solution of Eq. (4) is assumed to be

nnvt

7)

nnvt
q‘zn (t) = C,i cos + D, sin

In Egs. (6) and (7), Auk> Buk> Cuk, and D, are the unknown coefficients to be solved. From the
inhomogeneous modal equation, C,; and D,,; can be determined first; then, A,,x and B,x can be found from
the modal equation using g, = qJ, + q‘Zﬂ.

By employing the superposition, the general expression of bridge displacement is finally reached as

u(x,t)= ZZZ:

e~ bon@unt [Ank cos (wgnty) + Bk sin (wgnty)] I 5
nnvt nnvt sin —
i | +Cuk cos k + D,k sin k L ®
with
4,1
an _ fbn nfk

Lo}, [(1=122)" + 2&ra)’]

Dy = - 2(1- ) f )

mLw?, [(1 —r2) 4 (ngnrn)z]
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Ank = _ana

nmv 10)
Bnk = (Ankgbnwbn - Tan) (
nm

in which r,, = 27 Note that Eq. (8) applies to the scenario of two wheels on the bridge.

dn

2.2 Closed-Form Solution for Scanning Points

Referring to Fig. 1, a three-mass test vehicle is instrumented with two sensors in the front and rear
locations of the vehicle body. Particularly, the SPs are the direct projections of sensor locations onto the
bridge, i.e. x; and x,. Based on the bridge displacement in Eq. (8), the displacement of a SP can be expressed
as

N nax;
up; (t) = qun (t) sin 7 ! 11)
n=1
where x; = v [t — 2 (j—1)]| for i = 1, 2. Then, the response of a SP can be explicitly derived as
j v U J p p y
N 2 o= dm@mt [A  cos(wg,ti) + By sin (wg,t
(= £ 8 0 ey o) Bk o)) |
n=1k=1 nk S L nk S11 L (12)

Jlmd (i
xsin L2 0Dy 5 g o

Since it is known that the bridge damping helps to reduce motion of a bridge in service, the free-decay
response in the above equation is extracted as the component response u;.;,, (t), as given below:

nﬂv[t—%(j—l)]
L

2
Upejn (1) = Z E.x [e‘g"”“"’”t" cos wg, (tx + ﬁn)] sin Vi=12 (13)
k=1

with

— 2 2
Enk = ‘/Ank + Bnk’

(14)
- -1 Awe
P = cos (\/Aikwik)

In the next section, Eq. (13) will be adopted to derive the formula of bridge damping ratio.

2.3 WT for Identifying Bridge Damping Ratio

To transform a signal Y (t) from the time domain into the time-frequency domain, the WT is adopted,
which is defined by

W(a,b)z%/::Y(t)w*(ﬂ)dt (15)

a

in which W (4, b) is the wavelet coefficient involving a scale parameter a for stretch of the wavelet and a time
parameter b for translation of the wavelet. y is the wavelet basis function while y* is the conjugate function
of the mother wavelet y. The Morlet wavelet y and its complex conjugate y* are expressed as

v(t) = eiwotes (16)
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with the wavelet central angular frequency denoted by wy.
In Eq. (15), the scale parameter a and the signal pseudo-frequency f have the following relation:
F. x F

a=—-

f

where the central frequency is defined as F. = $°, which is a default value in Matlab R2023a. F; is the sampling

frequency, which is F, = 17 = 0= = 1000 in this study.

By using the asymptotic technique [28], the WT can be written as

Wi(ab) = 2 [ A (D cos[p (0] () dr Vj-1.2
= YEA ()P [ag! (b)] e V=12

(17)

(18)

in which A () cos [¢ ()] denotes the signal. By introducing the component response in Eqs. (13)-(18), the
WT of the nth component response can be derived as

Wbcj,n (a’ b) = %En [ﬁe_fbnwbnbeiwdn(h+ﬂn) + fze_fbnwbn(b_%)eiwdn(b_%*'ﬁn)] (19)
nv[b—4(j- .

x sin M‘P* (awgy) Vj=12
with E,x = E, f. The above nth WT reaches a maximum value |Wbcj,n (an, b)‘ when a, = wy/wg,. Then,
the nth wavelet coeflicients corresponding to the front and rear wheels are given by

