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ABSTRACT: Arabic Sign Language (ArSL) recognition plays a vital role in enhancing the communication for the Deaf
and Hard of Hearing (DHH) community. Researchers have proposed multiple methods for automated recognition of
ArSL; however, these methods face multiple challenges that include high gesture variability, occlusions, limited signer
diversity, and the scarcity of large annotated datasets. Existing methods, often relying solely on either skeletal data or
video-based features, struggle with generalization and robustness, especially in dynamic and real-world conditions.
This paper proposes a novel multimodal ensemble classification framework that integrates geometric features derived
from 3D skeletal joint distances and angles with temporal features extracted from RGB videos using the Inflated 3D
ConvNet (I3D). By fusing these complementary modalities at the feature level and applying a majority-voting ensemble
of XGBoost, Random Forest, and Support Vector Machine classifiers, the framework robustly captures both spatial
configurations and motion dynamics of sign gestures. Feature selection using the Pearson Correlation Coefficient
further enhances efficiency by reducing redundancy. Extensive experiments on the ArabSign dataset, which includes
RGB videos and corresponding skeletal data, demonstrate that the proposed approach significantly outperforms state-
of-the-art methods, achieving an average F1-score of 97% using a majority-voting ensemble of XGBoost, Random
Forest, and SVM classifiers, and improving recognition accuracy by more than 7% over previous best methods. This
work not only advances the technical state-of-the-art in ArSL recognition but also provides a scalable, real-time solution
for practical deployment in educational, social, and assistive communication technologies. Even though this study
is about Arabic Sign Language, the framework proposed here can be extended to different sign languages, creating
possibilities for potentially worldwide applicability in sign language recognition tasks.

KEYWORDS: Arabic sign language recognition; multimodal feature fusion; ensemble classification; skeletal data;
inflated 3D ConvNet (I3D)

1 Introduction
Effectively communicating through sign language interpretation is extremely vital for the hearing-

impaired. It adds an addictive layer to interactions, lowers social walls, helps inclusion, and paramount
accessibility. Despite promising advancements in assistive technologies, Arabic Sign Language (ArSL) brings
challenges [1]. Variations in signing style, quick hand motions, and different orientations of hands also
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make recognition unreliable. The presence of occlusions like overlapping hands also makes detection more
difficult [2]. Moreover, accuracy can be affected by changing lighting conditions [3]. There are two challenges
pertaining to the recognition of Arabic Sign Language that can be seen within the plots in Fig. 1. Intra-class
variability, wherein the same sign may vary across performers due to differences in hand shape, articulation
speed, or posture, is the first challenge. The second challenge is inter-class similarity, where two different signs
do something similar with respect to hand orientation or motion path. Both majorly affect the performance of
the model. All this signifies the importance of integrating structural (skeletal) and motion (temporal) features
to strengthen the recognition robustness. The key challenge is the small number of large, annotated datasets,
which limits the training of generalizable models. Our method addresses the problem of the scarcity of large-
scale annotated datasets, using a hybrid approach that promotes feature extraction and generalization. Our
method leverages skeletal pose dynamics and deep-learned temporal features to model motion patterns,
requiring fewer annotations.

Figure 1: Gesture variability examples in Arabic Sign Language. The figure illustrates within class variability when the
same sign may look different due to inter signer styles, articulation, or hand orientations, and inter class similarity,
where dissimilar signs may look the same in appearance. Such types of variations are very challenging for reliable and
robust sign language recognition systems [4]

One popular approach to gesture recognition is to use skeleton-based analysis, which involves tracking
the movements of 3D joints within the human body. Although this approach successfully captures the spatial
configuration of human motion, real-world scenarios are still plagued by issues like variability in gestures,
occlusions, and environmental noise [5,6]. Numerous approaches have been developed to tackle these
challenges [7,8]. The early approaches consisted of using traditional machine learning algorithms such as
k-nearest neighbors (KNN) [9], support vector machines (SVM) [10], and decision trees to classify skeleton
data [11]. These algorithms are interpretable and computationally efficient; however, they are limited by the
variability of real-world gestures and tend to overfit in dynamic environments. The introduction of deep
learning techniques led to a paradigm shift in skeleton-based action recognition, where deep models such as
convolutional neural networks (CNNs) [12] and recurrent neural networks (RNNs) [13], have demonstrated
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the ability to effectively capture the intricate spatial and temporal dependencies embedded within skeleton
data. Although they provide high accuracy, deep learning models need larger labeled datasets and have
substantial computational resource requirements. This may restrict their use in cases where recognitions
must be performed in real time or on smaller datasets [14,15].

Arabic Sign Language (ArSL) acts as the main visual means of communication for the Deaf community
in Arabic-speaking countries. Unlike the sign languages of America, ArSL shows heavy regional variation, is
not standardized, and is mainly influenced by the dialects of spoken Arabic. Manual and non-manual signs
constitute the ArSL, and the signs are more active, especially in situations of conversation when gestures
might often run uninterrupted for a while without being segmented. The dynamicity of the structure, but
limited availability of sufficiently large annotated datasets, has made the recognition of ArSL even harder
than that of some of its counterparts. The ArabSign dataset used in this work contains 50 signs commonly
used at the sentence level, which reflect practical scenarios of usage in real-world communication.

In this work, an ensemble method is proposed that takes advantage of both the benefits of deep
learning feature representations and geometric features. These complementary representations are combined
in order to make the system stronger against real world challenges such as gesture variability, occlusions, and
harsh environmental conditions. In Section 5, tests of this robustness are exemplified by the high F1-scores
across distinct and often overlapping gesture classes in the ArabSign dataset, despite the above hardships,
and relevant analysis. This framework unifies skeleton-based geometric features with deep learning-based
temporal features, which were extracted using the Inflated 3D ConvNet (I3D) model. In our technique,
after extracting the body joints in each frame, we compute pairwise distances and angles to all other body
joints from frame to frame, thus capturing the spatial relationships across frames. Meanwhile, the temporal
features of the video are extracted using I3D from another viewpoint. The temporal features are then fused
with the skeleton-based geometric features at the feature level [16]. This fusion preserves the pertinent
spatial-temporal characteristics in the final feature representation [17,18]. The fused feature vector builds a
comprehensive descriptor of gestures that surmounts the hindrance posed by gesture variability and noise
[19]. Combining the geometric simplicity of the skeleton features with I3D feature temporal richness provides
a powerful framework for gesture recognition. The fine motion details and high-level spatiotemporal patterns
concerning our gesture constant will thus be captured for better recognition. This combination strengthens
our method against variations in gestures, occlusions, and environmental noises. The approach is therefore
intended to perform well in different real-life situations, allowing it to soar from research-based approaches
into practical applications. The key contributions of this research are highlighted in the following section.

• A new hybrid framework combining skeletal-based geometrical features, such as pairwise distances and
joint angles, with deep spatiotemporal features using I3D is presented at the feature level.

• We present an efficient fusion pipeline that implements feature selection using the Pearson Correlation
Coefficient. This helps by reducing dimensionality by keeping the maximal discriminative power.

• Lightweight classifiers (XGBoost, RF, SVM) are chosen for use as ensemble classifiers with majority
voting to balance interpretability and robustness.

• We carry out a comprehensive ablation and comparative analysis of the ArabSign dataset, in which we
sufficiently outperform other methods (F1-score improvement > 7%).

• The model is applicable for inference deployment into edge assistive devices since it works in real time
and is also simple and modular.

In this paper, we propose a practical yet suitable hybrid recognition model for ArSL, which incorporates
classical geometric modelling and deep temporal features into a unified, interpretable, and portable system.
It is not our intention to develop a new neural network; instead, we plan to propose a low-latency, feature-
centric alternative for use in real-world accessibility applications.
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2 Related Work
SLR has been researched extensively in different languages, such as ASL, CSL, and DGS, where visual

and skeleton data have been used to model gestures [20–22]. The skeleton-based approaches in SLR
have described the competency of modelling spatiotemporal dynamics of joint movements using graph
convolutions such as ST-GCN and Pose-GCN. On the visual end, I3D, 3D CNNs, and CNN-RNN hybrids
have been extensively utilized to extract rich motion features from the RGB or optical flow streams [23,24].
Multimodal fusion approaches have also gained prominence in more recent investigations. For example,
references [25] and [26] studied fusing visual and linguistic cues for continuous sign translation. In the
ASL domain, CNN-LSTM and transformer-based architectures have been used to model sign language on a
sentence level. The earlier works testify that combining multiple modalities would give better performance
for recognition. Earlier work on ArSL included finger-spelling recognition with feature vector extraction
using ANFIS and reaching 93.55% accuracy [27], and polynomial classifiers being more accurate than the
ANFIS on the same dataset, but suffered from limited accuracy owing to the fact that the dataset was not
uniformly divided [28].

