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ABSTRACT: This paper introduces a novel optimization approach called Recuperated Seed Search Optimization
(RSSO), designed to address challenges in solving mechanical engineering design problems. Many optimization
techniques struggle with slow convergence and suboptimal solutions due to complex, nonlinear natures. The Sperm
Swarm Optimization (SSO) algorithm, which mimics the sperm’s movement to reach an egg, is one such technique. To
improve SSO, researchers combined it with three strategies: opposition-based learning (OBL), Cauchy mutation (CM),
and position clamping. OBL introduces diversity to SSO by exploring opposite solutions, speeding up convergence.
CM enhances both exploration and exploitation capabilities throughout the optimization process. This combined
approach, RSSO, has been rigorously tested on standard benchmark functions, real-world engineering problems,
and through statistical analysis (Wilcoxon test). The results demonstrate that RSSO significantly outperforms other
optimization algorithms, achieving faster convergence and better solutions. The paper details the RSSO algorithm,
discusses its implementation, and presents comparative results that validate its effectiveness in solving complex
engineering design challenges.
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1 Introduction

Nature-inspired algorithms have gained significant popularity among researchers and scientists for
addressing a wide range of challenges in engineering fields, including medical image processing, signal
processing, cloud computing, feature selection, deep learning, text mining, photovoltaic models, and urban
planning [1]. These algorithms are categorized into swarm intelligence (SI), physics-based, and evolutionary
algorithms (EA). Notably, swarm-based optimization algorithms are renowned for their ability to mimic the
social behaviour of organisms found in nature [2,3].

Swarm-based optimization algorithms excel in solving real-world optimization problems due to several
key characteristics: (i) The search process mimics natural phenomena, which are inherently random. This
randomness enables swarm-based optimization algorithms to avoid getting trapped in local optima; (ii) these
algorithms, also known as population-based optimization, explore all potential solutions by updating the
positions of individuals within the search space to achieve the global optimal solution. Notable swarm-based
optimization algorithms include the particle swarm optimizer (PSO) [4], arithmetic optimization algorithm
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(AOA) [5], ant lion optimizer (ALO) [6], dragonfly algorithm (DA) [7], grey wolf optimization (GWO)
[8], moth-flame optimization (MFO) [9], multi-verse optimization (MVO) [10], salp swarm algorithm
(SSA) [11], rabbits optimization algorithm (ROA) [12] and sine cosine algorithm (SCA) [11]. Sperm swarm
optimization, a novel approach proposed by Shehadeh et al. [13], emulates the movement of sperm or seed
during fertilization.

In recent years, researchers have been focused on developing innovative methods to enhance the
performance of swarm-based optimization algorithms. These mechanisms include the hybridization of two
algorithms, the incorporation of an opposition-based concept, the addition of various mutation strategies,
and the application of weightage during position updating. For example, Wang et al. [14] improved kill herd
optimization by integrating OBL and heavy-tailed CM to boost the convergence rate of the basic kill herd.
Kumari et al. [15] enhanced the chimp optimization algorithm by incorporating elements from the spotted
hyena optimizer, aiming to improve both the exploration and exploitation phases of the optimization process.
Kaucic et al. [16] tackled the limitations of basic optimization techniques for high-dimensional problems by
combining the level-based learning swarm optimizer (LLSO) with PSO. Alruwais et al. [17] hybridized the
moth flame optimization (MFO) with deep learning concepts for automatic fabric inspection. Zhou et al. [18]
refined the slime mould algorithm (SMA) by incorporating mutation and neighborhood search strategies,
enhancing both exploration and exploitation capabilities, especially for complex combinatorial functions.
Yu et al. [19] integrated grey wolf optimization (GWO) and differential evolution (DE) to improve UAV
path planning. Vashishtha and Kumar [20] utilized AO to determine the optimal filter length for minimum
entropy deconvolution (MED), a technique used to diagnose bearing defects in Francis turbines. Chauhan
etal. [21] explored various mutation strategies within a diversity-driven multi-parent evolutionary algorithm
to address area coverage issues in wireless sensor networks. Wang et al. [22] enhanced the Golden Jackal
Optimization algorithm with multi-strategy mixing, incorporating chaotic initialization, dynamic inertia
weight, and Gaussian mutation. It outperforms existing methods on benchmark functions and industrial
problems, effectively balancing exploration and exploitation, avoiding local optima, and demonstrating high
robustness and applicability for complex real-world optimization challenges.

Swarm-based optimization algorithms offer numerous advantages, yet no single algorithm can effi-
ciently and effectively solve all optimization problems. This notion is supported by the no-free-lunch (NFL)
theorem, which underscores the importance of developing innovative and unique algorithms for different
optimization challenges. This insight has inspired a modification to the existing sperm swarm optimization
(SSO), which mimics the movement of sperm toward fertilizing an egg. While the basic SSO is adept at
handling a range of optimization problems, it does face limitations, such as slow convergence and a tendency
to get trapped in local optima when addressing high-dimensional problems. To tackle these issues, OBL and
CM strategies have been integrated into the basic SSO. The OBL enhances the diversity of SSO solutions
by generating a new solution that is the opposite of the current one, thereby accelerating convergence.
Meanwhile, the CM strategy balances the exploration and exploitation search capabilities.

The quality of solutions and the convergence rate of the basic SSO were improved by competitively
incorporating the benefits of OBL and CM operators throughout the exploratory phase. The innovations of
this study are summarized as follows:

1. The basic SSO was refined using OBL and CM strategies to boost its performance. This enhanced
algorithm is called recuperated seed swarm optimization (RSSO).

2. The fundamental SSO was enhanced through the application of OBL and CM strategies to improve its
performance. This upgraded algorithm is known as recuperated seed swarm optimization (RSSO).
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3. To demonstrate its effectiveness, RSSO was compared with other popular optimization algorithms
developed in recent years. This comparison highlights RSSO’s advantages and showcases its potential to
outperform existing methods.

The rest of this paper is organized as follows. Section 2 provides the background information for
this research. Section 3 describes the proposed RSSO-based optimization algorithm. Section 4 presents
experimental results, analysis, and discussion. Section 6 summarizes the key conclusions and findings of
this study.

2 Background

2.1 Sperm Swarm Optimization (SSO)

Shehadeh et al. [13] introduced the SSO algorithm, inspired by the natural process of sperm fertilization.
This algorithm mimics the journey of sperm as they move from the cooler cervix to the warmer fallopian
tubes in search of the egg. In this optimization model, the ‘sperm’ or ‘seed” seeks the ‘egg’ or ‘ovum’
within an optimal environment. Numerous seeds, or solutions, exist within the search space, but only
one successfully fertilizes an egg, becoming the winner or global solution. However, this optimization
faces certain limitations, such as the seeds not having a low pH level during fertilization. Therefore, it is
recommended to maintain a pH value between 7 and 14 to ensure an alkaline and non-toxic environment
for ovulation. This concept is represented by Eq. (1).

Vini = DF x Vseed X loglO (ph_rl) (1)

where the parameter DF represents the damping factor of velocity which is randomly generated in the range
of [0, 1], the parameter v,,.4 is the velocity of the seed. And, the parameter ph_r; indicates the pH value in
the range of 7 to 14.

The algorithm keeps track of the best solution found thus far, which is represented by the position of
the most successful ‘seed’ To identify the best seed, the algorithm constantly compares the current position
of the best seed with its previously recorded position of the best seed. Thus, the current position replaces the
previous position if the latest seed provides a superior solution to that of the last seed. The solution of the
best seed can be obtained by Eq. (2).

Scp =10g, (ph_r2) x log,, (T_r) x (S5~ Sc) )

where the parameter Sp indicates the best solution, ph_r; is the pH value of the visited area in the range of
7 to 14. Whereas the parameter T_r; randomly generated between 35.1 to 38.5 indicating the temperature of
the visited area. The global best solution obtained from the seed can be computed using Eq. (3).

Sg =log, (ph_r3) xlog,, (T_r2) x (Sez = Sc) (3)

where the parameter Sgp represents the global best solution obtained by the seed. The parameter ph_r;
indicates the pH value of the visited area generated in the range of 7 to 14 and the T_r, indicates the
temperature of the visited area generated in the range of 35.1 to 38.5. The S¢ represents the current solution
of the seed which can be calculated through Eq. (4).

SC = SC + Vseed (4)
where the velocity of the seed is represented by v,,.4 that can be obtained by Eq. (5).