Van d b

|Wbcl,n (an, b)| = za En I:fle—fzmwzmb +fze—£bnwbn(b—‘j):| sin H7ZV \P* (anwdn) (20)
\/ nav (b -2

[Wacan (@, b)| = f j“En [fre™foncunt s frg=finn(0=5) | sin %\P* (an@ay) (21)

with the two wavelet coeflicients derived on the basis of a three-mass test vehicle, the damping ratio of the
bridge can be formulated as follows:

[Whea,n (@n, b+ 9)|
|Wbc1,n (ana b)l

where the lagging of time between the two wheels is introduced through the axial distance of the vehicle.
Thus, the bridge damping ratio described by the WT is derived:

1n[|WbCZ’” (an, b+ d/v)|]
’Wbcl,n (an’ b)|

- e_‘flmwbn% (22)

fbn == d (23)

Wpn—

v

2.4 HT for Identifying Bridge Damping Ratio
For a signal s (t), the HT of s (¢) can be defined by [20,22]
1 [>~s(7)

h()=H[s(0]=- [ 24 24
W=HiW== [~ @
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The original s (t) and the convolution of s (t) constitute an analytical signal Y (¢), i.e. Y (¢) =s(¢) +
ih (t). The instantaneous amplitue of Y () is

A =\s(OF + [ ()] (25)

Upon applying HT to the component response u;.;,, (t) in Eq. (13), the nth instantaneous amplitude
of the component response corresponding to the front and rear wheels are described by

nnvt

Aluper, (t)] = E, [fle_fb”‘”“t + fze_fb”“’b”(t_%)] sin (26)
nav (t -4
Alttpenn (£)] = By [ fre™®rent + fre=8re (=) | sin k) (27)
In a similar way to the WT, the damping ratio of the bridge can be formulated below:
Alwen (4] oo
=e bnWhn 3, (28)
A [ubcl,n (t)]
Thus, the bridge damping ratio described by the HT is derived as
In A [“bcz,n (t + d/V)]
Alupern (t
S B TRLE) o)
Wpn—
v

From Eqs. (23) and (29), it has shown that the bridge damping ratio can be estimated using the ratio
of either the coefficients or the amplitudes of signals at two measurement points, regardless of the bridge
boundary conditions. To further investigate this point, a continuous bridge with various span numbers will
be analyzed in the parametric study. In VSM, since the vehicle-to-bridge mass ratio is extremely small in
real-world conditions, it is expected that ongoing traffic will not influence the damping ratio identification,
as demonstrated in previous studies [28].

3 Pavement Irregularity in Finite Element Method

FEM will be adopted in the numerical analysis. For the bridge, the Rayleigh damping is assumed. The
equations of a VBI system can be referred to the previous studies [22,29]. To consider practical applications,
the pavement irregularity cannot be neglected. To this end, the subtraction strategy using residual responses
is introduced. As shown in Fig. 2, an additional sensor is installed in the centroid of the vehicle body so that
three residual responses can be found.

The distances between the sensors and SPs are denoted by Ay;, Ay., and Ay,. As accelerometers are
commonly used in structural health monitoring, the corresponding acceleration responses of Ay, Ay, and
Ay, are defined as

Ajr (1) = Gy (1) + i, (1) = digar (1) = 71,

Ay. (t):qV(t)_ﬁhcf (t) = Fes (30)
Aja (1) = Gy (1) = da20, () —dipea (1) — 72
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where the pavement irregularities at x;, x., and x, are respectively denoted by r; = r (x1), r. = r (x.), and
r2 = 7 (x7). Then, the acceleration responses of the three SPs can be determined by

Ji(t) =Gy (1) +di, (1) = Aj (1),
j}C(t) =Gy (t)_Aj}_g (t)> (31)
2 (t) =g, () — da0, (t) — Ay, (t)

which implies

1 (t) = itper () + 71,
j}C(t) :ﬁhcc (t)+'fc’ (32)
P2 (t) = tiper (1) + 72

Finally, the three residual responses can be defined as follows:

Vre (t) = je (t"‘ %) - (t),
Jroc(8) =2 (t+4) = je (£ +2), (33)
Jro1 (1) =2 (t+2) = 31 (1)