An enhancement of an Arabic Sign Language (ArSL) recognizer with the addition of a voice translator
is proposed to connect users and non-users of sign language by Hemayed and Hassanien [29]. With
the help of the Prewitt edge detector and PCA algorithm, a recognition accuracy of 97% was achieved.
Misrecognition happened in extreme lighting conditions. In their research, the authors also tracked hand
gesture movements from the detected faces and did this tracking with hidden Markov models (HMM)
with an accuracy greater than 95%. Also, static Arabic sign alphabet recognition was performed using
one-vs.-all Support Vector Machines (SVM) with a histogram of oriented gradients (HOG) descriptors.
Nevertheless, static recognition discovered a gap in non-sent handling, targeting practical uses of sign
alphabets while communicating. In natural dialogues, all signs are dynamic by default [30]. To overcome this
limitation Elons et al. [31] investigated using the Leap Motion sensor to enable dynamic recognition of Arabic
sign language, given that the sensor provides high-fidelity trajectories of hand movements. Their method
provided enhanced awareness using depth-based tracking which greatly improved accuracy compared to
classical image techniques, however, their system was limited by the sensor field of view and sensitivity
to environmental factors. However, static recognition of the Arabic sign alphabet revealed a gap in the
research, as it did not focus on the practical application of the sign alphabet in day to day life. In real-world
conversations, most signs are inherently dynamic.

In general, models for multi-model hand signal recognition are still constrained. Such constraints
include differences in training data, sensitivity to illumination, and poor discrimination in kinetic signs, as
summarized in Table 1. Computer vision has seen significant advancements in recent years, with applications
spanning from sign language recognition to sports analysis, such as recognizing basketball referee signals in
online videos. Žemgulys et al. [32] propose methods to recognize and interpret the gestures of hand signals of
basketball referees during live games, addressing challenges such as varying lighting conditions and diverse
hand orientations to mitigate overfitting and reduce the risk of gesture misrecognition. This was achieved
based on a combination of two image segmentation methods along with attributes of the local binary pattern
(LBP) and HOG. Using a combination of LBP features and SVM data for identification. This method recorded
95.6% as its accuracy rate. Vaitkevičius et al. [33] report that participants used a Leap Motion device to track
their hand and finger movements during gesture execution. Gesture recognition was then performed using
the hidden Markov classification (HMC) algorithm. The coupling of data acquired from the algorithm and
the Leap Motion device depicted the efficiency of the system in gesture recognition. Within the document, a
gesture identification sub-system containing the modules of motion detection, recognition of gestures, and



Comput Model Eng Sci. 2025;144(1) 1117

data harvesting was presented. The paper reported the performance in terms of words per minute (WPM)
as a metric and measured the error rates using minimum string distance (MSD).

Table 1: summary of key Arabic Sign Language (ArSL) recognition methods including datasets, performance metrics
(generally accuracy unless specified otherwise), and associated limitations. Limitations are based on either explicit
statements given in original studies or critical observations made during our comparative analysis. Most previous
literature compares the studies based on accuracy; however, this study primarily reports the performance through
F1-score, as discussed in Section 5

Method Dataset Performance Limitations
Prewitt Edge Detector,

PCA, HMM
Custom 97% Accuracy (PCA),

>95% (HMM)
Sensitive to lighting; limited

real-world applicability
Leap Motion Sensor,

Depth Tracking
Leap Motion-based

dataset
Qualitative

improvement
Limited field of view;

environment-sensitive
Pose-Based
Transformer

KArSL-100 99.74% Accuracy
(SD), 68.2% (SI)

Sharp drop in
signer-independent mode

Deep CNN + Transfer
Learning

Mixed datasets
(40, 23, 10 classes)

98.12%, 100%, 76.67%
(SD); 84.38%, 34.9%,

70% (SI)

Poor generalization; data
scarcity

2DCRNN, 3DCNN 224 videos,
5 individuals

92% (2DCRNN), 99%
(3DCNN)

Small dataset size; low sign
diversity

LBP, HOG +
Segmentation + SVM

Referee gesture
dataset

95.6% Accuracy Not tailored for sign
language; lacks dynamic

gesture support
Leap Motion +HMM Leap Motion-based

gestures
WPM, MSD (not

percentage)
Sensitive to sensor

placement; noise affects
accuracy

Manual and
Non-manual feature

Integration

Small video dataset 73% (20 classes),
80.25% (2 classes)

Accuracy

Low signer diversity; poor
generalization

CNN + BiLSTM with
Attention

ArSL videos and stills 85.60% Accuracy (SI) Moderate accuracy; lacks
robustness across signers

Video
Encoder-Decoder

ArabSign (9335
videos, 6 signers)

0.50 WER Word-level only; limited
signer count

CNN-LSTM +Optical
flow

mArSL (50 classes,
4 signers)

76% overall, 58.9%
(Signer 1, SI)

High preprocessing; Kinect
dependency

2D Body and Hand
Skeletons

80 videos, 40 signers 88.09% Accuracy (SI) Limited dataset; low number
of signs per signer

Polynomial Classifier
vs. ANFIS

ArSL alphabet Outperformed ANFIS Trained on non-uniform
data

ANFIS for ArSL
Alphabet

Static alphabet images 93.55% Accuracy Focused only on static
finger-spelling

Isolated signs, whether static or dynamic, can directly represent spoken words. In continuous sign lan-
guage databases, these signs overlap due to variations in their execution. The head and hands move vertically
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both in manual and non-manual recognition of signs [34]. Previous research on video recognition of manual
and non-manual signs achieved a precision of 73% for 20 sign classes and 80.25% for two sign classes.
Integrating facial expressions with gesture analysis significantly improves sign language comprehension [35].
Fractal-based deformable landmark models have been proposed that provide a geometric approach to 3D
gesture recognition in sign language. The use of CNN in conjunction with LSTM or bidirectional LSTM
(BiLSTM) layers is a widely known technique in the recognition of sign language [36–38]. An attention-
based Arabic Sign Language recognition system on CNN-BiLSTM architecture was able to identify dynamic
sign videos and still images of signs in signer-independent mode with 85.60% accuracy.

Al-Hammadi et al. [39] proposed an efficient deep CNN approach for hand gesture recognition. They
employed transfer learning to beat the scarcity of a large labeled hand gesture dataset. The evaluation was
done using three gesture datasets from color videos: 40, 23, and 10 classes were used from these datasets. The
approach achieved recognition rates of 98.12%, 100%, and 76.67%, respectively, in signer-dependent mode. In
signer-independent mode, the recognition rates were 84.38%, 34.9%, and 70%, respectively, in the data sets.

When analyzing sign language databases, factors such as signer diversity, the number of signers per
sign, and the context of sign depiction within the database must be considered. Another study examined 80
sign videos and sign dynamic videos performed by 40 signers, employing 2D body and hand skeletons. This
study achieved an 88.09% prediction accuracy in signer-independent mode [40]. Boukdir et al. [41] used
the 2D convolutional recurrent neural network (2DCRNN) and 3D convolutional neural network (3DCNN)
and it was reported that these models achieved an accuracy of 92% for 2DCRNN and 99% for 3DCNN.
This approach was trained over a collection of 224 videos of five individuals performing 56 different signs.
Another advancement in the recognition of ArSL is the 3D GS-NET, a model which is able to recognize signs
via RGB videos [42]. The ArabSign dataset was introduced in [4], including six subjects and more than 9335
video samples. They taught a video sign language encoder-decoder model to understand words and achieved
an average WER of 0.50.