Vseed = Vini T SCB + SG (5)
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2.2 Cauchy Mutation (CM) Strategy

The algorithm uses a mathematical technique called Cauchy mutation to introduce randomness into the
search process. Cauchy mutation is a type of probability distribution that depends on two factors: location
(x) and scaling (t) [23,24]. These factors determine the shape of the Cauchy distribution, which is defined
by the following density function: f (x).

t
2 + x?

f(x):%( ),—oo<x<oo (6)

where the parameter ¢ > 0 is a scaling parameter. Whereas, Cauchy distribution function F; (x) is defined as:
1 1 x

Fi(x) ==+ —arctan(—) (7)
2 7 t

The CM operator increases the probability of not being trapped in a local optimum solution and
overcomes premature convergence problems by performing small controlled steps in the search space. The
solution of the Cauchy distributed random number C (x) is computed by Eq. (7), whereas the mutation in
the proposed methodology is performed through Eq. (8).

XM= X+ C(x) x AXIH! (8)
where AX!*! is the step vector.

2.3 Opposition-Based Learning (OBL)

Every optimization algorithm starts by randomly choosing a starting point for the solution. The
positions of the individual elements within the algorithm are then updated based on their ‘intelligence’
(meaning their ability to improve the overall solution). This means that the initial guess significantly affects
the time required by the algorithm to find a solution. To improve the speed and efficiency, the algorithm can
explore both the initial guess and its opposite. This implies calculating the solution based on the initial guess
and then calculating the solution based on the opposite of that guess. A better solution of these two is then
used to start the optimization process, which leads to faster convergence. This process of exploring both the
initial guess and its opposite is repeated throughout the optimization process. Eq. (9) outlines the specific
method used for initializing the solution within the algorithm.

Xinp,j =X+ x —x(i=1,2,...,NP;j=1,2,...,D), )

where NP is the population size and D is the dimension of the search space.

3 Proposed Algorithm

The concept of OBL and CM has been incorporated in the basic SSO to develop RSSO whose pseudo-
code is given in Algorithm 1. Along with the OBL and CM, the weighting factor has also been introduced
while computing the current solution. The proposed algorithm is accomplished through the following steps
which are also shown in Fig. 1.

Step 1. Initialization

The population is the RSSO has been initialized randomly through Eq. (10).

Xij= XP"" 4 (XP¥+ X7)5 (= 1,2,...,NP; j=1,2,..., D) (10)
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where X;; is the initial population having an upper bound X*** and lower bound X;?””, respectively. The
parameter r;; is uniformly and randomly distributed number between [0, 1].

Step 2. Incorporating the OBL

The opposite solution has also been explored to improve the diversity in the population which increases
the convergence rate. This step can be attained through Eq. (9).

Step 3. Position clamping in RSSO

The velocity of the “seed” (representing a potential solution) is crucial in finding the optimal solution
within the RSSO algorithm, as outlined in Algorithm 1. To enhance the algorithm’s exploration capabilities, a
weighting factor has been introduced. The current position of the seed (S¢) is updated using Eq. (11) within
the RSSO framework.

Sc =S¢ x 0.3+ Vspeq x 0.7 (11)

Step 4. Utilizing the CM operator

Finding the optimal solution in any optimization algorithm requires a delicate balance between
exploration (searching for new areas of the solution space) and exploitation (refining existing solutions). An
effective balance helps to speed up the convergence process and prevents the algorithm from getting stuck
in suboptimal solutions (local optima). The Cauchy Mutation (CM) operator has been incorporated into the
algorithm to address this balance. Eq. (8) demonstrates how CM is implemented to achieve this balance.

/ InitiaIiZTtion /

Fitness Evaluation

]

Perform opposition-based
learning

4

Update the position of SSO

Implement the Cauchy
mutation operator

termination
criterion

met?

Yes

Output

Figure 1: Proposed RSSO algorithm
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Algorithm 1: Proposed algorithm
Inputs: The population size (NP), maximum number of iterations (T), UB, LB.
Outputs: Optimum fitness value and the position of destination point
Step 1. Initialize the population randomly within search space
Step 2. Apply opposition best learning
Step 3. Evaluate fitness function for each search agent obtained from S2
Step 4. Sort the best fitness values from step 3 and obtained best NP members

While

Step 5. For i = 1: NP

Step 6. Evaluate fitness function for each swarm
If Obtained fitness > best solution of the seed
Assign the current value as the best solution of the seed
end If

end For

Step 7. Assign the global best solution depends on the winner
Step 8. For i = 1: NP
Perform the velocity update rule update the position of the seed on the problem search space using Eq. (11)
end for

Step 9. Generate Cauchy mutation using Eq. (7).
Step 10. Perform Cauchy mutation using Eq. (8).
Step1l. t =1t + 1.
Step 12. End While
Step 13. Return X’

4 Results and Discussion
4.1 Classical Benchmark Functions

Three sets of classical benchmark functions viz., unimodal, multi-modal, and fixed-dimensional multi-
modal have been used to evaluate the RSSO’s performance. Applying the one best global solution of each
approach to the unimodal benchmark functions FI-F7 improves their capabilities. Alternatively, optimizers
can test their algorithms’ diversification capabilities using fixed-dimension multi-modal benchmark func-
tions F14-F23 and multimodal benchmark functions F8-F13. Tables 1-3 present the definitions of the three
types of benchmark functions.

Table 1: Function definition for unimodal benchmark functions

No. Type Function Dimension = Range Fiin
F1 US F(x)=Y2,x? 30 [-100, 100] 0
F2 UN F(x) = Y0, x| + [T, x| 30 [-10, 10] 0
F3 UN F(x) =22 (S %) 30 [-100, 100] 0
F4 US F (x) = max; {|x|,1<i< D} 30 [-100, 100] 0
F5  UN  F(x)= X' [100 (xi1 - x2)" + (x - 1] 30 [-30, 30] 0
F6 US F(x) =32, (|x +0.5])° 30 [-100, 100] 0

(Continued)
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Table 1 (continued)

No. Type Function Dimension  Range Fiin
F7 [N F(x) = 221 ix! + random[0, 1] 30 [-1.28,1.28] 0
Note: Where, US is uni-modal separable and UN represents uni-modal non-separable.
Table 2: Function definition for multi-modal benchmark functions
No. Type Function Dimension Range Finin
F§ MS F(x)=-Y2, (xi sin |xi|) 10 [-500,500] —418.9829 * D
F9 MS F(x) =10D + Y12, (x} — 10 cos (2x;) ) 30 [-5.12, 5.12] 0

FI0 MN F(x) = —20exp (—0.2\ /L3P, xf) - 30 [-32, 32] 0

exp (% Y2 cos (2nxi)) +20+e

FIl MN  F(x)=1/4000 X2, - [T2, cos ( %) +1 30 [-600, 600] 0
F(x) = & {10sin* (ny,) + £ (v, - 1)

FI2 MN [1+10sin? (ny,,,)] + (vp _1)2} 30 [-50, 50] 0
+ 3P u(x;,10,100,4),

wherey, =1+ *H,and u (x;,a,k, m) =

k(xi—a)";x >a

0;-a<x;<a

k(-x; — a)m ;X < —a
F(x) = 0.1 {sm2 (3mx;) + Y2, (x - 1)°
[1+sin? (3mxi1) | + (xp — 1) [1 + sin? 30 [-50, 50] 0
(2mxp)]} + X2, u (xi, 5,100, 4)

F13 MN

Note: Where, MS is multi-modal separable and MN represents multi-modal non-separable.

Table 3: Function definition for fixed dimension multi-modal benchmark functions

No. Type Function Dimension = Range Fiin
Fl4 MS  F(x)= [1/500 + 35 %] 2 [-65.536,  0.998004
R (ime) 65.536]
i a(b b)) 1
F15 MN F (X) = Zi:l [a,- - m] 4 [_5, 5 0.0003075
F16 MN F(x)= 2 [-5,5] -1.0316285
dx} - 2.1x] +1/3x) + x1x5 — 4x3 + 4x)
FI7  MN  F(x)=(x-2tx2+3x-6)"+ 2 [-5, 5] 0.398

10 (1 - é) cosx; + 10
F(x)=[1+(x; +x,+1)" (19 - 14,
+3x2 —14x; + 3x% — 14x, + 6x1%
12 1 1 2 ) 1X2 ) (-2,2] 3
+3x2)] x [30 + (2% - 3x2)2 x (18
~32x; +12x} + 48x; — 36x1x; + 27x3 ) |

F18 MN

(Continued)
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Table 3 (continued)

No. Type Function Dimension = Range Fiin
FI9 MN F(x) = 3 [-5, 5] ~3.862782
2
- s cresp[- Sl ai (v - py) ]
F20 MN F(x) = 6 [-5, 5] 332236
2
-Shicexp[- X5 ai; (x- piy)’]
F21 MN F (x) = 4 [-5, 5] -10.1532
_ 1-1
- ZL »(x —a;)(x- a,-)T +Ci
F22  MN F(x)= 4 [-5, 5] ~10.4029
- 1-1
- 217':1 _(x —a;)(x- a,-)T +¢i
F23  MN F(x) = 4 [-5,5] ~10.5364
- 1-1
- z}‘il »(x —a;)(x- a,-)T + i

Note: Where, MS is multi-modal separable and MN represents multi-modal non-separable.