The above residual responses will be incorporated in FEM to eliminate the effect of pavement

irregularity.
|_* o .J —_—V
/’ ‘

w3 (1T
y A_l'_._ < 31 b3

Figure 2: A VBI system under pavement irregularity

4 Comparative Analysis

The damping ratio of a simply supported bridge will be identified by using both HT and WT to
understand the accuracy achieved by each approach. The parameters of the VBI system are given in Table 1.
In this example, the effect of vehicle damping is ignored. The numerical analysis is conducted using Matlab
R2023a on an Intel Core i7-9700 CPU with 48 GB RAM. In FEM, the bridge is discretized by 40 beam
elements, and the dynamic equation of the VBI system is solved by Newmark  method with parameters
B =1/4 and y = 1/2 for unconditional stability. The time step is 0.001 s. Unless otherwise mentioned, the
parameters listed in this table [22] will be adopted in the following study.
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Table 1: Parameters of the VBI system

Vehicle Bridge
my, My, My (Kg) 1500, 75, 75 E (GPa) 27.5
I, (kg-m?) 2738 I (m*) 0.2
k1, kyo (KN/m) 450 m (kg/m) 3000
d, dy, d, (m) 2.5,1.25,1.25 L (m) 30
v (m/s) 5 & =& =& 0.01
fy» fo (Hz) 3.899, 3.607 fat» far (Hz) 2.363, 9.452

In the FEM analysis, upon finding the acceleration response of a SP, the bandpass filter is applied, in
which the target frequency is set as the first damped bridge frequency f;; with bandwidth equal to 0.1 ~
0.153 f4;. For illustration, the frequency spectra obtained by the bridge acceleration and vehicle acceleration
are shown in Figs. 3 and 4, where the consistent results of the identified f;; and f;, between the analytical
solution and FEM are demonstrated. Based on the information of the bandpass filter, HT and WT are
further introduced. Particularly, the regression techniques in Matlab called LAR (least absolute residual) and
RANSAC (random sample consensus) are respectively adopted to optimize the results. In Ref. [22], it was
shown that a linear function can be fitted by using LAR. For a constant bridge damping ratio, RANSAC was
adopted to fit a function with zero slope [28]. In this study, both HT and WT with LAR and RANSAC are

respectively investigated.

10°

4 X
f =2308Hz Analytical
ar FEM
31
~
&
E 2
D
=
=
=
g
< 1
f =9.538Hz
&
0 A
’ 3 10 15

Frequency (Hz)

Figure 3: Spectrum obtained by bridge acceleration
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Figure 4: Spectrum by FEM: (a) vehicle vertical acceleration; (b) vehicle rotational acceleration

As shown in Fig. 5, the procedure for identitying bridge damping ratio is presented with the following
description: Fig. 5a,b exhibits the SP accelerations at front wheel (denoted by HT1, WT1) and at rear wheel
(denoted by HT2, WT2) by HT and WT, respectively. Then, the bridge damping ratio is estimated using
the theoretical formulas in Eq. (29) for HT and Eq. (23) for WT, as presented by the blue line in Fig. 5¢,d;
afterward, the regression technique LAR is used to identify the bridge damping ratio &, as denoted by
the red line. Obviously, large oscillations or deviations appear at the two ends of the bridge by both HT
and WT, indicating less confidence of the regression. Such a phenomenon can be attributed to the support
effect. As the vehicle approaches the bridge support or enters and leaves the bridge, the dynamic response
transmitted from the bridge to the vehicle diminishes, leading to reduced signal energy and a relatively
increased noise level. To this end, the support effect is considered by removing the data near the two ends.
For the test vehicle with axle distance d = 2.5m, the data in the two regions with d = 2.5m from the two
ends are omitted. Finally, the identified bridge damping ratio &, by HT and WT are shown in Fig. 5¢,f,
respectively. By comparing the numerical results with the theoretical value (denoted by the dashed line), the
relative errors by the two signal processing techniques are summarized in Table 2. It is observed that WT has
higher accuracy over HT with and without considering the support effect. By including the support effect,
the relative errors can be largely reduced. Similarly, the numerical results by RANSAC are shown in Fig. 6
with relative errors listed in Table 2; improved results are obtained when the support effect is considered.
Again, higher accuracy is ensured by using WT. Extraordinarily, RANSAC exhibits better fitting ability for
bridge damping identification. Therefore, RANSAC will be adopted in the subsequent analysis.
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Figure 5: Procedure for identifying bridge damping ratio by LAR (left column for HT; right column for WT): (a,b) SP

accelerations at two wheels; (c,d) identified &,; (e,f) identified &, with support effect
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Table 2: Identified &, with relative errors for LAR and RANSAC