Alyami et al. [43] proposed a posture-based transformer model for the KArSL-100 that contains
videos of 100 different categories for communication through gesture recognition purposes. The pose-based
transformer achieved the highest accuracy of 99.74% and 68.2% in signer-dependent and independent
modes, respectively. In a similar work, the mArSL dataset was further expanded, encompassing 6748 videos
of 50 classes performed by 4 signers. This multi-modal dataset includes RGB images, depth images, joints
of the skeleton positions, and facial images of signs and non-signs. This study applied focal-loss based
CNN-LSTM fusion–based Head for LSTM animation units and optical flow, with an overall accuracy
of 76% achieved with relatively poor 58.9% accuracy for signer 1 SGI signer independent mode [44].
These techniques usually require large preprocessing stages, complicated networks, and Kinect sensors.
While several models perform reasonably well on small datasets, excessive reliance on heavy networks and
advanced sensors is not suitable for practical implementations.

Inspired by these advancements, our work proposes a hybrid feature-level fusion framework integrating
hand-crafted geometric features (joint distances and angles) with deep temporal features from I3D. Distinct
from the previous studies focusing either on skeleton-only or vision-only approaches or relying on end-
to-end black-box fusion methods, our method permits an interpretable and sufficiently efficient fusion
at the feature level, which allows us to maintain a good balance among recognition performance, model
transparency, and real-time applicability. Furthermore, while many prior methods require extensive GPU
support and long training time, our ensemble classifier works favorably on a CPU with low inference time
while attaining a high accuracy.

Significant strides in ArSl recognition and interesting work done in developing methods employing
deep learning architectures. However, some challenges remain in the areas of robust model development that
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are less sensitive to noise and variability in signing style, as well as those used for non-manual features, for a
more complete and natural presentation. Therefore, we present a hybrid framework where the models deploy
skeleton-based geometric features and deep learning-based temporal features enhancing their performance
in the real world with robustness and accuracy. The advancement in depth learning is associated with
many works focusing on either skeleton-based recognition or independent consideration of deep temporal
features. To the best of our knowledge, prior works have not attempted skeletal geometry (with distances and
angles) and I3D-based features for ArSL in a unified feature-level fusion framework. Also, unlike previous
methods, our approach utilizes an ensemble of lightweight classifiers that provide better interpretability and
generalization. This unique feature allows our model to have both better accuracy and robustness at a very
low computational cost, applicable for real-time applications.

3 Dataset
Arabic Sign Language (ArSL) is the main channel of visual communication for individuals who are

Deaf and Hard of Hearing (DHH) in Arabic-speaking parts of the world. ArSL, unlike more standardized
sign languages like ASL, recognizes a plethora of regional variations, influences from spoken dialects, and
the fact that there is no formal grammatical standardization. In facilitating ArSL recognition, the ArabSign
dataset has provided a well-curated collection consisting of 9335 video recordings of 50 commonly used
sentence-level signs [45]. Each such sentence is a meaningful complete expression: for instance, “Peace be
upon you,” or “Where are you going?” or “I am hungry.” The expressions included are not isolated words
but full, short sentences that have frequently been used in real-life contexts. The dataset provides RGB video
streams and skeletal joint coordinates corresponding to each signer. Six different native signers were used
to perform each sentence multiple times to provide variation in articulation and style. Each video has been
pre-segmented to consist of one sentence-level gesture, therefore making the task a fixed-class classification
problem. While this study is confined to the 50 classes, it is to be used as a base for vocabulary extension
in the near future. Translating unseen sentences is beyond this paper’s scope and will be explored in future
work on continuous sign language recognition and sentence composition. Fig. 2 shows the two modalities
provided for each sentence sample in the dataset.

Figure 2: An Illustrative Example from the ArabSign Dataset for the two modalities provided for each sentence sample:
(a) Color (b) Skeleton joint points [45]

4 Proposed Methodology
We propose a multi-modal feature fusion ensemble classification-based approach for Arabic Sign

Language (ArSL) recognition through the combination of skeletal and video-based features, followed by
ensemble classification. Fig. 3 shows the flow diagram of the proposed method. The first modality considers
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skeleton data from which we have extracted pairwise geometric features, such as distances and angles
between joints, to represent structural motion patterns to be classified. The second modality exploits
the video domain, and we customized Inflated 3D ConvNet (I3D) to extract deep temporal features to
capture gesture dynamics. In this work, “customized I3D” refers to considering only the RGB stream,
which has been adjusted for input resolution and video length with respect to the ArabSign dataset, and
extracting intermediate features just prior to final classification. These adjustments thus repurpose I3D into
a spatiotemporal feature encoder for fusion with skeleton features without the added side effect of changing
anything about the architecture itself. The features pulled out from the two modalities are concatenated,
and Feature selection was performed through the Pearson Correlation Coefficient (PCC) on removing those
with an absolute correlation value greater than 0.9. The features represented as such have been considered
redundant and removed. This threshold was chosen through empirical analysis to balance dimensionality
reduction with information retention. The final feature vector retained the most informative uncorrelated
features for classification. This feature vector is then fed into three classifiers that include XGBoost, Random
Forest, and Support Vector Machine. A majority voting ensemble classifier is then used that takes the output
of these three classifiers as input and provides a final decision. The proposed method takes advantage of
spatial accuracy from skeletal data and rich motion representation from video-based features, so it fuses both
modalities for better recognition. Integrating the two modalities increases the robustness against gesture
variability, occlusions, and environmental noise, thus improving the classification performance.

Figure 3: Multi-modal approach for ARSL using skeletel and temporal deep features

4.1 Preprocessing
Gesture recognition in videos is done by providing raw skeleton data in a machine-readable format.

The dataset is in the form of .mat files, where each file corresponds to a single video. The files contain
3-dimensional coordinates (X, Y, Z) corresponding to 25 joints of the skeleton at every frame. To enable
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advanced analysis, the .mat files are transformed into nicely formatted CSV files, each row of which
represents a single frame with the skeleton configuration expressed as a structured vector.

Let a video V be composed of F frames, where each frame contains the 3D coordinates of J = 25 joints.
We represent a video V as:

V = {F1 , F2, . . . , FF}, (1)

where each frame Ff contains a set of 3D coordinates:

Ff = {(x j , y j , z j) ∣ j = 1, 2, . . . , J}. (2)

Each frame f can be represented as a vector in R
3J space:

S f = [x1 , y1 , z1 , x2, y2, z2, . . . , xJ , yJ , zJ] ∈ R3J . (3)

By stacking all frame vectors, we obtain a video matrix representation:

MV =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S1
S2
⋮

SF

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ RF×3J . (4)

Each row of the matrix corresponds to a frame Ff , and each column represents a joint coordinate
(x j , y j , z j). The matrix MV is stored as a CSV file, ensuring structured and reproducible processing.

This formalization lays out how raw skeletal data in .mat files is transformed into a structured numeric
representation MV , ensuring compatibility with subsequent feature extraction methods, clarifying and
standardizing the process, and most importantly, reproducibility and further analysis.

Skeleton Estimation for Unseen Videos: While the ArabSign dataset offers pre-annotated 3D skeletal
joint data for each frame, in a real scene or in the case of unseen videos, such skeletal data would require
estimation. Our method retains compatibility with most popular pose estimation models like OpenPose,
MediaPipe, or Azure Kinect software development kit (SDK) to obtain 2D joint or 3D joint coordinates from
an RGB video input. After obtaining these joint coordinates, they could be directly fed into our geometric
feature extraction pipeline (pairwise distances and joint angles). Thereby, allowing our method to be executed
in real-time as well as new video inputs without altering its underlying structure.