The results obtained by RSSO at benchmark functions have been compared with well-known algorithms
of recent times.

4.2 Parametric Settings

The research was conducted using MATLAB 2019b software on a specific computer with the following
specifications: processor: AMD Ryzen 5 4600 with Radeon graphics 3.00 GHz, RAM: 8.00 GB and operating
system: 64-bit Windows 11. For all the algorithms tested, the population size was set to 30 and the maximum
number of iterations was set to 1000. The specific settings for each algorithm are summarized in Table 4.

Table 4: Parameter settings of different optimization algorithms

Algorithm Parameter Value
DF random
ph_n random
RSSO ph_nr, random
ph_r; random
T n random
T 1, random
8] random
1) random
AOA 13 random
o 5
u 0.499
a min(allvariblesatlthitemtion)
ALO b max(allvariblesatlthiteration)
I 10" (1)

(Continued)
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Table 4 (continued)
Algorithm Parameter Value
s 2 * random * mc
a 2 * random*mc
DA c 2 * random * mc
f 2% random
e mc
mc 01-1x% (ﬂ)
(3)
GWO convergenceparameter (a) Linearreduction from2to0
MEO Convergenceconstant (a) [-2-1]
spiral factor () 1
8] random
MVO ) random
13 random
p 6
c 2 % e‘(%’)z
SSA Ca random
c3 random
a 2
8] a-1 (%)
SCA o) 2% % random
T3 2 % random
T4 random

4.3 Quantitative Analysis of RSSO

The proposed RSSO algorithm was compared against other recently developed optimization algorithms
using standard benchmark functions. The comparison focused on the average and standard deviation of the
results, which are presented in a Table 5.

Table 5: Results of RSSO at classical benchmark functions

Functions Parameter AOA ALO DA GWO MFO MVO SCA SSA SSO RSSO

£l Average 3.73E-64 7.03E-06 1478.518 1.13E-16 1666.667 0.285773 0.333526 1.29E-08 1.73E-197 0
Std 2.04E-63 6.22E-06 766.2623 4.96E-17 3790.49 0.095841 1.714933 3.65E-09 0 0

F2 Average 0 35.34462 13.55902 5.39E-08 40.33356 0.43547 3.96E-05 1.114872 2.64E-120 0
Std 0 46.88196 5.043681 1.84E-08 24.70265 0.13303 7.20E-05 1.260599 7.30E-120 0

F3 Average 0.002365 1151.9 15356.97 443.0136 16766.67 46.24936 4044.797 368.6763 8.19E-92 0
Std 0.00881 666.1661 10095.45 188.0379 11242.6 18.8267 3880.241 254.8877 2.15E-91 0

F4 Average 0.021292 11.55389 23.06015 1.104124 66.64077 1.086291 18.0148 8.17505 8.38E-73  2.866E-319
Std 0.019539 3.317957 6.965639 1.064798 8.528802 0.554548 9.687705 3.482576 3.75E-72 0

F5 Average 28.25658 172.1007 147484.5 54.16325 3517.504 170.2001 92095.15 109.1053 28.341713 28.582865
Std 0.406265 392.8285 142560.8 68.85537 16368.69 200.7955 374414.4 164.4389 0.52367199  0.37061133

F6 Average 2.80945 1.06E-05 1120.928 0 1656.709 0.31324 0.363056 1.27E-08 5.1365183 6.1008991
Std 0.233264 9.56E-06 509.9442 0 3767.988 0.070063 0.128503 2.79E-09  0.19066466 0.23019444

(Continued)
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Table 5 (continued)

Functions Parameter AOA ALO DA GWO MFO MVO SCA SSA SSO RSSO
F7 Average 4.86E-05 0.09513 0.016716 0.057969 1.63063 0.018222 0.031431 0.096089 3.44E-05 2.18E-05
Std 4.52E-05 0.035386 0.013431 0.024491 2.99583 0.00738 0.028207 0.032296 2.64E-05 1.66E-05
Fs8 Average —3202.86 —2413.53 —5754.17 —1587.84 —3140.14 —3025.94 —2324.05 —2883.38  —5815.8841 -5839.7256
Std 240.9948 496.7874 591.5846 300.7621 347.8142 290.339 202.7524 311.6512 75.940633  92.768738
F9 Average 0 80.45882 162.1103 25.37144 161.282 106.9613 17.15178 5717687 0 0
Std 0 25.80236 38.31689 5.746865 43.39013 32.2269 22.96072 22.52042 0 0
F10 Average 8.88E-16 1.973304 9.232492 8.40E-09 14.00294 1.283419 13.96645 2.165787 1.07E-15 8.88E-16
Std 2.01E-31 0.611315 1.44599 2.20E-09 7.950571 0.728616 8.91743 0.895879 7.94E-16 0
Fl1 Average 0.101451 0.01314 12.75532 9.167486 15.07443 0.550285 0.29508 0.006158 0 0
Std 0.079528 0.014247 6.049923 5.613008 53.42284 0.110778 0.275885 0.006458 0 0
Fl2 Average 0.390268 11.79996 337.437 0.147818 0.842388 1.671162 100.5139 6.031526 0.59370526  0.83335773
Std 0.05154 3.893738 1274.537 0.190267 1.086202 1.03551 528.101 3.243773 0.061096459 0.080747258
F13 Average 2.775434 3.566452 60001.51 0.039062 0.686478 0.057376 107.5754 2.688221 2.5764391 2.7841001
Std 0.105293 11.30312 157203.5 0.163974 1.111076 0.033767 475.3857 8.903576 0.10194472  0.04152751
Fl4 Average 9.305394 1.428617 0.998004 3.920338 1.691591 0.998004 1.655152 1.031138 3.6534025  4.0440541
Std 3.82843 0.564551 6.39E-08 2.721899 1.165462 6.78E-16 1.87623 0.181484 3.1813031 3.5201559
Fl5 Average 0.010175 0.004013 0.00371 0.002483 0.001622 0.003847 0.000862 0.001416 0.000551011 0.000595998
Std 0.022732 0.007439 0.005836 0.00146 0.003566 0.007011 0.000335 0.003584  0.000278742 0.000148682
Fl6 Average -1.03163 —1.03163 —1.03163 —-1.03163 —1.03163 —-1.03163 —-1.0316 —1.03163 —1.031427 —1.031552
Std 9.32E-08 0 3.66E-06 0 0 1.04E-07 3.03E-05 0 0.000135908 6.11E-05
F17 Average 0.405421 0.397887 0.397895 0.397887 0.397887 0.397888 0.399022 0.397887 0.39936786  0.6827929
Std 0.005929 1.69E-16 3.56E-05 1.69E-16 1.69E-16 2.06E-07 0.001427 1.69E-16 0.003070781 0.000027446
F18 Average 10.0868 3 3.000007 3 3 3.000001 3.000021 3 3 3
Std 11.95653 0 2.24E-05 0 0 7.04E-07 3.49E-05 0 0 0
F19 Average —3.85342 —3.86278 -3.8627 —3.86278 —3.86252 —3.86278 —3.85498 -3.86278  —3.7299897 —3.7483059
Std 0.002905 1.36E-15 0.000138 1.36E-15 0.001439 3.97E-07 0.001994 1.36E-15 0.072521232 0.077402915
F20 Average —3.09355 -3.27839 —3.24973 —3.322 —3.2341 —3.25042 —2.91013 —3.22916 —2.4727819  —2.532164
Std 0.085726 0.058284 0.077816 2.26E-15 0.060746 0.059439 0.377887 0.052154 0.35304148  0.29383272
a1 Average —3.74402 —6.53424 —7.35707 —5.59336 —6.14456 —7.46314 —2.82024 —8.13991 -3.1786562  -10.1523
Std 0.788914 2.932695 2.673835 3.575389 3.448257 3.023758 1.808205 2.980425 0.70870283  0.001507
F22 Average —4.0787 —7.66281 —8.67404 -10.27 —8.42414 —9.16675 —3.43843 —10.2271 —3.015563 -10.4018
Std 1.044784 3.22496 2.679209 0.728055 3.141982 2.278944 2.01902 0.962918 0.60410782  0.001336
F23 Average —3.96481 —7.02753 —8.36917 —10.4662 —7.89781 —9.40438 —4.84152 —8.96732  —3.0950104 -10.5341
Std 1.469116 3.438882 2.905126 0.384508 3.584177 2.618164 2.075541 3.192975 0.71336859  0.005092

Note: The bold text is showing the best values obtained by the optimization algorithm.