=

(=]

WT
Support effect Technique
Identified £, Error (%) Identified £, Error (%)
w/o LAR 0.010881 8.81 0.010350 3.50
RANSAC 0.010192 1.92 0.009934 0.66
with LAR 0.009424 5.76 0.009681 3.19
RANSAC 0.009844 1.56 0.009992 0.08
0.04
= = Theoretical = = Theoretical
—— Estimated 0.03 —— Estimated
Identified : Identified
=
< 0.02
A g
Ao o A £ 0.01
g
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Figure 6: Identified bridge damping ratio by RANSAC (left column for HT; right column for WT): (a,b) identified &;;
(c,d) identified &, with support effect

5 Parametric Study

In this section, a parametric study is conducted to evaluate the derived formulas for bridge damping
ratio identification. To meet practical concerns, the following key factors are included: the test vehicle’s

centroid location, the influence of pavement irregularity, different bridge modal damping ratios, the number
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of spans in a continuous bridge, and the influence of bridge damping ratios. A systematic analysis will be
provided for each factor in the following content.

5.1 Effect of Vehicular Centroid Location

Referring to Fig. 1, the centroid of a two-axle test vehicle may not be designed in the center of the vehicle
body to meet certain purpose. To consider such a situation, five cases of vehicles with different centroid
locations are investigated, as listed in Table 3. Upon considering the support effect, by careful inspection, the
above results reveal that if the vehicular centroid locates in the half part of the vehicle (i.e. smaller d,) for
vehicle passage in the positive x direction, it is beneficial to the identification of bridge damping ratio as the
relative errors for both HT and W'T are smaller than the cases of smaller d;.

Table 3: Vehicles with different centroid locations

HT WT
Identified £, Error (%) Identified £, Error (%)

Case Centroid location Wheel mass (kg)

! le - (())-255”; ’ Zz: :: 2;2 ’ 0.010039 0.39 0.009941 0.59
) Zz - ?)-.‘;Z ) Z:l z 862755 ’ 0.010343 3.43 0.010103 1.03
3 Z; i ((’)"i”; , Z:l == 2?)’ 0.009661 3.39 0.010046 0.46
4 ZL - %ﬁé‘; ) Z:l :: 2%’ 0.010343 3.43 0.010146 1.46
s Z: - ‘Z{ 3/3 Z:z i} E(I)O’ 0.010329 3.29 0.010180 1.80

5.2 Effect of Pavement Irregularity vs. Different Bridge Damping Ratios

The influence of pavement irregularity on the identification of bridge damping ratio is investigated by
using ISO 8608 [32] to numerically generate the pavement profiles of Class A and Class B as shown in Fig. 7,
in which each dataset is averaged by 20 sets of individual irregularities. To remove the adverse effect of
pavement irregularity, the subtraction strategy is adopted [15,16,22]. To this end, one additional sensor is
installed in the centroid of the vehicle body so that three residual responses can be defined as described
in Section 3. In the following, different bridge damping ratios of 0.01 and 0.02 are further examined for each
class of pavement irregularity.
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Figure 7: Pavement irregularity
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For illustration, the numerical results under Class A pavement irregularity are presented in Fig. 8, in
which the support effect is considered by omitting the data near the two bridge ends. The corresponding
results are summarized in Table 4, including Class B results. By comparison, severer irregularity has larger
relative error regardless of the damping ratio value. A higher damping ratio value also leads to larger relative
error. Generally speaking, WT shows better accuracy in terms of bridge damping ratio identification with
the aid of its composition as given in Eq. (17).
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Figure 8: Identified bridge damping ratio (left column by HT; right column by WT) considering support eftect: (a,b)