4.2 Feature Extraction
4.2.1 Geometric Feature Extraction and Description Using Framewise Skeleton Data

We obtain geometric features in the form of pairwise joint distances and angles to provide a represen-
tation of hand and body movements by obtaining the skeletal data. These properties assist with modeling
the spatio-temporal structure of gestures for accurate classification. This ensures efficient recognition while
keeping the geometric aspect simple enough for use in real-time applications. After preprocessing, we aim
to transform the raw skeleton data into meaningful features that can effectively represent the sign language
gestures. The first step in this process involves analyzing the spatial relationships between the joints of the
body. The dataset provides 3D coordinates (X , Y , Z) for J = 25 distinct joints, representing key points of the
human body.
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Pairwise Joint Distances: To capture the relative positioning of these joints, we calculate the Euclidean
distance between every distinct pair of joints separately for each frame. Since there are J = 25 joints, this
results in a total of:

D = J(J − 1)
2

= 25 × 24
2

= 300 (5)

unique joint pair distances per frame.
The Euclidean distance between two joints i and j at any given frame f is computed as:

d f
i j =
√
(x f

i − x f
j )2 + (y f

i − y f
j )2 + (z f

i − z f
j )2 (6)

where x f
i , y f

i , z f
i and x f

j , y f
j , z f

j denote the 3D coordinates of joints i and j at frame f , respectively.
For a video consisting of F frames, the pairwise joint distance feature matrix is represented as:

DV =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d 1
12 d 1

13 . . . d 1
J−1, J

d2
12 d2

13 . . . d2
J−1, J

⋮ ⋮ ⋱ ⋮
dF

12 dF
13 . . . dF

J−1, J

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ RF×D . (7)

Joint Angle Representation: Pairwise joint distances are computed separately for each frame, along with
the angles between connected joints. These angles describe how different body parts (e.g., arms, hands,
shoulders) bend and orient, providing details about the movement dynamics.

The angle θ f
i jk between three adjacent joints i , j, and k at frame f is computed as:

θ f
i jk = atan2(y f

j − y f
i , x f

j − x f
i ) − atan2(y f

k − y f
j , x f

k − x f
j ), (8)

where atan2 is the four-quadrant inverse tangent function, which calculates the angle between the x-axis and
the line connecting two points. This captures the bending of joints, playing an important role in identifying
different postures in sign language [46].

The joint-angle feature matrix for a video V is defined as:

θV =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

θ 1
1 θ 1

2 . . . θ 1
K

θ2
1 θ2

2 . . . θ2
K

⋮ ⋮ ⋱ ⋮
θF

1 θF
2 . . . θF

K

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∈ RF×K , (9)

where K is the total number of joint angles computed per frame.
Temporal Feature Aggregation: To obtain a compact representation of the video, we perform average

pooling across all frames for each distance and angle:

d̄i j =
1
F

F
∑
f=1

d f
i j , ∀(i , j), (10)

θ̄ i jk =
1
F

F
∑
f=1

θ f
i jk , ∀(i , j, k). (11)
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This results in the final feature vectors:

D̄ = [d̄12 , d̄13 , . . . , d̄J−1, J] ∈ RD , (12)

θ̄ = [θ̄1 , θ̄2, . . . , θ̄K] ∈ RK . (13)

Thus, each video is represented by a single feature vector:

FV = [D̄, Θ̄] ∈ RD+K . (14)

This pooling process aggregates frame-level features into a single representative vector for the entire
video, effectively capturing both spatial relationships and temporal dynamics within the skeleton motion.

Although the average pooling of geometric features over frames is static to represent the videos. It
follows since each video is a single, isolated ArSL sentence. Therefore, aggregating gives a complete picture
of the geometric footprint for the given gesture, minus the ambiguity caused by unrelated motion. Very
importantly, I3D-based spatio-temporal features from the RGB stream keep temporal dynamics, allowing
our framework to capture both movement and structure.

4.2.2 Spatio-Temporal Feature Extraction Using Video Sequences
Sign language involves complex and nuanced hand movements, facial expressions, and body postures

that convey meaning. To effectively encapsulate these visual patterns, we use the Inflated 3D (I3D) archi-
tecture, a deep learning model specifically designed for spatiotemporal data. Specifically, this work makes
use of RGB videos, where each video presents one instance of a sign sentence in ArSL. The I3D model is an
architecture that processes dynamic input clips and is pre-trained on a large-scale action recognition dataset,
and can utilize 3D convolutional kernels to encode the temporal relationship between adjacent frames. This
is an important capability for the model to understand the meaning of sign language gestures, as the model
needs to understand motion across time [18].

Let V be a sign language video consisting of T frames:

V = {F1 , F2, . . . , FT} (15)

where Ft represents the feature extracted from frame t. To extract meaningful spatiotemporal representa-
tions, I3D processes V and extracts optical flow features:

Ot = I3D(Ft) (16)

where Ot is the optical flow representation for frame t. To obtain a fixed-size feature representation, we apply
mean pooling:

Fmean =
1
T

T
∑
t=1

Ot (17)

where Fmean is the aggregated feature vector that represents the motion dynamics of the video.
Our approach combines two complementary sources of information: dynamic motion patterns captured

through optical flow features extracted using I3D, and spatial body configurations derived from 3D skeleton
data, including distances and angles between joints. Optical flow features effectively represent the motion
patterns and time-dependent behavior of gestures. Body pose features provide formation that expresses the
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structural relations and spatial configuration of body joints during a performance of the sign language. Our
framework aims to achieve superior recognition in terms of accuracy and robustness compared to methods
relying solely on one type of feature.

Once the optical flow and body pose features are extracted, the two modalities are combined at
the feature level. The feature-level combination takes advantage of the complementary strengths of the
two modalities, including the temporal dynamics of the gestures using optical flow as well as the spatial
arrangement of the signer’s movement using body pose. The new aggregate representation provides a
complete picture of the sign language performance, allowing for a richer interpretation of the signer’s action.
We used Pearson Correlation Coefficient (PCC) to remove compute the correlation between features and
removed the highly correlated features in order to reduce the size of the feature vector. In our framework, the
ensemble classifier comprises XGBoost, RF, and SVM. These classifiers were chosen because they represent
great diversity and good interpretability. They also give good performance results on reduced feature sets
after the Pearson correlation filtering process. There were considerations for other ensemble models, such
as LightGBM and neural classifiers like BiLSTM and transformer-based classifiers, during the exploratory
experiments. However, they did not make it into the final ensemble on account of their greater computational
complexity and minimal improvement in performance when compared to the current ensemble, which
would be more suited for implementing scenarios with real-time or low-resource deployment capabilities.
In addition, the temporal features are already captured through the I3D module, which reduces the need for
sequence modeling at the classification stage.

Before combining, both I3D and skeleton characteristics were normalized using min-max scaling to
ensure a common value range. Temporal information was consolidated into fixed-length feature vectors for
each modality using average pooling across frames. These normalized vectors were then concatenated and
used as a consistent feature representation in the ensemble classification stage.

We performed feature selection based on Pearson Correlation Coefficient (PCC) to reduce redundancy
in features and improve the classification efficiency for the concatenated feature vectors. Features with
absolute values of PCC greater than 0.9 were assumed to be highly correlated and hence, discarded. The
selection of this threshold was based on empirical considerations to obtain a balance between reducing the
dimensionality and maintaining recognition performance. The 0.9 cutoff consistently accepted the most
discriminative features while rejecting close to 21% of redundant features, and thus, reduced the overall
computational complexity without a proportional loss in accuracy. This strategy guarantees that the final
feature vector carries maximum information content with a bare minimum of redundancy thereby improving
model performance and interpretability.

4.3 Classification
For classification, we used an ensemble approach utilizing XGBoost, Random Forests, and Support

Vector Machine as base classifiers. The rationale behind our design philosophy lies with the real-time
performance, interpretability, and generalized robustness sought by a hybrid system. While deep neural
networks, such as the BiLSTM or transformers, may be very expressive, their requirements in terms of the
amount of training data, memory, as well as available computational resources, are usually far greater than
others. On the other hand, our proposed hybrid system adopts deep learning through the I3D architecture for
extracting temporal features. The choice was then made to select lightweight classifiers that would suit real-
time deployment scenarios, more so if the environments in consideration are less resourceful. The ensemble
structure brings another layer of reliability through majority voting, where the different models cast votes
for the prediction.
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The comprehensive feature vector with their respective sign language sentences as labels is passed to
three classifiers, including XGBoost, Random Forest (RF) and Support Vector Machine (SVM). Each model
provides its own prediction, and the final recognition result is achieved by combining the outputs of the
three models, for example, by majority voting or weighted averaging. This ensemble approach improves
classification strength and accuracy by overcoming the weaknesses of each classifier individually and
leveraging their combined strengths, resulting in better performance on the challenging task of sign language
recognition. The output of these classifiers is then combined using a majority voting ensemble classifier to get
the final output label. This multimodal data fusion approach significantly enhances recognition performance
by effectively modeling the variability in poses and gestures that arise due to differences in signer styles,
speeds, and contexts. The proposed approach demonstrates the ability to predict all combinations of different
poses and gestures accurately by unifying information from temporal dynamics and spatial relationships.