4.4 Statistical Analysis of Proposed Optimization RSSO

While no direct comparison of RSSO with other optimization algorithms has been published indepen-
dently, the study conducted 30 independent runs of RSSO and compared its performance (in terms of average
and standard deviation) to other algorithms. To rule out the possibility that the superior performance of
RSSO was simply due to chance, a statistical test called the Wilcoxon rank-sum test was performed. Table 6
summarizes the p-values obtained from this test for each benchmark function. A p-value less than 0.05
indicates strong support for the hypothesis that RSSO is significantly better than the other algorithms. Since
RSSO cannot be compared to itself, “N/A” (Not Applicable) is used in these cases.

Table 6: Statistical results obtained by Wilcoxon rank sum test in terms of p value

Functions AOA ALO DA GWO MFO MVO SCA SSA $SO RSSO
F1 450 x 107" 450 x 107" 3.02x 107" 3.02x 107 2,98 x 107" 3.02x 107" 3.02x 1071 3.02x 107 3.02 x 107! NaN
F2 120 x 1072 121x 1072 121x 1072 1.21x 107 1201x 107 121x 1072 1.21x 1072 1.21x 1072 121 x 1072 NaN
F3 334x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02 x 107 NaN
F4 334x 107" 3.02x 107" 3.02x 107 3.02x 107 3.02x 107" 3.02x 107 3.02x 107 3.02x 107 3.02 x 107! NaN

(Continued)
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Table 6 (continued)

Functions AOA ALO DA GWO MFO MVO SCA SSA $SO RSSO
F5 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107 3.02x 107" 3.02x 1071 3.02x 107 3.02x 107! NaN
F6 121x 1072 121x 1077 121 x 1072 NaN 120 x 1072 1.21x 107 121x 107 121x 1072 1.21x 107 1.21 x 107"
F7 0.032651  3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107" 3.02x 107 NaN
F8 3.02x 107" 2,99 x 107" 3.02x 107 3.02x 107 299 x 107" 3.02x 107" 3.02x 10710 3.02x 1071 3.02 x 107! NaN
F9 NaN 121x 107 121x 1072 120 x 10?2  1.21x 1072 121x 107 121x 107 121x 1072 117 x 10712 NaN
F10 NaN 121x 1077 121x 1072 121x 1072 1.21x 1072 1.21x 107 121x 107 120 x 107* 119 x 107"? NaN
F11 121x 1072 121x 1072 121x 1072 1.21x 1072 121x 107 121x 107  121x 1072 1.21x 107" NaN NaN
F12 3.02x 107" 3.02x 107" 3.02x 107" 0379036 3.02x 107 3.02x 107" 3.02x 107" 3.02 x 107" 0.003501 0.003501
F13 3.02x 107" 498 x 107! 3.02 x 107! NaN 3.02x 107" 3.02x 107" 3.02x 107 0.662682 0.662572  4.98 x 107!
Fl4 8.41x 107 0.000132 0333711  4.57 x 1072 0.00031 NaN 450 x 1072 0.333711 0.022124 0.021561
F15 720 x 107 652 x 107 3.69 x 107" 3.02x 107" 732 x 107" 1.09x 107 133 x 107'°  6.07 x 107! NaN NaN
F16 239 x 1072 NaN 1.24 x 1077 NaN NaN 3.71x 107 121 x 10712 NaN 1.21x 1072 121 x 1072
F17 1.21 x 10712 NaN 1.27 x 107 NaN NaN 4.48 x 1072 121 x 1072 NaN 121x 1072 1.21x 10712
F18 0.002787 NaN 1.27 x 107% NaN NaN 570 x 107" 1.21 x 1072 NaN NaN NaN
F19 1.21 x 10712 NaN 4.57 x 1072 NaN 0.333711 1.67 x 107 1.21 x 10712 NaN 1.21x 1072 121 x 1072
F20 1.21 x 107" 0.000313  4.57 x 107"? NaN 292x107%  121x 1072 1.21x 1072 585x 107 479 x 107 1.21x 107"
F21 3.02x 107" 0.075837  2.87 x 107 0.074498 0.183369 0.147367  3.02x 107" 0.024255 0.001489 NaN
F22 3.02x 107 0.372965 0.001679  4.56 x 107" 0.006661 0.003938  3.02x 107" 456 x 107" 3.81x 107 NaN
F23 3.02 x 107" 0.660515  8.19 x 1077 4,56 x 107! 0.072549 0.000168  3.02x 107" 3.81x 107  0.006675 NaN

Note: The bold text is showing the best values obtained by the optimization algorithm.

4.5 Qualitative Analysis of the RSSO

Using convergence analysis and box plots, the suggested RSSO has been qualitatively analyzed. Fig. 2
displays the RSSO algorithm’s convergence graphs for the classical benchmark functions. Comparing it to the
basic SSO and other algorithms, it appears that the RSSO approach demonstrates faster convergence. Due to
the stochastic character of metaheuristic algorithms, Box plots have been used to verify RSSO’s stability by
comparing the means obtained by various algorithms, as shown in Fig. 3. To further compare RSSO outcomes
to different optimization procedures, box plots of the top individuals’ fitness from the last generation are
provided. This further demonstrates RSSO’s superior performance and convergence capabilities. If all trials
yield the same result, the RSSO algorithm can strike a balance between the exploration and efficiency phases.
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4.6 Quantitative Analysis of CEC 2018 Test Functions
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The robustness of the proposed algorithms has been evaluated using the CEC 2018 test functions.
Additionally, these algorithms have been compared with other contemporary algorithms, with results
sourced from Ref. [25]. As shown in Table 7, RSSO delivers optimal results for most functions, including F1,
F3-F6, F9, F11, F14-F17, F20-F22, F25, and F27-F28. In contrast, MFO achieves optimal results for functions
such as F7, F10, F19, and F30. Meanwhile, AOA provides optimal outcomes for F8, F12, F18, F23, F26, and F29.

Table 7: Comparison of QRGM-AOA with well-known optimization at CEC 2018 test functions

Fn Parameter CSA PSO MFO SMFO AOA SSO RSSO
1 Average 3.246E+10  5.907E+10  6.278E+09 3.119 E+10 9.986E+10  2.4478346E+10 5.268354E+09
Std 2.130E+10 3.270E+10 1.027E+09 1.734 E+10 5.602E+09 2.4958522E+09 2.51242E+09
3 Average 9.600E+04  1.308E+05  9.453E+04 8.300 E+04 9.453E+04  6.3570338E+04  6.0054458E+04
Std 5.473E+04 1.039E+05 1.203E+04 7186 E+04 2.104E+04 8.2872876E+03 8.065423E+03
4 Average 5.726E+03 1.183E+04 8.558E+02 5.612 E+03 7.225E+02 3.1067644E+03 7.99852E+02
Std 3.185E+03 7302E+03  4.991E+02 2.322 E+03 3.852E+02 9.5901826E+02 5.95926E+02
5 Average 8.509E+02 9.635E+02 6.740E+02 8.725 E+02 5.640E+02 8.3439158E+02 5.52198E+02
Std 8.017E+02  8.845E+02  6.114E+02 8.105 E+02 5.225E+02 1.9876379E+01 1.887531E+01
6 Average 6.683E+02 6.921E+02 6.260E+02 6.814 E+02 6.912E+02 6.7132678E+02 6.195792E+02
Std 6.554E+02  6.828E+02  6.113E+02 6.571 E+02 4.227E+02  5.8798258E+00 5.71118E+00
7 Average 1.730E+03 2.511E+03 1.007E+03 1.359 E+03 1.152E+03 1.2035080E+03 1.009120E+03
Std 1.552E+03  2.201E+03 8.311E+02 1.198 E+03 5125E+02  4.0996442E+01 3.995421E+01
8 Average 1.134E+03 1.220E+03 9.895E+02 1.093 E+03 9.995E+02 1.0636021E+03 1.042513E+03
Std 1.105E+03 1.163E+03 9.126E+02 1.052 E+03 4.186E+02 2.0778253E+01 1.676781E+01