&, =0.05; (c,d) &, =0.02

Table 4: Identified &, with relative errors by HT and WT under irregularity

Irregularity Theoretical &, HT WT
Identified &, Error (%) Identified &, Error (%)
Class A 0.01 0.009763 2.37 0.010141 1.41
0.02 0.019347 3.27 0.020446 2.23
Class B 0.01 0.010304 3.04 0.010294 2.94
0.02 0.020670 3.35 0.019420 2.90
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5.3 Effect of Different Bridge Modal Damping Ratios

To consider bridges of different modal damping ratios, the following two cases are designed: (1) &,; =
0.01and &, = 0.02; (2) &,; = 0.03 and &}, = 0.01. To retrieve two bridge modal damping ratios, the bandpass
filter needs to be centered around the damped bridge frequencies f;; and f;, individually to target one mode
at a time so that the bridge damping ratio can be identified. It is noted that f;; and f;, can be found from
the spectrum of a test vehicle as can be referred to Section 4.

In Case 1, the bandwidth of the bandpass filter for the first mode is set to be 0.123f; while the
bandwidth of the bandpass filter for the second mode is set as 0.139 f;,. The numerical results for the first
two modal damping ratios &;; and &, are presented in Figs. 9 and 10, respectively. For clarity, the full-field
results are provided to highlight the improvement in the results obtained by considering the support effect.
Obviously, the relative errors have been largely reduced for both modes and signal processing techniques,
with extraordinary improvement in the identification of the second bridge damping ratio, as listed in Table 5.
In Case 2, the bandwidth of the bandpass filters corresponding to the target frequencies f;; and f;, are set as
0.148 f;; and 0.144 f,1,, respectively. The identified results are summarized in Table 6. Again, it is demonstrated
that the procedure can be applied to identify different modal damping ratios with satisfactory results and
small relative errors for both signal processing techniques. Besides, WT shows higher accuracy than HT in
this regard.

0.04 T T T T T 0.04
= = =Theoretical = = =Theoretical
0.03 —— Estimated 0.03 F —— Estimated
Identified Identified
=) e
S 0.02} E 0.02}
£ £
e AN A 0
£ 0.01 A~ Y £ 001}
g g
a 0 1 a 0
-0.01 1 -0.01 |
fb] =0.009790 £hl =0.009817
-0.02 . . . . . -0.02 + . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Location (m) Location (m)
(a) (b)
0.04 T T T T T 0.04 T
= = =Theoretical = = =Theoretical
0.03 } —— Estimated ] 0.03 + —— Estimated
Identified Identified
2 0.02} £ 0.02}
< ]
= =
£ 0.01 £ 0.01
.a . 'E_ . ~
g g
a 0r a 0f
-0.01 | 1 -0.01
fbl =0.009920 Eb] =0.009965
-0.02 . . : . * -0.02 . . . * .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Location (m) Location (m)
(c) (d)

Figure 9: Identified bridge damping ratio &;; (left column w/o support effect; right column with support effect): (a,b)
by HT; (c,d) by WT
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Figure 10: Identified bridge damping ratio &;, (left column w/o support effect; right column with support effect): (a,b)
by HT; (c,d) by WT
Table 5: Identified &;,; and &, with relative errors for Case 1
HT WT
Support effect Theoretical value
Identified £, Error (%) Identified £, Error (%)
w/o En 0.009790 2.10 0.009920 0.80
&ns 0.018571 7.15 0.018239 8.81
with & 0.009817 1.83 0.009965 0.35
&no 0.019883 0.59 0.019918 0.41
Table 6: Identified &,; and &, with relative errors for Case 2
HT WT
Support effect Theoretical value
Identified &, Error (%) Identified &, Error (%)
w/o & 0.030464 1.55 0.030260 0.87
&y 0.010076 0.76 0.010079 0.79

(Continued)
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Table 6 (continued)

HT WT
Support effect Theoretical value
Identified &, Error (%) Identified &, Error (%)
with &n 0.030350 1.17 0.030251 0.84
§b2 0.010050 0.50 0.010040 0.40