5 Experiment Results and Analysis
We performed multiple experiments by varying approaches on skeleton data as well as RGB videos

and compared the performance of all these experiments. The performance of the proposed framework
was analyzed using the following metrics: accuracy, precision, recall, and F1-score. We also measured
computational time to evaluate the feasibility of the framework for real-time gesture recognition applications.
A K-fold cross-validation method was employed for validation where the value of K = 10. The data was split
into ten equal partitions, where each partition was taken in turn to be the test set while the remaining folds
were used for training. Stratified sampling held the full class distribution in each fold to maintain equity
and consistency. This stratification was important to preserve the balance of the dataset across iterations,
preventing distortions from uneven representation of classes. This k-fold cross-validation made sure that
the whole dataset was used for training and testing, just in different runs. This strategy ensured a thorough
assessment of the framework’s effectiveness on different data segments, thereby improving its reliability and
applicability to novel data.

The framework combines three approaches of gesture recognition, which are Maximum based approach,
I3D based approach, and the multi-model framework. Data pre-processing, feature extraction, and clas-
sification algorithms all varied depending on the methodology to maximize recognition performance. In
the skeleton-based approach, human joint positions were taken from a video sequence. These vectors
encapsulated spatial relationships and were used for XGBoost classification. The I3D-Based Approach,
on the other hand, utilizes sequences of optical flow that were extracted from video data containing a
spatial-temporal flow of features using the I3D model.

For the skeleton data, we performed experiments on three feature types: (i) pairwise joint distances
calculated over all frames, (ii) pairwise joint angles extracted over all frames, and (iii) combined features with
both distances and angles. For effective capture of temporal patterns, each feature representation was pooled
using four different pooling methods: sum, average, minimum, and maximum. Each pooling method’s
performance was rigorously tested. Similarly, we investigated RGB-based and optical flow-based features
derived through the I3D architecture. Individual experiments were carried out with RGB features and optical
flow features in isolation, and results were derived using the same four pooling methods (sum, average, min,
max) for the sake of consistency and a fair comparison. Averaged results for all the experiments mentioned
above are shown in Table 2.

An ablation study was done measuring performance loss caused by different levels of adjustment to the
threshold used in PCC-based feature reduction, as shown in Fig. 4. It presents the recognition performances
(F1-score and accuracy) against the thresholds (0.8–0.95) and the percentage of features retained. Results
indicate that aggressive thresholds (e.g., threshold = 0.8) can hurt accuracy mildly, while the threshold of
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0.9 appeared to achieve the best compromise, with about 21% of features being eliminated, but with the
highest F1-score (0.97) still being maintained. This is evidence of the effectiveness of our correlation-based
pruning strategy.

Table 2: Results achieved from ablation study by varying different experimental settings

Exp# Method Min (F1) Max (F1) Sum (F1) Avg (F1)
1 ArSL Recognition using

Pairwise Joint Distances
0.70 0.75 0.78 0.81

2 ArSL Recognition using
Pairwise Joint Angles

0.68 0.76 0.77 0.82

3 ArSL Recognition using Fused
Distances and Angles

0.77 0.82 0.84 0.92

4 ArSL Recognition using
Framewise RGB Features

0.71 0.73 0.79 0.80

5 ArSL Recognition using
Optical Flow Features

0.74 0.81 0.85 0.87

6 ArSL Recognition using Fused
RGB and Flow Features

0.80 0.83 0.88 0.91

7 ArSL Recognition using
Hybrid Approach (Geometric

and Optical Flow)

0.88 0.90 0.94 0.96

8 ArSL Recognition using
Hybrid Approach (Geometric
and Optical Flow) With PCC

for Feature Selection

0.88 0.91 0.95 0.97

Figure 4: Effect of Pearson Correlation Coefficient (PCC) threshold on feature selection and Arabic Sign Language
recognition performance

These features were mean-pooled to retain temporal information and then classified with XGBoost.
Next, we combine the body pose features of the Skeleton-Based Approach with the spatiotemporal features
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from the I3D-Based Approach into a comprehensive feature vector in the Multi-model framework. This
integrated feature vector, comprising 102 features, was then classified using the XGBoost algorithm to
leverage the strengths of both spatial and temporal information. Experiments were performed using a private
desktop computer with Intel(R) Core(TM) i5-8265U CPU 1.60 GHz (up to 1.80 GHz with turbo boost),
and 8.00 GB RAM. For efficient processing and reproducibility, the scikit-learn library was used for the
implementation and configuration of the classifiers.

The experimental outcome of skeleton data-based ArSL recognition shows the robustness of the system
with an average accuracy, precision, and recall of 91%, and an F1-score of 93%. Certain classes, including 13, 19,
36, and 49, experienced outstanding results with accuracy and F1-scores above 97%. Low accuracies (less than
85%) were exhibited in some classes (1, 8, 12, 33, and 39), which was probably because of overlapping motion
patterns or due to the representation of the data. Fig. 5 and Table 3 visualize its performance to evaluate
the model’s fine-grained performance level. The results provide a view of how well the model generalizes
over diverse signs while pinpointing its merits and demerits of specifying classes. Such a detailed analysis is
important for understanding areas where the model is doing well and those that may need improving.

Figure 5: A skeleton utilizing geometric features such as pairwise joint distances and angles encoded from 3D pose data
obtains class wise F1-scores. This figure shows the recognition performance of the model when only relying on structural
features derived from skeleton data, disregarding motion or optical flow information. Due to the high number of classes
(50 sign sentences), the results were divided into four subplots for clarity: (a) F1-scores for Classes 1–13, (b) F1-scores for
Classes 14–26, (c) F1-scores for Classes 27–39, and (d) F1-scores for Classes 40–50. Such a segmented display enhances
readability and illustrates fine-grained performance trends across classes under the skeleton-alone model. These results
are then used as a benchmark to compare across temporal features (Fig. 6) and the proposed hybrid framework (Fig. 7)
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Table 3: Experimental results using skeleton data for recognition of ArSL

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
1 0.73 0.88 0.73 0.80 30 11 4 1780
2 0.94 0.90 0.94 0.95 36 0 4 1785
3 0.85 0.89 0.85 0.92 33 6 0 1786
4 0.94 0.89 0.94 0.92 34 2 4 1785
5 0.95 0.93 0.95 0.95 39 2 2 1782
6 0.94 0.95 0.94 0.96 34 2 1 1788
7 0.93 0.89 0.93 0.94 40 0 5 1780
8 0.80 0.82 0.80 0.81 32 8 7 1778
9 0.94 0.80 0.94 0.87 33 2 8 1782
10 0.94 0.95 0.94 0.96 34 2 1 1788
11 0.90 0.83 0.90 0.90 30 1 6 1788
12 0.81 0.90 0.81 0.88 34 8 1 1782
13 0.97 0.94 0.97 0.97 30 1 1 1793
14 0.94 0.86 0.94 0.93 32 0 5 1788
15 0.92 0.90 0.92 0.93 35 1 4 1785
16 0.94 0.91 0.94 0.94 32 1 3 1789
17 0.89 0.90 0.89 0.92 35 2 4 1784
18 0.86 0.89 0.86 0.87 31 5 4 1785
19 0.97 0.95 0.97 0.96 35 1 2 1787
20 0.91 0.97 0.91 0.96 32 3 0 1790
21 0.89 0.94 0.89 0.94 31 4 0 1790
22 0.97 0.92 0.97 0.95 35 1 3 1786
23 0.86 0.89 0.86 0.89 32 4 4 1785
24 0.92 0.90 0.92 0.93 33 3 2 1787
25 0.94 0.92 0.94 0.93 34 2 3 1786
26 0.94 0.88 0.94 0.94 36 0 5 1784
27 0.95 0.91 0.95 0.94 41 1 4 1779
28 0.88 0.96 0.88 0.93 42 6 0 1777
29 0.86 0.89 0.86 0.91 31 5 1 1788
30 0.89 0.90 0.89 0.91 32 4 2 1787
31 0.89 0.95 0.89 0.94 32 4 0 1789
32 0.92 0.92 0.92 0.94 33 3 1 1788
33 0.81 0.85 0.81 0.83 29 7 5 1784
34 0.97 0.94 0.97 0.96 34 1 2 1788
35 0.92 0.90 0.92 0.94 34 2 2 1787
36 0.97 0.90 0.97 0.95 35 1 3 1786
37 0.92 0.95 0.92 0.96 33 3 0 1789
38 0.94 0.94 0.94 0.94 34 2 2 1787
39 0.81 0.92 0.81 0.87 29 7 2 1787
40 0.94 0.97 0.94 0.96 34 2 1 1788
41 0.89 0.89 0.89 0.89 32 4 4 1785

