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ABSTRACT: Accurate prediction of wind energy plays a vital role in maintaining grid stability and supporting the
broader shift toward renewable energy systems. Nevertheless, the inherently variable nature of wind and the intricacy of
high-dimensional datasets pose major obstacles to reliable forecasting. To address these difficulties, this study presents
an innovative hybrid method for short-term wind power prediction by combining a Long Short-Term Memory (LSTM)
network with a Single Candidate Optimizer (SCO) algorithm. In contrast to conventional techniques that rely on
random parameter initialization, the proposed LSTM-SCO framework leverages the distinctive capability of SCO
to work with a single candidate solution, thereby substantially reducing the computational overhead compared to
traditional population-based metaheuristics. The performance of the model was benchmarked against various classical
and deep learning models across datasets from three geographically diverse sites, using multiple evaluation metrics.
Experimental findings demonstrate that the SCO-optimized model enhances prediction accuracy by up to 12.5% over
standard LSTM implementations.
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1 Introduction

Reducing carbon dioxide emissions has become a remarkable objective in attaining the sustainable
development goals endorsed by United Nations members. A swift transition away from fossil fuels, which
are a notorious contributor to climate change, is imperative to realize these objectives. Globally, coal, a non-
renewable and environmentally detrimental fossil fuel source, represents 36.81% of the electrical energy
generation [1]. The well-established impacts of fossil fuels include their cause of the greenhouse effect,
exacerbation of climate change, and their finite nature. There is a growing need to promote sustainability
in energy production and to mitigate the adverse environmental impacts of fossil fuels. Renewable energy
sources, recognized as clean energy alternatives, are increasingly gaining popularity and warrant further
promotion [2,3]. In 2021, the International Energy Agency (IEA) introduced the “Net Emissions Blueprint
2050,” outlining wind power as the leading contributor to the global electricity generation portfolio by
2050, projected to reach 35%. Despite the widespread production disruptions induced by the COVID-
19 pandemic, global wind power installations stood at 95.3 GW in 2020, 93.6 GW in 2021, 77.6 GW in
2022, 116.6 GW in 2023, and 117 GW in 2024, marking substantial increases compared to previous years.
These statistics, as reported in Global Wind Report 2024 by the Global Wind Energy Council (GWEC),
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underscore the remarkable global growth trajectory of wind energy deployment [4]. Wind energy, recognized
as a sustainable and environmentally friendly power source, offers significant potential for mitigating the
adverse environmental impacts linked to intensive energy use and emissions from coal-based electricity
generation. Nevertheless, the inherent variability and intermittency of wind poses operational challenges
for power systems, particularly in areas such as unit commitment and day-ahead generation planning [5].
Advancements in the precision of renewable energy forecasting can play a critical role in minimizing the
likelihood of power system disruptions [6].

Wind speed forecasting models are generally categorized into four groups according to their predic-
tion timeframes: very short-term, short-term, medium-term, and long-term. Very short-term predictions,
ranging from a few seconds to 30 min, are primarily applied in real-time turbine control and load-
following operations. Short-term forecasts, which span from 30 min to 6 h, are essential for effective
load-dispatch planning. Medium-term forecasts, typically between 6 and 24 h ahead, support the scheduling
of conventional power plants and enable strategic energy market participation. Long-term forecasts, which
may cover periods from one day to one week or more, are critical for optimizing unit commitment processes
[7].

Some studies on wind power forecasting have focused on predicting wind speed rather than power
output [8-10]. Although wind speed forecasts may be suitable for certain applications, it is essential to
recognize that grid operations and trading decisions require power forecasts. Converting wind speed into
wind power involves a complex and nonlinear process, meaning that models demonstrating proficiency
in wind speed prediction may not necessarily perform as well when forecasting power. Similarly, studies
using wind speed datasets to simulate power values via a power curve may not accurately represent the actual
variability observed in the operational power data [11]. Accessible wind power datasets [12] now enable the
evaluation of models using power data, aligning more closely with the research objectives.

Wind power forecasting models can be categorized into three main methods: physical modeling,
statistical approaches, and artificial intelligence (AI) techniques [13]. Physical models may utilize numerical
weather predictions [14] or weather research and forecasting [15] to acquire forthcoming meteorological
data. Consequently, the wind power can be computed using a wind power curve model that employs
future meteorological data [16]. Nonetheless, the accuracy of wind power forecasting is contingent on the
site-specific nature and reliability of the predicted meteorological data. Statistical methods, including autore-
gressive moving average (ARMA) [17] and seasonal autoregressive integrated moving average (SARIMA)
[18], depend solely on historical data and employ statistical models to identify linear connections within
smoothed wind-power datasets. Liu et al. [18] proposed a SARIMA model to forecast hourly-measured
wind speeds in the coastal/offshore area of Scotland. Similarly, Singh and Mohapatra [19] found in their
experiments that ARIMA tends to yield less-precise forecasts for high-frequency subseries. Nonetheless, in
situations characterized by substantial meteorological shifts near the wind turbine or the presence of strong
nonlinear relationships within the wind power data, the forecasting accuracy of statistical fitting methods
often decreases.