5.4 Effect of Bridge Span Number vs. Different Bridge Damping Ratios

As most bridges are constructed as continuous bridges with several spans, the effect of span number or
internal support effect is investigated in this example, in which hinged supports with span length of 15 m are
assumed. In the following, four bridges of a single-span, two-span, three-span, and four-span are considered.
Additionally, different bridge damping ratios of 0.01, 0.02, and 0.03 are further compared in each continuous
bridge. Since WT has shown its superiority over HT in the identification of bridge damping ratio, only WT
is adopted. To enhance the identification accuracy, the effect of internal support is removed via omitting the
data in a support region (i.e. x; + 2.5d for an internal support with a coordinate x;) [22].

For a single-span bridge, the identified bridge damping ratios for various theoretical bridge damping
ratios are listed in Table 7, from which it is observed that the relative error generally increases with respect to
the increase in the theoretical value of £, while the desired accuracy is reached. For bridges of multiple spans,
the identified bridge damping ratios for various theoretical bridge damping ratios are estimated by using the
data collected from some of the spans or all spans to find the optimal results. For instance, in a two-span
continuous bridge, the identified &, are computed by the data from the st span, 2nd span, or the two spans, as
compared in Table 8; by examination, using the data collected from the two spans gives the best estimation of
bridge damping ratio. For a three-span continuous bridge, there are five possible combinations of the data to
be used, as listed in the second column of Table 9; a careful examination reveals that using the data collected
from the first two spans yields the best result of bridge damping ratio. For a four-span continuous bridge,
there are seven possible combinations of the data to be used, as listed in the second column of Table 10; once
again, it is found that using the data collected from the first two spans leads to the best estimation of bridge
damping ratio. The above results are visualized in Fig. 11 for clarity.

Table 7: Identified £, in a single-span bridge

Theoretical £, Identified &, Relative error (%)

0.01 0.009931 0.69
0.02 0.019708 1.46
0.03 0.029405 1.98

Table 8: Identified £, in a two-span continuous bridge

Theoretical &, nth Span Identified &, Relative error (%)
1 0.010021 0.21
0.01 2 0.009647 3.53
1+2 0.009834 1.66

(Continued)
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Table 8 (continued)

Theoretical &, nth Span Identified &, Relative error (%)
1 0.020531 2.66
0.02 2 0.018735 6.33
1+2 0.019633 1.84
1 0.030590 1.97
0.03 2 0.026487 11.71
1+2 0.028539 4.87

Table 9: Identified &, in a three-span continuous bridge

Theoretical §, nth Span Identified £, Relative error (%)
1 0.010021 0.21
2 0.009994 0.06
0.01 3 0.009993 0.07
1+2 0.010008 0.08
1+2+3 0.010003 0.03
1 0.019902 0.49
2 0.020001 0.01
0.02 3 - -
1+2 0.019952 0.24
1+2+3 0.013301 33.50
1 0.030066 0.22
2 0.029495 1.68
0.03 3 - -
1+2 0.029781 0.73
1+2+3 0.019854 33.82

Table 10: Identified &, in a four-span continuous bridge

Theoretical &, nth Span Identified &, Relative error (%)
1 0.010021 0.21
2 0.009850 1.50
3 0.010118 1.18
0.01 4 - -
1+2 0.009936 0.64
1+2+3 0.009996 0.04
1+2+3+4 0.007497 25.03
1 0.019847 0.77
2 0.019682 1.59
3 0.019857 0.72
0.02 4 - -

(Continued)
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Table 10 (continued)

Theoretical &, nth Span Identified &, Relative error (%)

1+2 0.019765 1.18

1+2+3 0.019795 1.03
1+2+3+4 0.014847 25.77

1 0.031118 3.73

2 0.030249 0.83

3 0.032820 9.4

0.03 4 - -

1+2 0.030684 2.28

1+2+3 0.031396 4.65

1+2+3+4 0.023547 21.51

For a damped bridge, if a test vehicle travels a longer distance on it, the recorded response may gradually
be damped out during the later part of the trip. Additionally, noise arises in the signal when the vehicle
approaches the supports. These factors jointly result in less accurate damping ratio identification when using
data from the entire spans, e.g. very large relative errors in Tables 9 and 10. To be brief, for a multi-span
bridge, the above investigation indicates that using the data collected from the first two spans gives the most
satisfactory result in the identification of bridge damping ratio. Furthermore, a larger bridge damping ratio
has larger identification error.