(Continued)
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Table 7 (continued)

Fn Parameter CSA PSO MFO SMFO AOA SSO RSSO
9 Average 1.040E+04  1735E+04  6.219E+03 9.431 E+03 5.129E+03 7.6133748E+03 5.092154E+03
Std 7.223E+03 1.271E+04  3.323E+03 7.359E+103 2.189E+03 6.5544697E+02 5.905312E+02
10 Average 8.279E+03  8.218E+03  5.259E+03 8.272 E+03 5.527E+03 7.2382791E+03 5.562151E+03
Std 7.738E+03 7.661E+03 4.231E+03 7.449 E+03 4.882E+03 3.3771434E+02 3.214524E+02
1 Average 4.700E+03  1.018E+04  3.967E+03 5.799 E+03 3.634E+03 3.4017747E+03 3.36592E+03
Std 3.395E+03  7.488E+03 1.370E+03 2.547 E+03 1.224E+03 8.3572634E+02 5.62356E+02
12 Average 2.979E+09  6.824E+09  9.043E+07 4.342 E+09 8.294E+07  3.4094207E+09 9.243121E+08
Std 1.516E+09  3.870E+09  7305E+04 2.607 E+09 6.189E+04  8.6961284E+08 9.658732E+08
13 Average 9.478E+08  3.156E+04  4.593E+06 7.405E+08 5.125E+06 1.1928068E+09 2.251521E+08
Std 5.211E+08  5.760E+08  1.003E+04 1.145 E+08 2.112E+04 7.9669524E+08 2.998542E+08
14 Average 4.342E+05  7227E+05  6.942E+04 1.715 E+06 5.124E+04 6.5681555E+05 4.99845E+04
Std 1.482E+05 1.041E+05  5.450E+03 7.879 E+04 4.250E+03  4.2636747E+05 6.23586E+04
15 Average 7.286E+07  2.025E+08  3.090E+04 4.161 E+07 3.124E+04  6.6094562E+05 3.015249E+04
Std 2.378E+07  1.064E+07 5.117E+03 1.868 E+06 5.236E+03  3.3070797E+03 2.325923E+03
16 Average 3.989E+03  4.452E+03  2.956E+03 4.223 E+03 2.956E+03  3.7529462E+03 2.956E+03
Std 3.147E+03  3.827E+03  2.398E+03 3.565E+103 1.426E+03 2.5093522E+02 1.20120E+03
17 Average 2.628E+03  3.298E+03  2.349E+03 2.788E+103 3.259E+03 2.6133274E+03 2.31653E+03
Std 2.256E+03  2.755E+03  1.975E+03 2.359 E+03 1.126E+03 2.0465634E+02 2.065321E+02
18 Average 7890E+06  6.473E+06  2.830E+06 5.330 E+07 1.259E+05  4.1228460E+06 2.265124E+06
Std 2.022E+06  6.593E+05  7725E+04 2.825 E+06 6.512E+04  3.3306227E+06 3.215462E+06
19 Average 1.358E+08  2.509E+08  4.261E+06 7.588 E+07 5.665E+06  3.2431428E+07 3.236532E+06
Std 6.263E+07  3.341E+07  1.293E+04 5.192 E+06 0.843E+04  3.3495209E+07 3.264213E+06
20 Average 2.759E+03  2.847E+03  2.537E+03 2.837 E+03 3.246E+03  2.6347378E+03 2.53125E+03
Std 2.476E+03  2.574E+03  2.215E+03 2.454E+03 2.216E+03 1.2882269E+02 1.32654E+02
2l Average 2.625E+03  2.707E+03  2.472E+03 2.630E+03 2.795E+03 2.5989179E+03 2.469562E+03
Std 2.587E+03  2.615E+03  2.420E+03 2.363E+03 2.129E+03 1.7175886E+01 1.365213E+01
» Average 6.831E+03  8.759E+03  6.353E+03 8.681E+03 5.239E+03 5.5538834E+03 5.036521E+03
Std 5.558E+03  6.900E+03  3.223E+03 5.677E+03 4.268E+03 1.2200116E+03 1.320012E+01
23 Average 3.143E+03  3.239E+03 2.811E+03 3.273E+03 2.126E+03 3.1611422E+03 2.821652E+03
Std 3.061E+03 3.101E+03 2.740E+03 3.027E+03 2.852E+03 6.3662237E+01 3.265315E+01
24 Average 3.319E+03  3.539E+03  2.979E+03 3.482E+03 2.216E+03 3.4117165E+03 3.002512E+03
Std 3.206E+03  3.253E+03  2.926E+03 3.217E+03 2.249E+03 7.2482310E+01 2.326591E+01
25 Average 4.890E+03  7.655E+03 3.181E+03 3.972E+03 3.958E+03 3.4732912E+03 3.171523E+03
Std 4.344E+03  5.843E+03  2.895E+03 3.467E+103 2.129E+03 1.9152232E+02 1.32654E+02
2 Average 8.661E+03  8.709E+03  5.650E+03 9.093 E+03 5.112E+03 8.1569419¢+03 7.659832E+03
Std 7.772E+03  6.500E+03  4.921E+03 5.057 E+03 2.672E+03 4.8626737e+02 5.1579234E+02
27 Average 3.690E+03  3.827E+03  3.233E+03 3.754 E+03 3.111E+03 3.6988474e+03 3.111E+03
Std 3.537E+03  3.591E+03  3.206E+03 3.538 E+03 3.139E+03 1.2144742e+02 1.35621E+02
28 Average 5.474E+03  6.851E+03  3.756E+03 5.462 E+03 3.813E+03 4.5653177e+03 3.7559E+03
Std 4.541E+03 5.611E+03 3.263E+03 4.419 E+03 3.129E+03 4.7777496e+02 4.03265E+02
29 Average 5.253E+03  5.426E+03  4.014E+03 5.639 E+03 3.098E+03  5.2867215e+03 5.112621E+03
Std 4.952E+03  4.907E+03  3.499E+03 4.728 E+03 2.559E+03 2.9107176e+02 2.365321E+02
30 Average 1.084E+08  2.946E+08  2.524E+05 2.326 E+08 4.198E+05 1.2701093e+08 1.112651E+07
Std 4.274E+07  8.913E+07 7.219E+03 2.468 E+07 6.772E+03 3.8396778e+07 2.365214E+06

Note: The bold text is showing the best values obtained by the optimization algorithm.
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4.7 Comparison of Computational Complexity

The computational complexity of the RSSO algorithm has been analyzed using Big-O notation and
compared to the basic SSO algorithm. The results, presented in Table 8, show that both algorithms have
similar time complexity. In other words, they take roughly the same amount of time to execute.

Table 8: Computational complexity of SSO and RSSO

Functions SSO RSSO Functions SSO RSSO
F1 4.0404864 3.9900107 F13 5.28386  5.0602747
F2 4.0412297  4.0192187 F14 2.9023463  2.72382
F3 5.225257  4.8509542 F15 1.3209882  1.2065279
F4 4.633608  4.1676389 F16 0.8762344  0.8542739
F5 4.0746033  4.2390084 F17 1.181482  0.8933553
Feé 4.0494139  4.1275828 F18 0.916449  0.8567044
F7 4.4197981  4.3274047 F19 1.0240062  1.1327767
F8 4.4731884  4.1521003 F20 1.6778817  1.4735105
F9 4.0829756  4.0392895 F21 1.2996001 1.3685306

F10 41208045  4.2581151 F22 1.2898021  1.3745246
F11 4.3691686  4.7054779 F23 1.6077693  2.222182
F12 5.0312676  5.1842126

Note: The bold text is showing the best values obtained by the optimization
algorithm.

The computational complexity is evaluated based on Algorithms 1 and 2 using the following Eq. (12).

O (NP x D x max_iter) (12)

5 Application of the Proposed RSSO Algorithm to the Real-World Application

The proposed algorithm proved its efficiency efficient through quantitative and qualitative analysis of
the benchmark problems. The efficacy of the proposed algorithm has also been validated on real-world
optimization problems through well-known engineering design problems.