Recently, many scholars have actively engaged in researching wind power methods driven by AL
As computational capabilities advance, Al techniques, such as machine learning and deep learning, are
increasingly utilized in wind power forecasting and similar tasks involving forecasting multiple variables
over time series data. Machine learning approaches have indicated superior performance, such as extreme
learning machine (ELM) [20], support vector machine (SVM) [21], artificial neural network [22], kernel
ELM [23], multi-layer perceptron [24]. Recent advancements in deep learning have introduced recurrent
neural networks (RNNs), which exhibit remarkable efficiency in handling time-series data by effectively
capturing historical data. However, prolonged forecasting periods frequently encounter challenges, such as
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vanishing and exploding gradients. To overcome these issues, researchers have proposed solutions, including
long short-term memory (LSTM) [25], bidirectional LSTM (BiLSTM) [26], deep belief networks [27] and
gated recurrent units (GRU) [28].

In recent years, large language models (LLMs), particularly those based on transformer architectures,
have demonstrated exceptional capabilities across a wide range of natural language processing tasks due
to their powerful reasoning and generalization abilities. Building on this success, researchers have started
exploring their potential in time-series forecasting applications, including wind speed and power prediction.
Unlike traditional statistical or machine-learning models, LLMs can encode higher-level semantic patterns
and leverage prompt-based learning to interpret complex temporal dynamics. Two main strategies have
emerged in this context: intra-modal transfer learning, where LLMs are fine-tuned directly on time-series
data, and cross-modal knowledge transfer, where time-series inputs are transformed into textual prompts
to utilize frozen LLMs without architectural modification. Recent studies such as GPT4TS and PromptCast
have applied these paradigms to various forecasting tasks with promising results [29,30]. Specifically, for
wind-power forecasting, cross-modal approaches offer a compelling alternative by avoiding computationally
expensive fine-tuning and mitigating overfitting risks on small datasets. While LLM-based models have
shown notable improvements over traditional forecasting methods, research in this area is still in its early
stages, and further efforts are needed to adapt these models effectively to domain-specific requirements.

There has been a noticeable shift towards employing hybrid structures for deep learning and machine
learning techniques in wind power forecasting. This trend aims to address the shortcomings of standalone
models, while leveraging the unique strengths of both approaches. Hybrid models created by integrating
metaheuristic approaches into AI methods and incorporating pre-processing via decomposition methods
are becoming increasingly prevalent. Meta-heuristic optimization algorithms are extensively utilized in
forecasting wind power and speed. However, a thorough review of the literature reveals several notable
shortcomings and challenges. Presently, meta-heuristic based hybrid algorithms are primarily applied to
predict the power output of individual wind farms; however, the datasets from these farms are often
insufficient in size to qualify as big data. However, with the continual growth in the installed wind power
capacity, dataset sizes are expanding significantly, paving the way for the potential accumulation of big data
in this domain. Using an optimized deep learning model, Ewees et al. [31] proposed a new wind power
forecasting approach based on a heap-based optimizer (HBO). To boost the efficiency of LSTM-based
forecasting, some approaches incorporate metaheuristic optimizers, such as HBO, to fine-tune the model
parameters, yielding significant accuracy gains. However, the proposed model may cause convergence speed
problems. Altan et al. [32] developed LSTM network and decomposition methods with grey wolf optimizer
(GWO). To achieve a more accurate prediction model, the GWO algorithm was applied to optimize the
contribution of each decomposed subcomponent of the original signal. Their results showed that the
decomposition-based LSTM-GWO hybrid model was superior to all the implemented models. Similarly,
hybrid approaches such as the Lévy flight Chaotic Whale Optimization algorithm (LCWOA)-ELM model
[33], Swarm Decomposition-Meta-ELM (SWD-Meta-ELM) [34], and improved quantum particle swarm
optimization algorithm (QPSO)-based combined model [35] GWO-based complete ensemble empirical
mode decomposition with adaptive noise (CEEMDAN)-convolutional neural network (CNN)-BiLSTM [36]
have been proposed for wind-power forecasting. An adaptive forecasting model based on GWO-LSTM was
proposed in [37]. Medium- and long-term forecasting were investigated by considering different wind energy
characteristics. However, their model performances were compared only with those of the LSTM-based
models. Although Al-based hybrid models combine advantages through metaheuristic approaches, there is
no single dominant model. Currently, various regional studies are underway to explore the characteristics
of diverse wind speeds. Furthermore, evaluating model performance across multiple regions by testing on
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datasets enhances their reliability. The optimal determination of deep learning method parameters, such as
LSTM, significantly affects the model performance. Despite the effective use of meta-heuristic algorithms
to improve the optimization performance of deep learning models, they frequently suffer from problems,
such as early convergence, local optima stagnation, and overfitting. Hence, there is a need to investigate
novel metaheuristic algorithms capable of overcoming these obstacles. Among meta-heuristic approaches,
the Single Candidate Optimizer (SCO) has recently attracted significant interest because of its inventive
approach and encouraging outcomes, which are characterized by notably diminished computation costs and
memory demands [38]. Research indicates that SCO demonstrates faster convergence to optimal solutions
than alternative algorithms [39]. Nonetheless, the effectiveness of SCO is contingent upon the nature of the
problem and requires further investigation, particularly for near-real-time applications. Moreover, there is
investigation to suggest that this algorithm holds promise for integration with other meta-heuristics and
forecasting tools [39]. In this study, the literature reviewed on wind power and wind speed is presented