0.04
£, =0.029405 , *
I e A
= L *
[
= £ =0.019708 , * *
o0 >b %
£0.02F---- - ==
n- ®
g * x *
S g, =0.009931
0.01f---—————tx e x|
0 . .
0 5 10

Location (m)

15

0.04 .
z
% x
o €, =0.028539
————— X - - - - - -
° 0.03 . o
= v ax
ot e " £, 0.019633
E0.02f - nmnytateg ---- - -1
£ : .o
< * * _
8 e £, = 0009834
0.01 | - g2, - - et - -]
x® x"xx ’x
x* %
0 . . . .
0 5 10 15 20 25

Figure 11: (Continued)

Location (m)

(b)

30



688 Comput Model Eng Sci. 2025;144(1)

0.04 0'04
®
x
*x . &, = 0.029781 x 2 x . &, =0030684

o 003~y e e -1 003 ===~ R
'g g L x
o * £, = 0019952 o * e £, = 0019765
£0.02F — rrns aiaiiann LA =1 R 0.02"-‘-‘-}:---‘“’;“--- o= -
g‘ E‘ * *x x
8 . £, =0.010008 a . £, =0.009936

0.01 F — s -~ - - — 0.01 | sy = = Zxsearyry— x--"—"*ﬂ—*x- -1

0 : - : : 0 : : : : '
0 10 20 30 40 0 10 20 30 40 50 60
Location (m) Location (m)
(©) (d)

Figure 11: Identified &,: (a) single-span bridge; (b) two-span bridge; (c) three-span bridge; (d) four-span bridge

5.5 Effect of Measurement Noise

In the on-site measurement, the error of measurement can be attributed to the environmental noise or
operational process. To account for such measurement noise, three different noise levels are studied through
a Gaussian white noise with zero mean and unit standard deviation [22]: 1%, 3%, and 10%. By considering
the support effect, the results are summarized in Table 11 and depicted in Fig. 12, in which the relative error
increases with higher noise levels. Again, WT demonstrates better ability than HT in identifying bridge
damping ratios.

Table 11: Identified &, with relative error by HT and WT under noisy environment

HT WT
Noise Level
Identified £, Error (%) Identified &, Error (%)
1% 0.010040 0.40 0.010039 0.39
3% 0.010272 2.72 0.010180 1.80
10% 0.010295 2.95 0.010289 2.89
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Figure 12: (Continued)
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Figure 12: Identified &, under different noise levels (left column by HT; right column by WT): (a,b) 1%; (c,d) 3%;
(e,f) 10%

6 Conclusions

Since the bridge damping ratio serves as a damage-sensitive index, advancing VSM in bridge health
monitoring by estimating the damping ratio provides a fundamental basis for monitoring bridge conditions,
in addition to frequency identification. In this study, the bridge damping ratio identification is effectively
improved by using a two-axle three-mass test vehicle via two wheel responses, from which two sensors
are shown to be adequate for estimating bridge damping ratio with desired accuracy upon considering the
support effect.

Based on the numerical investigation, the following concluding remarks can be further drawn: (1) The
comparative analysis of HT and WT has shown the superiority of WT over HT in the bridge damping
identification. (2) According to the vehicle moving direction, it is beneficial to design a test vehicle with
centroid in the half part of the vehicle body for bridge damping identification. (3) The residual response is
introduced to remove the effect of pavement irregularity, while an additional sensor is required to provide
information when using the derived damping ratio formulas. (4) The procedure and formulas have been
demonstrated to be effective even for bridges with different modal damping ratios. (5) The numerical
investigation has shown that using the responses of the first two spans of a bridge has potential for retrieving
the damping ratio of a multi-span bridge.
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In future studies, adopting other effective signal processing techniques could be a viable option, as the
bandwidth of the bandpass filter used in this study is not clearly defined. The bandwidth size affects the
precision of signal filtering, which in turn influences the accuracy of the bridge damping ratio identification.
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