5.1 Gear Train Design Problem

Fig. 4 depicts the gear train design problem as an unconstrained case study with decision variables with
discrete values. The following is a mathematical representation of these choice variables as train gears.

1 nCnD)z

Minimize f (n) = (m i

(13)
subjected to

12 < ny,ng,ng,np <60

The obtained results are tabulated in Table 9. The parameters in each optimization algorithm are set to
similar values for fair comparison. From Table 8, it can be observed that the proposed RSSO algorithm gives
superior results when compared to other algorithms.
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D
Figure 4: Gear train design problem
Table 9: Results for the gear train design
Algorithms Optimized parameters Optimum value
ng np Mnc np

BDE 59 15 21 37 3.0676E-10
SinDE 53 13 20 34 2.3078E-11
IDE 53 13 30 51 2.3078E-11
CMA-ES 60 12 12 12 3.1048E-03
OBSCA 5215 30 60 2.3576E-09
m-SCA 53 13 20 34 2.3078E-11
WOA 55 14 17 30 1.3616E-09
GWO 54 17 22 48 1.1661E-10
MFO 51 16 23 50 1.1834E-09
PSO 54 17 22 48 1.1661E-10
SCA 5 17 14 30 1.3616E-09
MG-SCA 43 16 19 49 2.7009E-12
RSSO 43 16 20 48 2.6999E-12

5.2 Speed Reducer Design Problem
Speed reducer as shown in Fig. 5 is designed to minimize the weight of the reducer. The face width (),
a module of teeth (7,), number of teeth on the pinion (#3), length of the first shaft between bearings (n4),
length of the second shaft between bearings (#5), the diameter of the first shaft (#¢), and the diameter of
the first shaft (n7) are the key variables to be optimized.
Minimize f ()7 = 0.785nn5 (3.333n3 + 14.9334n; — 42.0934) — 1.508n; (ng + n3) +7.4777n; (n + n3)
+1.508m,; (n4né + nsng) (14)

subject to:

21
gi(n)=—35—-1<0; (15)
ninsns
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397.5
g (n) = 5 —1<0; (16)
n1n2n3
1.93n3
n) = -1<0; 17
g (n) nnsng )
1.93n;
n)= -1<0; 18
g1 (1) ninzng (18)
1 745n4 \*
g (n) = —— ( m)+m9xm@4gm (19)
1107’16 Nnyns
1 745n4 \*
g (n) = — ( "4) +157.5x 106 = 1< 0; (20)
85n; NnyN3
g (n) =22 _1<0; 1)
51’12
gs(n)=—7-1<0; (22)
m
(n) = —L —1<0; (23)
& N 121’12 -7
1.5n¢ + 1.9
glO (f’l) = —nG -1< 0; (24)
Ny
1.1n; +1.9
gn(n) = T 1<0; (25)
ns

variable range: 2.6 < n; < 3.6;0.7 < n, < 0.8;17 < n3 < 28;

73<1n, <83;7.8<ns<8.3;2.9 < ng <3.9;5< n; <5.5.

Figure 5: Speed reducer design problem

The performance of the proposed RSSO algorithm was compared to several other optimization algo-
rithms, including MBFPA, WCA, PSODE, MDE, HEAA, and PVS. Table 10 shows that RSSO consistently
produces superior solutions, particularly when dealing with complex constraints.
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Table 10: Comparison of optimization results for speed reducer [26,27]

Algorithms m n, n; ny ns ne n; Optimal cost
MBFPA 3.500 0.7 17 7.3 7.7153199122 3.35021466 5.28665446 2994.341315
WCA 3.500 0.7 17 7.3 7.715319 3.350214 5.286654 2994.471066
PSODE 3.500 0.7 17 7.3 7.800000 3.350214 5.2866832 2996.348167
MDE 3.50001 0.7 17 7.300156 7.800027 3.350221 5.286685 2996.356689
HEAA 3.500022 0.7 17.000012 7.300427 7.715377 3.350230 5.286663 2994.499107
PVS 3.49999 0.6999 17 7.3 7.8 3.3502 5.2866 2996.3481
RSSO 3.3594 0.5987 17 7.2 7.8 3.3024 5.12974 2992.8452

5.3 Parameter Estimation for Frequency-Modulated Synthesizer

The decision variables of a frequency-modulated synthesizer are estimated in this problem. This is an
unconstrained, multimodal, complicated problem which contains six decision variables, a, a,, as, n;, n, and
ns. The problem is formulated in the following manner

Minimize f (x) = Y00 (X (£,%) - Xo (£, %))’ (26)
56 = as, ap, as, Ny, Ny, N3 and

% =(1,5,1.5,4.8,2,4.9)

subjected to — 6.4 < ay, a;, as, ny, na, 13 < 6.35

where
X (t,%) = aysin (n1t0 + a, sin (1,10 + as sin (n3t0))), (27)
_ . 2 . 2 . 21
Xo (t,x) =sin (St x — + 1.5sin (4.8t X — + 2sin (4.9t x —))) ) (28)
100 100 100

A comprehensive comparison was conducted to evaluate the performance of the proposed RSSO
algorithm against various other optimization techniques, including BDE, SinDE, IDE, CMA-ES, OBSCA,
m-SCA, WOA, GWO, MFO, PSO, SCA, and MG-SCA. The comparison considered several metrics: best
solution, worst solution, standard deviation, and average performance. All algorithms were tested using 10°
function evaluations, a population size of 30, and 30 independent runs. The results consistently showed that
RSSO outperforms all other optimization algorithms tested as shown in Table 11.

Table 11: Results for parameter estimation for frequency-modulated [28]

Algorithms Best Worst Standard Average Statistical
deviation decision

BDE 14.81 28.38 3.27 2229 +
SinDE 0.00 16.96 6.45 5.60 -
IDE 0.00 16.15 5.98 5.69 -
CMA-ES 24.52 29.46 1.02 28.45 +
OBSCA 4.48 2115 5.12 9.65 =
m-SCA 10.90 22.84 415 15.94 +
WOA 11.38 25.10 4.42 18.12 +

(Continued)
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Table 11 (continued)

Algorithms Best Worst Standard Average Statistical
deviation decision

GWO 8.42 25.10 5.16 14.77 +

MFO 11.58 26.82 4.41 21.57 +

PSO 25.24 29.65 1.17 27.63 +

SCA 10.31 22.20 3.48 14.53 =

MG-SCA 0.001949 19.91 4.58 12.25 =
RSSO 10.05 14.9209 2.48 12.2445

5.4 Three-Bar Truss Design Problem

Fig. 6 illustrates the three-bar truss design problem, which involves minimizing the weight of a three-
bar truss structure. This optimization problem includes constraints related to stress, deflection, and buckling,
ensuring that the final design meets structural integrity requirements.

[n] = [, n2] = [A1 As] (29)

Minimize f (n) = (2\/5711 + nz) x 1. (30)
Subject to:

g1 (n) =V2ny + ny/N/2n? + 2mnyP - 0 < 0; (31)

2 (n) = nyJN/20% + 2mn,P — 6 < 05 (32)

g3 (n) =1/\2ny + mP - 0 < 0; (33)

variable range 0 < 13, n, < 1.
where [ =100 cm; P = 2 kN/cm?; r = 2 kN/cm?.

Figure 6: Three-bar truss design problem
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The results are tabulated in Table 12 which suggests that the RSSO perform better in this problem when

compared to other algorithms.

Table 12: Comparison of results for the three-bar truss design problem [29]

Algorithm m n, Optimal weight
MBFPA 0.788675132828 0.408248295461 263.895843376

DEDS 0.78867513 0.40824828 263.8958434
MVO 0.78860276 0.408453070000000 263.8958499

GOA 0.788897555578973  0.407619570115153  263.895881496069
MFO 0.788244771 0.409466905784741 263.8959797
PSO-DE 0.7886751 0.4082482 263.8958433
SSA 0.788665414 0.408275784444547 263.8958434
MBA 0.885650 0.4085597 263.8958522
WCA 0.788651 0.408316 263.895843
RSSO 0.7886509 0.408305 263.8958420

5.5 Tension/Compression Spring Design

The suggested RSSO lightens the tension/compression spring’s load in this case. Shear stress, frequency,
and deflection must all be considered when designing the ideal spring configuration. Wire diameter (d),
mean coil diameter (D), and number of active coils (N) are the design characteristics displayed in Fig. 7.
Subsequent sections outline the challenge of minimization.