in Table 1.

Table 1: Summary of literature on wind forecasting

Author(s)

Model/Approach

Remarks

Liu et al. [18]

Singh & Mohapatra
[19]
Wang et al. [20]

Abedinia et al. [21]
Zhang et al. [22]
Rayi et al. [23]

Samadianfard et al.
[24]
Memarzadeh &
Keynia [25]
Joseph et al. [26]
Jiajun et al. [27]

Niu et al. [28]
Ewees et al. [3]
Altan et al. [32
Syama et al. [33]
Dokur et al. [34]

Sun et al. [35]
Phan & Nguyen [36]

Cai et al. [37]

Seasonal ARIMA
Wavelet-based ARIMA
Improved ELM with deep learning

SVM, WT, Entropy-based FS
GA-ANN improved by VMD
AVMD-ODRMKELM

MLP-WOA
WT, ES, LSTM and CSA

FS-BO-BILSTM
WT-DBN-RF and
WT-DBN-LGBM

AGRU
HBO-LSTM
ICEEMDAN-LSTM-GWO
LCWOA-ELM
SWD-Meta-ELM

WPD-PSR-ADQPSO-MKLSSVM
GWO-nested
CEEMDAN-CNN-BILSTM
GWO-LSTM

Applied to offshore wind speed;
compared to GRU and LSTM
Very short-term forecasting using
repeated wavelet transform
Two-stage processing for smart grid
forecasting
Short-term wind speed forecasting
Short-term wind speed prediction
Single and multistep wind power
forecasting
Wind speed prediction

Short-term wind speed forecasting

Near real-time wind speed forecasting
Ultra-short-term wind speed prediction

Multi-step ahead wind power forecasting
Wind power forecasting
10-hours ahead wind speed forecasting
Wind speed prediction
Short-term forecasting oftshore wind
speed
Multi-step wind speed forecasting
Wind speed forecasting

Wind power mid-long-term load
forecasting
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This paper proposes a novel hybrid model for wind power forecasting that combines LSTM networks
with the SCO algorithm. The uniqueness of the approach lies in SCO’s single-solution-based search mech-
anism, which contrasts with traditional population-based optimization methods commonly used in similar
models. Unlike conventional LSTM models, where the parameters are initialized randomly, the proposed
method utilizes SCO to determine the optimal initial weights and biases, which are then fine-tuned using
the Adam optimizer. This hybrid strategy enhances the convergence speed while reducing the computational
complexity and improving the forecasting accuracy. To evaluate its effectiveness, the model was tested using
one-year real-world hourly offshore wind data from three geographically diverse wind farms in the United
Kingdom and Denmark. Comparative experiments against benchmark models, including standard LSTM,
BiLSTM, ANFIS, MLP, ELM, and TR-Net, were conducted using multiple performance metrics. The results
show that the LSTM-SCO model outperforms existing methods in terms of both accuracy and efficiency. A
key strength of the proposed model is its robustness across datasets with varying geographical characteristics,
which highlights its scalability and wide applicability. The model demonstrates strong potential for real-time
forecasting in critical areas, such as grid management, energy planning, and renewable integration, offering
practical value for both academic and industrial applications.

The following sections of this paper are arranged accordingly: Section 2 describes the methodology,
encompassing the LSTM model, SCO algorithm, datasets, and performance metrics. The comparative wind-
power forecasting results and discussion are presented in Section 3. The final section presents the results of
the proposed model and provides an outlook for future studies.

2 Materials and Methods

2.1 Long-Short Term Memory Model

The Long Short-Term Memory (LSTM) architecture is a type of artificial neural network widely
employed in deep learning tasks. It is particularly effective in handling time-dependent data and is capable
of learning long-range temporal patterns. Unlike traditional Recurrent Neural Networks (RNNs), LSTM
models offer improved performance by addressing the vanishing gradient problem. As a result, LSTM
has become a widely adopted model, particularly in fields such as natural language processing, speech
recognition, and machine translation. Its ability to achieve highly accurate and robust results on complex
and large-scale datasets has contributed to its popularity [40]. Structurally, the LSTM network includes key
components responsible for managing the input data, updating the cell state, and generating the outputs.
Below is a basic description of the mathematical structure of the LSTM.