(Continued)
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Table 3 (continued)

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
42 0.92 0.94 0.92 0.93 33 3 2 1787
43 0.94 0.95 0.94 0.96 34 2 1 1788
44 0.92 0.90 0.92 0.93 35 1 4 1785
45 0.94 0.97 0.94 0.97 34 2 0 1789
46 0.92 0.95 0.92 0.96 33 3 0 1789
47 0.89 0.94 0.89 0.91 32 4 2 1787
48 0.94 0.95 0.94 0.96 34 2 1 1788
49 0.97 0.97 0.97 0.99 35 1 0 1789
50 0.92 0.92 0.92 0.94 33 3 1 1788

Average 0.91 0.91 0.91 0.92

Misclassification analysis revealed low false negatives for most classes, indicating that true gestures
were rarely missed. However, higher false positives in classes like 8 and 9 suggested confusion with similar
gestures. Precision and recall remained consistent across most classes, with some variation highlighting areas
for refinement. High F1-scores across the majority of classes underscore the system’s potential for applications
in education and accessibility for individuals with hearing impairments.

For lower-performing classes, improvements such as advanced feature engineering, hybrid approaches,
or integrating additional modalities like RGB or depth data may enhance performance. Testing in real-time
and diverse environments would further validate and expand the system’s applicability. Overall, the results
confirm the system’s effectiveness and provide a foundation for future enhancements.

The recognition results based on I3D optical flow features are available in Fig. 6 and Table 4. These
insights offer a comparative perspective on the standalone temporal model vs. the hybrid model. With an
F1 score of 87%, the system attained an average accuracy, precision, and recall of 85%. Classes 6, 36, and 48
demonstrated strong recognition performance, achieving accuracy and F1-scores exceeding 90%.

Figure 6: (Continued)
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Figure 6: Class-wise percentages of F1 scores obtained using the optical flow features extracted through the I3D
(Inflated 3D ConvNet) architecture. The figure thus shows the recognition performance with respect to temporal
motion dynamics captured solely from RGB videos neglecting skeletal geometry features. Due to the total of 50 sign
sentence classes, results were divided into four subplots for readability: (a) F1-scores for Classes 1–13, (b) F1-scores for
Classes 14–26, (c) F1-scores for Classes 27–39, and (d) F1-scores for Classes 40–50. This accordingly facilitates the visual
representation of individual class performance under purely temporal feature settings. The results are then further used
for comparison against the skeletal based model (Fig. 5) and the hybrid fusion (Fig. 7)

Table 4: Experimental results using optical flow features (I3D) for recognition of ArSL

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
1 0.68 0.78 0.68 0.75 29 12 7 1784
2 0.83 0.83 0.83 0.86 30 6 4 1792
3 0.85 0.84 0.85 0.88 36 3 7 1786
4 0.83 0.92 0.83 0.88 30 6 2 1794
5 0.90 0.84 0.90 0.87 37 4 7 1784
6 0.94 0.90 0.94 0.93 34 2 3 1793
7 0.90 0.85 0.90 0.90 39 2 7 1784
8 0.85 0.84 0.85 0.86 35 5 6 1786
9 0.74 0.76 0.74 0.75 26 9 8 1789
10 0.83 0.87 0.83 0.87 30 6 3 1793
11 0.83 0.73 0.83 0.80 32 4 12 1784
12 0.76 0.83 0.76 0.85 32 10 1 1789
13 0.71 0.72 0.71 0.77 25 6 9 1792
14 0.75 0.75 0.75 0.81 24 8 3 1797
15 0.89 0.84 0.89 0.86 32 4 6 1790
16 0.91 0.84 0.91 0.90 32 1 6 1793
17 0.73 0.79 0.73 0.76 27 10 7 1788
18 0.89 0.85 0.89 0.91 35 1 6 1790
19 0.83 0.91 0.83 0.89 31 5 3 1793
20 0.88 0.83 0.88 0.87 30 3 6 1793
21 0.91 0.83 0.91 0.88 33 2 7 1790
22 0.72 0.82 0.72 0.78 26 10 5 1791
23 0.86 0.86 0.86 0.86 31 5 5 1791
24 0.86 0.84 0.86 0.85 31 5 6 1790

(Continued)
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Table 4 (continued)

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
25 0.89 0.79 0.89 0.85 33 3 9 1787
26 0.92 0.87 0.92 0.91 34 2 5 1791
27 0.89 0.85 0.89 0.88 42 4 7 1779
28 0.88 0.87 0.88 0.90 42 6 3 1781
29 0.89 0.92 0.89 0.91 32 4 2 1794
30 0.78 0.85 0.78 0.84 29 8 3 1792
31 0.86 0.82 0.86 0.85 32 4 7 1789
32 0.89 0.91 0.89 0.90 32 4 3 1793
33 0.86 0.84 0.86 0.85 31 5 6 1790
34 0.86 0.87 0.86 0.88 30 5 3 1794
35 0.86 0.89 0.86 0.87 31 5 4 1792
36 0.94 0.92 0.94 0.93 34 2 3 1793
37 0.86 0.92 0.86 0.90 31 5 2 1794
38 0.83 0.92 0.83 0.88 30 6 2 1794
39 0.86 0.83 0.86 0.88 33 3 6 1790
40 0.86 0.89 0.86 0.87 31 5 4 1792
41 0.92 0.90 0.92 0.93 33 3 2 1794
42 0.83 0.79 0.83 0.85 29 6 4 1793
43 0.81 0.88 0.81 0.84 29 7 4 1792
44 0.91 0.89 0.91 0.93 32 3 2 1795
45 0.92 0.89 0.92 0.90 33 3 4 1792
46 0.86 0.89 0.86 0.89 32 4 4 1792
47 0.86 0.94 0.86 0.91 31 5 1 1795
48 0.94 0.92 0.94 0.94 34 2 2 1794
49 0.86 0.79 0.86 0.86 34 2 9 1787
50 0.89 0.89 0.89 0.89 32 4 4 1792

Average 0.85 0.85 0.85 0.87

In contrast, classes 1, 9, and 22 exhibited lower performance, with accuracies below 75%. These
disparities in performance may be attributed to factors such as overlapping gesture patterns or limitations
in the training data for these specific classes. The system attained an average of 85% accuracy, precision,
and recall, with 87% F1-score. 339 patterns were found common to most classes, based on true positives
(TPs), false negatives (FNs), and false positives (FPs) analysis. Classes with high false positives like 9 and 13
experienced high misclassification that reduced the precision. Likewise, high false negatives for some classes,
22 and 17 among them, affected recall. It exhibited well-balanced precision against recall, proving robust
performance despite these challenges.

The findings indicate that some classes may benefit from the inclusion of other features, or data
modalities to improve recognition. In future work, we could look at hybrid methods, or more complex deep
learning methods for improving robustness, and real time applicability, particularly for complex gestures.
In general, the results underscore both the system’s effectiveness and its capacity for scalable applications in
accessibility and education.
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The hybrid framework for ArSL recognition demonstrates in Fig. 7 and Table 5 consistently high
performance across all 50 classes, achieving an average accuracy, precision, recall, and F1-score of 0.97. These
results highlight the effectiveness of the proposed approach. Notably, individual class results reveal that most
classes exhibit accuracies exceeding 0.95, with many achieving values of 0.99 or higher, demonstrating the
capability of the framework to classify a diverse range of sign-language gestures accurately. Values for all
classes of precision and recall are proportionately high, similar to how we typically fall between 0.95 and 1.00,
meaning there are very few false positives and false negatives, respectively. The mean scores of 0.97 for the
F1 score show a successful balance between precision and recall.