X = [Xl,XZ,X3] = [d D N]

Minimize f (X) = (x3 + 2) x,x}

3

. X3X3
Subject to g7 (X) =1 - —2 <
jectto g (X) = 1= et
4x% - x1x, 1
X) = 2 + <0
82(X) = D366xt (max? —x7) * 5108
140.45x,
s (X)=1- —5— <0
X5X3
(X) _ X1+ Xp 1<0
&) =5 B

where xi, x, and x5 are in the range of:

0.05, < x; < 2.00;
0.05 < x, < 1.30;
2.00 < x3 < 15.

(34)
(35)

(36)

(37)

(38)

(39)

The findings of the proposed RSSO along with other algorithms considering both tension and com-
pression of the spring are shown in Table 13 which suggests that the proposed RSSO outperforms the

other research.
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Table 13: Comparison of optimization results for tension/compression spring design problem

I

d

Figure 7: Tension/Compression spring design problem

Algorithm d D N Optimum weight
MFO 0.0518945  0.3642093  10.864219 0.0127669
ALO 0.0518808  0.3647768  10.8891826 0.0125672
MVO 0.0501000 0.316916 14.1454336 0.0128772
SCA 0.0501000 0.3161590  14.2132000 0.0129107
GOA 0.0513728  0.3468863  11.8989078 0.0128705
GWO 0.0517900  0.3567470  11.288950 0.0126660
PSO 0.0521701 0.3718567  10.5067588 0.0125713
WOA 0.0513070 0.3453150  12.0041320 0.0129763

SSA 0.0514070  0.3462150  12.0040420 0.0121763

ESSAWOA  0.0516675 0.3558191  11.3490195 0.0129655

RSSO 0.069221234  0.08457352  3.23350236 0.01211208

5.6 Pressure Vessel Design
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In order to minimize the total cost while taking material, forming, and welding limits into account, the

RSSO is employed to address the design issues associated with pressure vessels. Fig. 8 shows the pressure
vessel’s structural design, with design parameters such shell thickness (t), head thickness (T), inner radius
(R), and length of the head-free cylindrical portion (L) shown. The following is the mathematical formulation
of the four restrictions that the design is subject to:

X = [x1,x2,%3,x4] = [Ts, Ty, R, L], (40)
F(X) = 0.6224x,x3x4 + 1778123 + 3.1661x; x4 + 19.84x; x3. (41)
Subject to
g1 (X) = —x; +0.0193x3 < 0, (42)
g (X) = —x3 +0.00954x; < 0, (43)
4
& (X) = —mxixy — gﬂxg +1296000 < 0, (44)
g4 (X) = x4 —240<0. (45)

variable range: 0 < x3, x5 <99, 10 < x3, x4 < 200.

Table 14 displays the outcomes produced by the suggested method in addition to other optimization
techniques. The optimal solution was attained by the proposed RSSO at the lowest cost.
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Figure 8: Pressure vessel design problem

Table 14: Comparison of optimization results for pressure vessel design problem

Algorithm T, Ty R L Optimal cost
MFO 0.8126000 0.4385000 42.0994450 176.6375960 6059.7154000
ALO 0.7899151 0.3999634 40.8774169 192.4040606  5904.21989670
MVO 0.8135000 0.4575000 42.0927382 176.7396900 6060.807450
SCA 0.8139210 0.4684392 40.3599386  200.0022000 6272.4912900
GOA 0.8623648  0.42455574 44.5762983 148.1776879 6042.4662583
GWO 0.8135000 0.4355000 42.0892810 176.7598531 6051.5699400
PSO 0.8494716 0.4394000 43.9626591 154.8365465 6016.6894000
WOA 0.8135000 0.4377000 42.0985699 176 0.639998 6059.7412000
SSA 0.7916780 0.3928340 40.9679388  195.91835200 6012.1899500
ESSAWOA  0.7827639 0.3865301 40.5058956 197.4652899 5892.3568603
RSSO 0.07400238 0.002850599 35.868695704 196.40353077 5652.679909778

5.7 Welded Beam Design

length (1), and weld thickness (h).

Comput Model Eng Sci. 2025;144(1)

Fig. 9 illustrates how the proposed RSSO algorithm is used to optimize the design of a welded beam,
with the goal of minimizing its fabrication cost. By optimizing various design parameters, such as shear stress
(1), bending stress (o), buckling load (Pc), deflection (8), and side constraints, the overall production cost
can be reduced. This optimization problem involves four key design variables: bar thickness (b), height (t),

X= [XI,XZ,X3,X4] = [h I T b]
f(X) = 1.10471x; x; + 0.04811x3x4 (14.0 + x3)

Subject to

g1 (X)=7(X) = Tiax <0
gZ(X):U_O-maxSO
25 (X) = 8 = Spax <0

g4(X):x1—x4£O

g5(X)=P-Pc(X)<0
g6 (X)=0125-x <0

g7 (X) = 1.10471x% + 0.04811x3x4 (14 + x,) = 5.0 < 0

(46)
(47)

(48)
(49)
(50)
(51)
(52)
(53)
(54)
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ey .

[b

Figure 9: Welded beam design problem

The variable range is taken as follows 0.1 < x3, x4 <2 and 0.1 < x5, x3 < 10, where

7(X) = \/(T’)2+2T’T";—;+(T”)2 (55)
AN (56)
\/Exlxz
L MR (57)
J
X2
M=P (L + 7) (58)

2 2
Rz\/x_2+(@) (59)
4 2

2 2
122{\/5361362 [%-ﬁ-(—xl;}Q) :|} (60)

6PL
X)= —— 61
o (X) ExZx, (61
6PL3
0(X)= —— 62
(0= g ()

2,6
3

4.013F % o [E
3
PC(X):T(I_EV E) (63)

P =60001b, L =14 in, E = 30 x 10°psi, G = 12 x 10° psi,
Smax = 0.25i1, Tpax = 13600 psi, Gpax = 30000 psi.

The results of the proposed algorithm and other optimization are tabulated in Table 15 which indicates
proposed RSSO outperforms the majority of the existing methods.
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5.8 Multi-Plate Disc Clutch Brake Design Problem

Table 15: Comparison of optimization results for a welded beam design problem [30]

Algorithm h l T b Optimal cost
RANDOM 0.457700 4.736900 5.085550 0.6677200 4.856850
SIMPLEX 0.279400 5.622600 7.756900 0.299600 2.537860
APPROX 0.244500 6.216900 8.295600 0.25500 2.3819300
HHO 0.204239 3.535661 9.0277863 0.216187 1.7859906
MFO 0.2057200 3.476930 9.0366650 0.216700 1.7946200
ALO 0.2039936 3.5126449 9.0366268 0.2167896 1.7773787
MVO 0.20634630  3.4736930 9.0455420 0.20568950 1.7823600
SCA 0.2025987 3.6596450 9.2859949 0.204262 1.78892134
GOA 0.20756334 3.449599 9.1118962 0.2911324 1.73746220
GWO 0.2058960 3.4785780 9.1568100 0.2154690 1.7465300
PSO 0.2256801 3.2405599 8.7590948 0.2348262 1.7942319
WOA 0.20569960  3.4845950 9.1364260 0.21685327 1.7359390
SSA 0.2058900 3.4788000 9.0569800 0.2178960 1.7245189
ESSAWOA  0.20569751 3.4755616 9.523665 0.2187923 1.7261397
RSSO 0.228392203  4.372097314 5.263547690 0.2563605396  1.444628808
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The research also focused on optimizing the design of a multi-plate disc brake system to reduce its

weight. The optimization targeted minimizing several factors, including the actuation force required to
engage the brakes, the inner and outer radii of the discs, the friction surfaces, and the thickness of the
discs. Fig. 10 provides a visual representation of a multi-plate disc clutch, which serves as an analogy for the
disc brake system being optimized. The mathematical formulation of this optimization problem is provided

below.