1. Inputs: The input sequence of the LSTM begins with x; and the preceding cell state h;_;. The input
sequence indicates the data to be processed in the current time step. The prior cell state holds the output
of the previous time step (h;_;) and cell state (c;—;).

2. Gates: The LSTM model includes three gates, namely the forget gate, input gate, and output gate.
The Forget Gate (f;) regulates the flow of information by deciding what to retain and what to eliminate
from current memory. Using a sigmoid function, the vector values are scaled to a range of 0 to 1, with
0 representing discarded data and 1 representing retained data. The Input Gate (i;) regulates the flow
of the new information into the current cell state. This gate manages the information added to the cell
state by using the current input vector. Vector i, is compressed to lie within the interval [0, 1] using a
sigmoid function. The calculations for both doors are presented below:

ftZG(fo[+Ufht_1+bf) (1)
it:O'(I/\/jxt+Ujht_1+bi) (2)
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where W and U represent the weights of the input and recurrent connections, the subscript f is the
forget gate, the subscript i is the input gate, b stands for bias vector, the subscript t is the iteration, x; is
the input of the model, o is Sigma activation function. f; is the activation vector of the forget gate, i, is
the activation vector of the input/update gate, and h; is the hidden state vector.

3. Cell State (c;) is modified by combining the prior memory state c;_; with the results generated by the
input gate i;.
Furthermore, learning was performed using the output of the forget gate f;.

Ct = C¢—1 Gft +1i;® tanh( cht + Ucht—l + bc) (3)

Here, ¢, represents the cell state vector, where ¢ denotes the memory cell and the symbol © signifies the
operation of multiplying the corresponding elements.

4. Output Gate (o) regulates the deduction of the present cell state (c;) and the input vector at the current
time step. This gate is computed via a sigmoid operation over the cell state and tanh operation over the

cell state.
0; = O'(Woxt + Uoht—l + bo) (4)
h: = 0, ® tanh(¢;) (5)

Here, o, corresponds to the vector that governs the activation of the output gate, where o indicates the
output gate.

The steps described above were repeated iteratively. The model optimizes the weight (W) and bias (b)
parameters to reduce the error between the LSTM outputs and actual training data. By optimizing these
parameters, the model improved its ability to match the predicted results with actual observations, thereby
achieving higher precision during the training phase.

2.2 Single Candidate Optimization Algorithm

Balancing exploration and exploitation remains a critical challenge in metaheuristic optimization
research. Traditional population-based algorithms rely on multiple agents to explore the search space, which
often leads to high computational costs and complex coordination. The Single Candidate Optimization
(SCO) algorithm diverges from this convention by focusing on a singular candidate solution [39]. Through
a two-phase strategy, SCO enhances search efficiency and avoids local optima by dynamically adjusting the
position of the candidate [38]. This innovative approach allows the algorithm to effectively adapt to various
optimization landscapes. The position-update mechanism in the initial phase is governed by the following
equation:

N Xe (i) +w(t) - |Xp(i)] ifr <05
()= {Xb(i) - w(t) |Xp(i)| otherwise (6)
w(t) = e~ (b-t/tne)’ -

In this equation, x(i) defines candidate solution position, where i denotes the dimension. The param-
eter w(t) represents the weight and X, (i) represents the best candidate solution in each iteration. The
constant b, the current iteration ¢, maximum iteration count t,,,,, and random number r; (between zero
and one) are also included. In the subsequent phase, the SCO performs a detailed search of the optimal
position discovered in the first phase. In the course of the second phase, the search progresses towards
narrowing down, thus enabling a more concentrated assessment of the most favorable areas. This all-inclusive
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exploration method seeks to cover a large part of the search space. The equation below describes the
systematic approach through which the potential solution updates its stance in the subsequent phase.

X(i) = {Xh(i) +w(t)-r3- (up(i) —1p(i)) ifr,<0.5 (®)
Xp(i) =w(t) -r3- (up(i) = 1,(i)) otherwise

Here, u;, (i) and [, (i) represent the upper and lower limits, respectively, and r,, r3 represent random
numbers. One key aspect of SCO is the adaptability of parameter w(t), which declines exponentially as
the number of function evaluations increases. This dynamic characteristic is crucial for achieving a balance
between exploring the search space and exploiting potential solutions during optimization. By initially
setting w(t) to a high value, the SCO can effectively explore the search space. As the optimization advances,
the gradual reduction of w(¢) causes a shift in the focus towards exploiting and refining the solution in later
stages. In addition, the SCO tackles the issue of becoming stuck in local optima by modifying the position
update during the second stage. If a set of m consecutive function evaluations fails to show improvement,
the candidate solution undergoes an adjustment process to avoid becoming trapped in a local optimum. The
update process is as follows:

X(i):{Xb(i)+r5-(ub(i)—lb(i)) ifry <0.5 ©)
Xp(i) —re- (up(i) —1,(i)) otherwise

In this formulation, r4, 15, and r¢ represent the random variables that introduce stochastic variations
within the search space. This mechanism enhances the ability of the algorithm to diversify its search path,
thereby reducing the risk of early convergence to suboptimal solutions. As a result, the SCO algorithm
can more comprehensively investigate the search domain, increasing the chances of locating higher-quality
solutions and boosting the overall optimization effectiveness.