Figure 7: Class wise F1-scores, derived from the hybrid framework proposed, which integrates geometric features (joint
distances and angles) in the form of skeleton data and deep temporal features extracted using the I3D model. This
multimodal feature fusion exploits both structural and motion cues, aiming at recognition improvement. Results are
distributed into four subplots to maintain visual clarity over the 50-class sign vocabulary: (a) F1-scores for Classes
1–13, (b) F1-scores for Classes 14–26, (c) F1-scores for Classes 27–39, and (d) F1-scores for Classes 40–50. This figure
indicates the superiority of this hybrid model for all sign classes, subsequently furthers a comprehensive comparison
with unimodal baselines seen in Figs. 5 and 6

Table 5: Experimental results using hybrid framework for recognition of ArSL

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
1 0.91 0.95 0.91 0.93 37 3 2 1777
2 0.98 0.97 0.98 0.97 35 0 1 1783
3 0.95 0.97 0.95 0.96 36 2 1 1780
4 0.99 0.97 0.99 0.98 35 0 1 1784
5 0.99 0.96 0.99 0.97 40 0 1 1778
6 0.99 0.98 0.99 0.98 35 0 0 1784

(Continued)
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Table 5 (continued)

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
7 0.99 0.96 0.99 0.98 39 0 1 1779
8 0.95 0.98 0.95 0.96 37 2 0 1780
9 0.98 0.96 0.98 0.97 34 0 1 1784
10 0.96 0.97 0.96 0.97 34 1 1 1783
11 0.98 0.98 0.98 0.98 30 0 0 1789
12 0.95 0.97 0.95 0.96 39 2 1 1777
13 0.99 0.96 0.99 0.97 30 0 1 1788
14 0.95 0.97 0.95 0.96 30 1 1 1788
15 0.96 0.97 0.96 0.97 34 1 1 1784
16 0.98 0.97 0.98 0.98 32 0 0 1787
17 0.93 0.95 0.93 0.94 34 2 1 1782
18 0.96 0.94 0.96 0.95 34 1 2 1782
19 0.96 0.96 0.96 0.96 34 1 1 1783
20 0.97 0.97 0.97 0.97 32 1 1 1786
21 0.97 0.97 0.97 0.97 33 1 1 1784
22 0.97 0.98 0.97 0.97 34 1 0 1784
23 0.99 0.96 0.99 0.97 35 0 1 1783
24 0.97 0.98 0.97 0.98 34 1 0 1784
25 0.99 0.97 0.99 0.98 35 0 1 1783
26 0.97 0.96 0.97 0.96 35 1 1 1783
27 0.96 0.97 0.96 0.97 40 1 1 1777
28 0.98 0.97 0.98 0.97 47 0 1 1771
29 0.98 0.98 0.98 0.98 35 0 0 1784
30 0.92 0.97 0.92 0.95 33 2 0 1784
31 0.98 0.99 0.98 0.98 35 0 0 1784
32 0.97 0.98 0.97 0.97 35 1 0 1784
33 0.95 0.95 0.95 0.95 34 1 1 1783
34 0.99 0.98 0.99 0.98 34 0 0 1785
35 0.97 0.97 0.97 0.97 35 1 1 1784
36 0.99 0.98 0.99 0.98 35 0 0 1784
37 0.97 0.99 0.97 0.98 34 1 0 1784
38 0.97 1.00 0.97 0.98 35 1 0 1784
39 0.97 0.99 0.97 0.98 34 1 0 1784
40 0.99 0.98 0.99 0.99 35 0 0 1784
41 0.99 0.98 0.99 0.98 35 0 0 1784
42 0.98 0.99 0.98 0.99 34 0 0 1785
43 0.98 0.99 0.98 0.98 35 0 0 1784
44 0.98 0.97 0.98 0.98 34 0 0 1785
45 0.99 0.99 0.99 0.99 35 0 0 1784
46 0.98 0.96 0.98 0.97 35 0 1 1783
47 0.98 0.99 0.98 0.98 35 0 0 1784

(Continued)
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Table 5 (continued)

Classes Acc. Pre. Rec. F1 TPs FNs FPs TNs
48 0.99 0.99 0.99 0.99 35 0 0 1784
49 0.99 0.98 0.99 0.98 35 0 0 1784
50 0.99 0.99 0.99 0.99 35 0 0 1784

Average 0.97 0.97 0.97 0.97

The true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN) are also
better in this light. The TP values are high for most classes, which justifies the proposed approach in
precisely classifying the target gestures. Similarly, small FN and FP counts (zero in many cases) point to a
strong misclassification reduction capability of the framework. The TN values are consistently high, further
emphasizing the framework’s ability to correctly classify non-target gestures.

This indicates that the hybrid framework is highly accurate and reliable for the recognition of ArSL
with very low error rates for all classes. Moreover, the excellent performance over a large number of
gestures not only proves its scalable but also demonstrates its potential for practical application in gestures
recognition systems.

The performance of our hybrid model is depicted in Table 5. These representations combine skeletal and
temporal features, with almost all the classes showing huge improvements, verified further against previous
methodologies in Table 6, respectively.

Table 6: Summary of Arabic Sign Language (ArSL) recognition methods and their reported performance on respective
datasets. Note: These comparisons are provided for contextual understanding. Due to differences in datasets, class
definitions, signer variability, and metrics, these results are not directly comparable

Study Methodology Dataset Accuracy
Abdul et al. [47] CNN-LSTM KSArSL 85.60%
Sidig et al. [48] CNN-LSTM KArSL-150 43.62% SI

Suliman et al. [49] KNN KArSL-100 58% SI
Aly et al. [50] CSOM, BiLSTMs KSArSL 89.59% SI

Proposed Hybrid (Skeleton + I3D),
Ensemble classifier

ArSL (6 signers,
50 sentences)

97.20%

An analysis was performed to show the benefits of an ensemble classifier by comparing it with the
individual models. With the same fused feature set, XGBoost produced an average F1-score of 95.5%, Random
Forest produced 94.7%, and SVM produced 93.9%. In contrast, the ensemble classifier registered a higher
F1-score of 97.0%, thereby reflecting a gain of 1.5% over the best individual classifier (XGBoost). Such a gain
provides an indication of improved generalization and a mitigation of the limitations posed by individual
models in cases of classes that share overlapping or ambiguous gestures.

5.1 Discussion
The bar graph shown in Fig. 8 shows the average F1-scores achieved by ArSL recognition from

I3D-Flow features, skeleton Features, and a hybrid Framework. A gradual performance increase is observed
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as more feature types are combined. The I3D-Flow features, while effectively capturing temporal and
motion-based information, achieved an average F1-score of 86.8%. Notably, skeleton features alone surpassed
this performance, reaching an average F1-score of 92.6% per gesture, suggesting that the structurally
representative dynamics of hand and body movements have a much better discrimination power for the sign
language gestures.

Figure 8: Comaprison of hybird framework with skeleton data approach and optical flow featues (I3D) approach

As a result, with the fusion of I3D-Flow and skeleton features, the hybrid framework achieved the highest
performance, a mean F1-score of 97.3%. This substantial improvement demonstrates the complementary
nature of the combined features, as the Hybrid Framework effectively leverages both motion and structural
information for robust sign language recognition. The results underscore the significance of multi-modal
feature fusion in achieving superior accuracy and reliability in complex gesture recognition tasks. This fusion
approach not only enhances classification performance but also demonstrates the potential for real-world
applicability in sign language translation systems.

One important thing to keep in mind is that while our primary focus is on Arabic Sign Language (ArSL),
the design of our skeleton and temporal deep feature based multimodal fusion model is generally applicable
to different varieties of sign languages. The challenges that our model addresses, gesture variability, occlusion,
and differences in the characteristics of signers, are common to all sign language systems. Thus, the proposed
framework will serve as a basis for adapting other languages with minimal modifications, and this cross
linguistic extension remains an active focus of our research going forward.