[n] = [n1, na, n3,n4,n5] = [ri, 70, t, F, Z]

Minimize f (n) = 7 (n3 - n7) n3 (ns +1) p

Subject to:

g(n)y=ny—m—-AR>0

gz(”) = Lyax — (”5 +1) (7134‘6) >0

gS(n)zpmax_Przzo

84 (?’l) = PraxVsrmax

- P v, >0

&s (1’1) = Vsrmax — Vsr 2 0

g6 (n)=Tnax —T 20
g7 (n) =My —sM; >0

g(n)=T=>0

3 3
n,—n n
where M), = 2/3yn4n5—n§_niz,w = 5o rad/s;

2 2 2 ng N
Azﬂ(nz—nl)mm s Pre= Fh s Ve =

TRy
30

mm/s,

(64)
(65)

(66)
(67)
(68)
(69)
(70)
(71)
(72)
(73)
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3.3 I,

Ry =2/35555 T = g iy mm, AR = 20 mm, Lygx = 30 mm,

p =0.6, Tyyax =155, 6 = 0.5mm, s = 1.5, M; =40 Nm, P, =1 MPa,
p = 0.0000078 kg/mm?, v, nax = 10m/s, Typay = 155, ng =250 rpm,
I, =55kg m?, M = 40 Nm, M = 3 Nm,

variable range 60 < n; < 80;90 < n, <110;1 < n3 < 3;

60 < 1y <1000;2 < n5 < 957 =1,2,3,4,5.

To

Figure 10: Multi-plate disc clutch brake design problem

As shown in Table 16, the suggested RSSO is included with the results obtained by several algorithms,
including TLBO, HHO, WCA, PVS, and AVOA. When compared to the other optimization techniques, the
RSSO clearly came out on top.

Table 16: Comparison of results for multi-plate disc clutch brake

Algorithm TLBO HHO WCA PVS AVOA SCA SSA RSSO
ri 70 69.99999999 70 70 69.9999999  69.99999 69.9999 70
To 90 90 90 90 90 90 90 90
t 1 1 1 1 1 1 1 1
F 810 1000 910 980 1000 900 900 800
Z 3 2.312781994 3 3 2.312781982 2.653 2.7123 2
Optimal 0.313656 0.259768993  0.313656 0.31366 0.259768992  0.28952 0.2967318 0.2352424579
cost

5.9 Rolling Element Bearing Design Problem

The research also investigated the optimization of rolling element bearings, which are commonly used
in various mechanical systems. This design problem involved optimizing ten variables while adhering to nine
constraints, as shown in Fig. 11. The objective was to maximize the load-carrying capacity of the bearing,
which was calculated using a specific formula.

f.Z*3DLS, if D <25.4 mm

74
3.647f.Z*°D}*, if D> 25.4 mm (74)

Maximize C; = {
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Subject to:
S\ Po _

8 = S DDy~ 2120 (73)
j'¢) (2) = 2Dy — Kpmin (D—d) >0 (76)
23 (2) = Kpmax (D—-d) —2D;, 20 (77)
84 (2)=(B, - Dy <0 (78)
g (Z) =D, —05(D+d) >0 (79)
g (2)=(05+e)(D+d)-D, >0 (80)
g7(Z)=05(D-D,,—Dy)—€D, >0 (81)
gs (z) = fi > 0.515 (82)
89 (2) = fo2 0515 (83)
where

1.72 0.41110/377%3 1.39 0.41
_ 1-y fi 2fo - 1) y(1-y) 2fi
Jez3a 1+{1'04(m) (m) } X[ (1+y) ][Zﬁ—l] ’

x=[{(D-d)/2-3(T/4)}* + {D[2- T/4- D, }* - {d[2+ T/4}*],
y=2{(D-d)/2-3(T/4)}{D/2-T/4- Dy},

Qo =21 — cos™! (f),
y

D ,
y:_h’fi:rl ’fozi’T:D_d_ZDb’
D,

D, D,
D =160,d =90, B,, =30,r; = r, = 11.0330,
05(D+d)<D,, <0.6(D+d),

0.15(D~d) < D, <0.45(D - d),

4<7<50,0.515< f; and f, <0.6,
0.4 < Kpmin <0.5,0.6 < Kppax <0.7,

0.3£¢e<£0.4,0.02<e<0.],

0.6 <(<0.85.

The suggested RSSO has been compared to other algorithms’ outputs, including AVOA, PVS, TLBO,
and GA. Table 17 displays the results of the comparison, which indicate that the SSCA outperformed the
other algorithms.
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Table 17: Comparison of optimization results for rolling element bearing design problem

Figure 11: Rolling element bearing design problem
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Algorithms PVS TLBO GA AVOA SSA SCA RSSO
D,, 125.719060  125.7191 125.717100 125.722717  125.6523 125.6823 125.50000
D, 21.425590  21.42559 21.423000 21.423294 21.421236  21.41256 21.50000
VA 11.000000 11.000000 11.000000 11.001162  11.005236  11.000126 12.50000
fi 0.515000  0.515000 0.515000  0.515000 0.51426 0.513269 0.5154
£ 0.515000  0.515000 0.515000  0.515000  0.510368 0.108712 0.5187

Kpmin 0.400430 0.424266 0.415900 0.404428  0.403526 0.41365 0.4373

Kbmax 0.680160  0.633948 0.651000  0.618679 0.62589 0.63541 0.6552

£ 0.300000 0.300000 0.300043 0.300000 0.35123 0.36234 0.3936

e 0.079990  0.068858 0.022300 0.0691299  0.075631  0.0758531 0.0809

3 0.700000  0.799498 0.751000 0.602470  0.746321 0.75498 0.8394
Maximum cost 81859.741210 81859.74 81843.30 85539.15785 86524.8461 86684.43618 87790.506682

5.10 Cantilever Structure Problem

The cantilever beam used in this work has five hollow square cross-sections, as shown in Fig. 12. To find
the most economical solution, we’ll assume that the thickness is constant and look at the other six parameters
in Fig. 12. Following are the mathematical concepts used in this design issue:

Minimize f (n) = 0.6224 (n; + ny + nz + ng + ns)

Subject to:
37 19 7

61
g(?’l):—3+—3+—3+—3+
m

2 N3 ny

1
3
ns

<1

variable range 0.01 < ny, 13, 13, n4, 5 < 100.

(84)

(85)
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Constant

Figure 12: Cantilever design problem
Table 18 shows the results of comparing the proposed RSSO with different optimization strategies. The
superior performance of the RSSO compared to the other optimization techniques is clearly demonstrated

in Table 18.

Table 18: Comparison of optimization results for cantilever structure problem [31]

Algorithms nm n, ns ny ns Optimum cost
SMA 6.017756 5.310893 4.493758 3.501107 2.150158 1.339958
MFO 5.9831 5.3168 4.4974 3.5137 2.1617 1.33999
SOS 6.0189 5.3032 4.4959 3.4901 2.1557 1.33997

CS 6.0090 5.3048 4.5024 3.5078 2.1506 1.33998
MMA 6.0101 5.3001 4.4901 3.4901 2.1501 1.3410
GCA 6.0101 5.3011 4.4901 3.4901 2.1501 1.3410
SSA 6.0101 5.3024 4.46813 3.4823 2.1506 1.3325
SCA 6.0100 5.3055 4.46277 3.48922 2.1513 1.32956

RSSO 6.10078650 5.31100200 4.249327158 3.51306250 2.15015900  1.3272267447

6 Conclusion

This research focused on enhancing the search and convergence capabilities of the SSO algorithm. To
achieve this, three key modifications were made to the original algorithm. The following conclusions have
been drawn from the above research.

o The proposed optimization method incorporates three key features: OBL, the Cauchy mutation strategy,
and position clamping. These features enhance the balance between exploration and exploitation phases
compared to the basic SSO algorithm, resulting in a more effective search process.

o The proposed RSSO algorithm demonstrated superior performance compared to other leading
optimization techniques when evaluated on various benchmark functions, including unimodal, multi-
modal, and fixed-dimensional multi-modal functions. The results, measured by average and standard
deviation, showed that RSSO effectively avoids getting stuck in local optima (exploitation) while
simultaneously exploring a wider range of potential solutions (exploration).

o RSSO proves to be a powerful tool for solving complex optimization problems. Both qualitative and
statistical analyses demonstrate that RSSO outperforms other algorithms in terms of both speed of
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convergence and quality of the final solution. This makes RSSO a valuable tool for computer-aided design
and engineering applications.

« The effectiveness of the RSSO algorithm has been validated not only on theoretical benchmark problems
but also on a range of real-world engineering design problems. In all these cases, RSSO has demonstrated
superior performance compared to other algorithms, highlighting its broad applicability and potential
for solving complex engineering challenges.

« Future research directions could include investigating adaptive parameter tuning mechanisms to fur-
ther enhance RSSO’s performance across diverse problem domains. Developing hybrid algorithms
that integrate RSSO with other metaheuristic techniques to capitalize on their respective strengths.
Applying RSSO to emerging fields such as machine learning hyperparameter optimization and quantum
computing optimization problems.
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