2.3 The Proposed Hybrid Model Approach: LSTM-SCO

This subsection provides a detailed explanation of the architecture of the proposed LSTM-SCO model.
In conventional LSTM models, the weight parameters are randomly initialized and subsequently optimized
using the Adam algorithm during training. However, in the proposed method, the initial parameter values
are determined using the SCO algorithm, thereby highlighting the importance of proper initialization
in addressing optimization problems. Subsequently, the parameters were further refined using the Adam
optimizer. The overall framework of the proposed model is depicted in Fig.l and general operational steps
of the model are outlined below.

1. The dataset to be used is selected.

The first 70% of the dataset is used for the training phase of the model, while the remaining 30% is
used for the testing phase. The data used in the models were not selected randomly; instead, the fixed
partitioning method was applied.

The data are normalized using the Z-score method.

The normalized data are used for inputs the LSTM model using the sliding window technique.

The training parameters of the LSTM are tuned using the Single Candidate Optimizer (SCO).

The LSTM model is trained using the Adam optimizer.

The results from the training phase are denormalized to obtain the final training outputs.

The data selected for the test phase are provided as input to the LSTM model.

The results obtained from the test phase are denormalized to produce the final testing outputs.

© 0N e W
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Figure 1: Diagram of LSTM-SCO hybrid model

A major advantage of applying the SCO algorithm to initialize the LSTM model parameters is its
capability to process a single candidate solution. This leads to a notable reduction in the computation time
compared with population-based metaheuristic techniques. The LSTM-SCO model functions according to
the following sequential steps.
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1. The dataset used in this study includes wind energy data gathered from three offshore sites. The
measurements were recorded hourly over a one-year period, amounting to 8760 h of data. This extensive
dataset captures variations in wind energy generation, enabling a thorough analysis of the performance
and efficiency of the different prediction models.

2. The wind power time series was normalized using z-score normalization during the data preprocessing
steps. Then, four input series (x(k), x(k —1), x(k —2), and x(k —3)) and one output target series
(x(k + 1)) were obtained from the normalized time series using the window sliding technique.

3. The LSTM-SCO model was trained using 70% of the input and output time series obtained from the
preprocessing steps, and the rest were used in the testing process.

4.  The LSTM model parameters are pre-trained with SCO for a short period (100 iterations) using the pre-
processed dataset provided for training. In this phase, all trainable parameters of the LSTM network,
including input-to-hidden weights (W;, Wy, W,, W), hidden-to-hidden weights (U;, Uy, U,, U,), and
bias vectors (b;, by, b, b.), are encoded into a single vector X € R, where d denotes the total number
of parameters. The SCO algorithm aims to minimize the Mean Squared Error (MSE) defined as:

FO0 = 5 2 (- 310 (0)

where y; is the actual wind power value at time ¢, $,(X) is the prediction made by the LSTM model
initialized with parameters X, and N is the number of training samples.

After the SCO iteration completes, the best solution Xj, is selected as the initial set of parameters for the
LSTM model:

0o = Xp (11)

Finally, these parameters are further fine-tuned using the Adam optimizer, which adaptively adjusts
learning rates based on first and second moment estimates:

me = Pimy + (1- 1) VeF(6;) (12)
v =Bovia + (1= B2) (VoF(6)))? (13)
N my N Vit

mt:l— lt, Vt:l—ﬁé (14)
O =0, — 1 - —t (15)

Vit e

Here, 7 is the learning rate, € is a small constant to prevent division by zero, and f3;, 8, are exponential
decay rates for the moment estimates.

5. In the testing phase, the pre-trained LSTM-SCO model is tested on 30% of the dataset that was not
included in the training stage. This helps to evaluate how well the model generalizes to new, unseen data.
The effectiveness of the model was measured using the RMSE, MSE, MAE, and R? metrics, providing a
comprehensive assessment of its performance.