Table 6 illustrates different methods for Arabic Sign Language (ArSL) recognition, showing the better
performance of our Hybrid (Skeleton+ I3D) XGBoost method. Conventional methods, such as CNN-LSTM,
yielded mixed results with accuracy between 43.62% and 85.60%, being unable to handle dataset changes and
signer independence. KNN, at 58% accuracy, did not have temporal modeling, whereas Convolutional Self-
Organizing Map with Bidirectional Long Short-Term Memory (CSOM-BiLSTMs) enhanced performance to
89.59% but did not use multimodal data.
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Most sign language recognition systems use the CNN-LSTM or BiLSTM architecture, but they often fail
to perform well in either signer independent or low-resource conditions. Our hybrid model, which combines
deep I3D-based features with a lightweight ensemble classifier, is better generalized and more robust for
deployment in real settings. While Table 6 covers an overview of reported performances in various studies,
methods differ in dataset and experimental protocols, which calls for doing this comparison in the realm of
context-building advancement in ArSL recognition.

Our proposed method far surpasses all existing methods, with 97.20% accuracy on an ArSL dataset of
six signers and fifty sentences. By combining skeleton-based joint features with I3D motion features and
applying XGBoost with ten-fold cross-validation, our method improves spatial and temporal perception. In
contrast to existing methods, it effectively addresses signer variability, enhances robustness in classification,
and is more scalable for practical use. This sets our model as a new standard for ArSL recognition with higher
accuracy and generalization.

As illustrated in Table 6, the existing traditional CNN, LSTM and KNN methods only achieve a fair
performance level, which falls in a range from 43.6% to 85.6%, especially under signer independence
conditions. Whereas, the hybridization method could significantly improve the gain up to an accuracy
value of 97.2% on the ArabSign dataset. This improvement indicates the impressive power of multimodal
feature fusion as well as ensemble classification in trying to overcome gesture complexity and signer
variability effects.

Despite the ArabSign dataset encompassing pertinent sentence-level information with synchronized
RGB and skeletal modalities, it is afflicted by the limitation of only six unique signers. Such restricted
diversity in signers might hinder the generalization of the models to user populations characterized by
larger variations in physical traits, signing styles, and articulation speeds. Our stratified 10-fold cross-
validation with multimodal feature fusion would reduce the impact of overfitting and allow for some degree
of robustness against variability in signers. Therefore, performance on signers who have not been trained
could emerge as an important consideration. In the future, validation frameworks will need to explore more
diverse and larger-scale ArSL datasets to include a higher number of signers from varied demographic
backgrounds to further test the scalability and signer independence of the model within real-life scenarios.

5.2 Time and Performance Analysis: Hybrid Framework vs. Skeleton Approach vs. Flow Feature Approach
The bar graph in Fig. 9 compares three methods for Arabic Sign Language Recognition in terms

of inference time and F1-score, showing the trade-offs between computational efficiency and recognition
performance. The skeleton-based method has the shortest inference time of 0.5 seconds, which makes it
suitable for real-time applications while maintaining a high F1-score of 0.92, indicating reliable accuracy.
Instead, the I3D-based method requires a whopping 1.2 s to perform an inference, more than twice what
is needed for the skeleton-based method, and still yields a slightly lower F1-score of 0.87, revealing that
more complex spatiotemporal features are not of benefit in any way. Although the hybrid framework incurs
a maximum inference time of 1.5 s, it yields the highest F1-score of 0.97, proving its high accuracy and
robustness in sign language gesture recognition. The result suggests that a multi-technique or multi-modal
hybrid combination can effectively deliver the best recognition performance at the expense of processing
speed. Lastly, results have been observed in the nature of the trade-off between efficiency and accuracy;
that is, skeleton-based is perfect for applications requiring rapid results, and hybrid is well-suited when the
emphasis of the application is towards accuracy.
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Figure 9: Time and Performance Analysis: skeleton based method vs. I3D based method vs. proposed hybrid
framework (Unit Time is Second)

Proposed systems are designed to be modular and adaptable. The skeleton-only approach performs well
with virtually no latency in real-time applications and will not use GPU acceleration. It is a little slower than
hybrid models but achieves state-of-the-art recognition accuracy, which is best suited for high-precision
offline applications. Such flexibility allows the systems to be configured and deployed according to the
different hardware platforms.

5.3 Comparison with Existing Methods on the ArabSign Dataset
In conducting a comprehensive and principled evaluation, we make a sincere attempt at a head-to-

head comparison involving our proposed hybrid approach and some previously reported ones tested on
the ArabSign dataset. A notable mention is the encoder-decoder system reported in [47], which obtained
the word error rate of 0.50 on this dataset. However, the said authors basically focused on sentence-level
translation without coming out to report standard classification measures F1-score or accuracy. Whereas
our model achieved an F1-score of 97.3% using a 10-fold cross-validation strategy that respects signer
independence conditions, markedly improving recognition accuracy and reliability. Also, while the methods
reported in literature often traffic in complex encoder-decoder architectures or require heavy GPU usage, our
method achieves high performance using a lightweight ensemble classifier tuned for real-time deployment.
To our knowledge, no other recent methods have reported per-class or aggregated F1-scores over the entire
50-class sentence-level ArSL dataset. We encourage future benchmarking on ArabSign to more uniformly
validate and compare methods under controlled experimental settings.

6 Conclusion and Future Directions
A major challenge for Arabic Sign Language (ArSL) recognition is the lack of large annotated datasets,

restricting the training of generalizable models. Moreover, the accuracy of recognition is also affected by
gesture variability, occlusions, and environmental noise. Finally, such gaps stifle the creation of strong,
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generalizable models in various real-world environments. To tackle these issues, we introduce an ensemble
approach that combines pairwise joint distances and angles from 3D skeletal data with optical flow informa-
tion. This method achieves complementarity between skeleton-based temporal features, focusing on detailed
appearance and motion information, and deep learning-based temporal features, learning holistic gesture
features through the use of higher-level insights. Finally, we used XGBoost for classification, which reduces
model training time by modeling feature interactions well. We find that our model surpasses the performance
of models relying only on subsets of features, such as single feature-based models, where our model achieves
a 97.3% average F1 score on the ArabSign dataset. It shows that our method is new as it fills the gap between
research-oriented methods and practical methods that can be used on the ground for real solutions. Our
model achieves robust recognition through a real-time fusion of multiple feature types, handling occlusions,
background noise, and inter- and intra-sign variability. Although our ensemble method performs well, many
aspects could be subject to further research. This could greatly alleviate the burden of communication in
various situations that require assistive support, where ArSL recognition deployment in edge devices or
mobile applications would enable users to communicate assertively and in real-time. And, scaling the system
to offer additional gestures and regional dialects of sign language at the same time can make it more useful
for a wider audience. Moreover, self-supervised or few-shot learning approaches are open to investigation
to minimize reliance on larger annotated datasets, potentially enhancing model generalizability with little
labeled data. With these progressions, our work can foster scalable, efficient, and real-time ArSL recognition
systems and improve communication accessibility for the Deaf and Hard of Hearing (DHH) community.
Although the work being reported was performed on ArSL, the suggested hybrid framework is, by nature,
language agnostic and can be adapted to other SLs such as ASL, CSL, and DGS, provided similar RGB and
skeleton data are available. In the subsequent step, we plan to evaluate our model on common datasets for
ASL and CSL and thereby assess its generalizability with respect to possible differential linguistic and cultural
variations in the sign language itself. Our framework for isolated sign recognition is paving the road to
continuous ArSL understanding. Owing to its modularity, it can easily be extended to sequence modeling
with temporal segmentation and context-aware decoding. Full hybrid model inference time is around 1.5 s,
but skeleton-based human-ML-world hybrid frameworks, requiring only 0.5 s for inference, can be made
real-time with flexibility in accuracy-speed trade-off.

In terms of ethical constructs, in the future, the deployment of sign language recognition systems should
guarantee stringent controls on data privacy. This includes the collection of video or skeletal motion data
from real users. The recognition system should also include signers with physical disabilities and those who
use signs that are regionally different. This will ensure the inclusivity and equity in the training and evaluation
of such technologies, thereby justifying the responsible and fair consumption of such technologies.
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