To provide a clear and structured representation of the proposed LSTM-SCO hybrid model, we
present the pseudocode of LSTM-SCO hybrid model in Algorithm 1. The procedure includes parameter
vectorization, MSE-based fitness evaluation, SCO-based optimization, and subsequent refinement using the
Adam optimizer.
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Algorithm 1: Pseudocode of the LSTM-SCO hybrid forecasting algorithm
Input: Dataset (x;, y;), Maxlter, Ib, ub, AdamEpochs, stagnation threshold m
Output: Optimized LSTM parameters 6*

1: Initialize best solution vector X, € [Ib, ub]

2: Evaluate initial fitness: F(X,) = MSE(X},)

3: Set stagnation counter counter =0

4:for t =1to MaxIter do

5: if counter < m then >Phase 1: Global Exploration
6: Generate new candidate:
X (1) _ Xb-‘rW(f)' “XhH ifr;<0.5

Xy —w(t)-|Xy| otherwise

7: Compute dynamic weight factor:
bt

w(t) = e_(MaxIter)
8: else >Phase 2: Local Exploitation/Diversification
9: Adjust candidate to avoid local optima:

() {Xb trs-(ub—1b) ifry<0.5
Xy — 16+ (ub—1b) otherwise
10: Reset stagnation counter: counter = 0
11: end if
12:  Evaluate fitness of X(**1): F(X(*1)) = MSE(X(**1))
13: if F(X(*D) < F(X,) then

14: Update best solution: X;, « X1
15: counter =0

16: else

17: counter = counter +1

18: endif

19: end for

20: Extract optimized parameters from X}, into LSTM weights and biases:
00 = {W;, Ui, by, W, Uy, by, Wo, Uy, bo, We, Ue, b}
21: Train LSTM network initialized with 6, using Adam optimizer for AdamEpochs epochs:
22: for e = 1to AdamEpochs do
23: Forward pass: y; = LSTM(x; 6,)
24:  Compute gradients: g, = VoF(6,.)
25:  Update moments: m, = fime_y + (1= B1)ges Ve = Paverr + (1-B2)g>

. v
26: Bias-corrected update: 1, = 1'”—2, Vp= —°
” - f
1,
27 Update parameters: 0,4, = 0, —17- —
Vet €

28: end for
29: Return final optimized parameters: 0* = Oaganepochs

2.4 Performance Metrics

To assess the predictive performance of the different models for wind power forecasting, four key
evaluation metrics were utilized. These metrics collectively provide a thorough assessment of the forecasting
accuracy. The Mean Squared Error (MSE) calculates the average of the squared discrepancies between the
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predicted and actual values and serves as an indicator of the overall prediction performance. The Root Mean
Squared Error (RMSE), obtained by taking the square root of the MSE, expresses the error in the same unit
as the target variable, making the interpretation more intuitive. The Mean Absolute Error (MAE) represents
the mean of the absolute deviations between the predictions and observations, offering a straightforward
measure of the average error magnitude. Finally, the coefficient of determination (R?) measures the extent
to which the model accounts for the variance in the observed wind power values, thereby reflecting the
goodness of fit. In addition to conventional error metrics, three relative error-based performance indicators
were employed to evaluate forecasting accuracy in relation to the magnitude of actual wind power values.
The Mean Absolute Relative Error (MARE) provides a normalized measure of average prediction bias. The
Mean Squared Relative Error (MSRE) emphasizes larger deviations by squaring the relative errors. Finally,
the Root Mean Squared Percentage Error (RMSPE) expresses this error as a percentage for more intuitive
interpretation. The mathematical expressions for these metrics are as follows:

K
MSE = L 3 (a; - pi)? (16)
K i=1
1 K
RMSE =\ | — > (a; - pi)? 17)
K i=1
1 K
MAE = — Z |a,‘ —p,'| (18)
K3
1 &ai - pi
MARE—E; . ‘ (19)
1 &ai-pi\?
MSRE = % ; (T) (20)
1 & ai-piy 0
RMSPE—\IE;( . ) x 100% (21)
K 1 )2
R2 :1_ Z;(zl(al Pil) (22)
Yic(ai—pi)?

where a; and p; represent actual and predicted values, respectively. K represents the number of samples.

2.5 Datasets

A comprehensive dataset comprising hourly wind energy outputs over a twelve-month period from
three offshore wind farms served as the basis for training and testing the forecasting models. The wind farms
include the West of Duddon Sands (Dataset 1) and Barrow (Dataset 2), which are located in the region
between England and Ireland. Dataset 1 operates at 388.8 MW with a standard deviation of 72.08, and Dataset
2 had a capacity of 90 MW with a standard deviation of 28.15. The Horns Power wind farm (Dataset 3),
situated off Denmark’s North Sea coast, has a capacity of 160 MW and standard deviation of 51.20.

3 Forecasting Results and Performance Evaluation

This section presents a comprehensive analysis of the forecasting results obtained from all the models
evaluated, namely, the proposed LSTM-SCO model, Bi-LSTM, LSTM, MLP, ANFIS, ELM, and Transformer
(TR-Net) models. According to prior findings, no single forecasting method consistently outperforms the
others across all evaluation metrics for wind-power prediction [41]. To assess the effectiveness of the
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proposed model, the results were compared with those of several state-of-the-art and traditional models.
Model performance was measured using evaluation metrics such as MSE, RMSE, MAE, MARE, MSRE,
RMSPE, and R?, with both training and testing phase outcomes systematically presented in a tabular format.

The hybrid LSTM-SCO model, along with other benchmark models, was executed on a personal
computer with an Intel Core i5-7500 processor operating at 3.40 GHz, an Intel HD Graphics 630 GPU with
128 MB of memory, and 16 GB of RAM. The configurations for each model were as follows: both LSTM and
BiLSTM models were designed with two hidden layers containing 100 neurons each, trained over 50 epochs
with a mini-batch size of 16, utilizing the ‘Adam’ optimization algorithm. The MLP models employed ‘logsig’
and ‘tansig’ activation functions in conjunction with the ‘traingdm’ back-propagation training function. For
the ANFIS model, two membership functions were assigned, with ‘grid partitioning’ adopted as the training
method; ‘gaussmf’ was selected as the input membership function type, and a linear function was used for
the output. The ELM model was configured with a single hidden layer containing eight neurons and an
input feature size determined by the dataset. The activation function used was tanh and the solution type
was set to Moore-Penrose (MP) for the output weight calculation. Random weight initialization was applied
to the input layer as per the standard ELM approach. The Transformer model was implemented with four
attention heads, three encoder layers, and model dimensions of 64. The model architecture included an input
layer followed by a dense layer with 32 units, a transformer block with specified parameters, global average
pooling, dropout layers, and final dense layers for regression. Both models were trained for 50 epochs using
the Adam optimizer.

The SCO algorithm employs several critical parameters to enhance its search process: the maximum
number of iterations, counter for monitoring fitness stagnation, number of consecutive unsuccessful attempts
(m), number of function evaluations during the initial phase («), and weighting factor (b). Specifically, the
maximum number of iterations was set to 100, with a maximum of five consecutive failed updates. The «
value for the first stage was defined as one-third of the total iterations, and weighting factor (b) was assigned
a value of 2.4. These parameter settings were adopted based on the guidelines provided by [38].

The convergence curves in Fig. 2 illustrate that the SCO algorithm successfully optimizes the initial
parameters of the LSTM model, leading to faster and more stable convergence. This highlights the robustness
of the SCO-based approach in achieving superior performance across all datasets.

[} 20 an 60 () 100 o m 0 B0 L] 100 i) 20 an L] B0 104
ileration Rerason ileration

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3

Figure 2: Convergence behavior of the SCO algorithm in LSTM parameter initialization across all datasets

3.1 Forecasting Results for Dataset 1

This section compares the one-hour-ahead power prediction results of the models for the training and
test phases using one year of wind power data for the West of Duddon Sands area. Table 2 reports the
outcomes from the training and testing phases utilizing various models such as LSTM, BiLSTM, LSTM-SCO,
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MLP, ANFIS, ELM, and TR-Net, on the Dataset 1. In particular, the LSTM-SCO model demonstrated superior
performance during both the training and testing phases, achieving MSE values of 360.74 and 345.26, RMSE
values of 18.993 and 18.581, and R? scores of 0.93216 and 92.359, respectively. The BILSTM model exhibited
good performance, yielding MAE values of 11.962 and 11.145 during the training and testing, respectively.
Conversely, as observed in the Dataset 2, the MLP model appeared to be the least successful among the
models assessed, like Dataset 2.

Table 2: The forecasting metric results for Dataset 1 (Bold values indicate the best performance for each metric)

Training
Metrics ANFIS BiLSTM LSTM LSTM-SCO  MLP ELM  TR-Net
MAE 13.301 11.962 13.951 12.220 16.415 13.639 21154

MSE 426.13 362.21 384.23 360.74 662.76 418.14 872.25
RMSE 20.643 19.032 19.602 18.993 25.744 20414  29.534

MARE 0.1416 0.1274 0.1485 0.1301 0.1748 0.1452 0.2252
MSRE 0.0201 0.0162 0.0221 0.0169 0.0306 0.0211 0.0507
RMSPE% 14.18 12.74 14.85 13.01 17.49 14.53 22.53
R? 0.91986 0.93188 0.92774 0.93216 0.87536  0.92135 0.83590
Test
Metrics ANFIS BiLSTM LSTM LSTM-SCO MLP ELM TR-Net
MAE 12.464 11.145 14.207 11.187 17.408 12.991 19.168
MSE 413.55 349.84 381.38 345.26 694.18 414.80 822.76
RMSE 20.336 18.704 19.529 18.581 26.347 20.321 28.684
MARE 0.1060 0.0948 0.1208 0.0952 0.1481 0.1105 0.1630
MSRE 0.0112 0.0090 0.0146 0.0090 0.0219 0.0122 0.0266
RMSPE% 10.60 9.48 12.08 9.52 14.81 11.05 16.31

R? 0.90847  0.92257  0.91559 0.92359 0.84636 0.90820 0.81790

Fig. 3 displays the forecasting outcomes of the models applied to the West of Duddon Sands dataset.
Upon closer examination of the graph, the success of the models used within a zoomed window around the
1000th data point becomes evident as they closely track the target curve depicted in black. The LSTM-SCO
model, represented by the purple curve, was the most successful, while the MLP model, indicated by the
green curve, was observed to be the least successful. Furthermore, the curve of the BILSTM model closely
follows the target graph, establishing it as the second most successful model.

The R? values obtained for the training and testing phases of the models are shown in Fig. 4. Examining
the graphs, it can be observed that the LSTM-SCO model, shown in green, achieved the highest performance
with R? values of 0.93216 and 0.92359 during the training and testing phases, respectively. Conversely, the
MLP model, shown in yellow, emerged as the least successful model, with R? values of 0.87536 and 0.84636
for the training and testing phases, respectively.
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Figure 4: R? results of using models for Dataset 1

3.2 Forecasting Results for Dataset 2

This section presents a comparative analysis of the proposed LSTM-SCO model applied to the Barrow
dataset against the implemented models, accompanied by detailed analyses and discussions. The perfor-
mance metric results for the LSTM, BiLSTM, LSTM-SCO, MLP, ANFIS, ELM, and TR-Net models obtained
in both the training and testing stages using the dataset from the Barrow region in the UK are shown
in Table 3.

As shown in the table, it is observed that during the training phase, the proposed hybrid LSTM-
SCO model achieved the best forecasting results with the lowest MSE, RMSE, MAE, and R? values of
74.837, 8.6508, 5.7355, and 0.91223, respectively. Similarly, in the test phase, the LSTM-SCO model showed
superior performance with the MSE, RMSE, MAE, and R? values of 66.533, 8.1568, 5.2217, and 0.89682,
respectively. Therefore, it can be concluded that the LSTM-SCO model was the most successful among the
models considered.
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Table 3: The forecasting metric results for Dataset 2 (Bold values indicate the best performance for each metric)

Training
Metrics ANFIS BiLSTM LSTM LSTM-SCO  MLP ELM  TR-Net

MAE 6.3036 6.3167 5.8682 5.7355 8.7717  6.7685  9.3578

MSE 83.991 79.715 85.584 74.837 144.08  95.208  161.009
RMSE 9.1647 8.9284 9.2512 8.6508 12.003 9.733 12.689
MARE 0.1919 0.1923 0.1786 0.1746 0.2670  0.2060  0.2849
MSRE 0.0368  0.0370 0.0319 0.0305 0.0713  0.0425 0.0811

RMSPE% 19.19 19.23 17.86 17.46 26.70 20.60 28.51
R? 0.9015 0.90651 0.89963 0.91223 0.83102 0.88835 0.81120
Test
Metrics  ANFIS BiLSTM LSTM LSTM-SCO MLP ELM TR-Net
MAE 5.8011 5.8006 5.6011 5.2217 8.0192 6.3049  8.7049
MSE 76.158 69.033 77.555 66.533 133.52 85.864  143.010
RMSE 8.7269 8.3086 8.8065 8.1568 11.555 9.2233 11.959

MARE 0.1608 0.1608 0.1552 0.1447 0.2222 0.1747 0.2412
MSRE 0.0259 0.0259 0.0241 0.0209 0.0494  0.0305  0.0582

RMSPE%  16.08 16.08 15.52 14.47 22.22 17.47 24.13
R? 0.88189  0.89294 0.87972 0.89682 0.79294 0.86684 0.77821

The forecasting test results of the implemented models for wind power Dataset 2 are illustrated in Fig. 5.
The results indicate that all models, with the exception of MLP, successfully approximated the wind power
trend during forecasting.
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Figure 5: Results of using models for Dataset 2
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The curve represented by the purple line, which is closest to the black target curve, corresponds to
the LSTM-SCO model, as shown in the enlarged frame. The MLP model demonstrated limited capability
in accurately capturing signal variations, especially during periods of rapid changes in wind power. When
comparing the proposed model solely with the LSTM model, it becomes evident that the SCO metaheuristic
approach significantly affects the model performance by optimizing the parameters. Throughout the training
phase, the R? value improved from 0.89963 for LSTM to 0.91223 when the SCO was integrated into the
model. Furthermore, examining the RMSE value revealed a notable 12.7% decrease with the inclusion of the
SCO. Considering all performance analyses, the proposed model’s performance can be said to be reliable and
effective for the Dataset 2.

The graphs that illustrate the R? data for the training and testing phases of the five models used are
shown in Fig. 6. It can be seen from the graphs that the LSTM-SCO model, represented in green, achieved
the highest performance in both training and testing stages. In addition, the BILSTM model, shown in blue,
achieved results close to those of the LSTM-SCO model, establishing itself as the second most successful

model in the analysis.
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Figure 6: R” results of using models for Dataset 2

3.3 Forecasting Results for Dataset 3

The models forecasted one-hour-ahead power using one year of wind power data from the Horns Power
region in this subsection. The performance metric results for the training and testing phases of the proposed
LSTM-SCO model and other models are detailed in Table 4.

Table 4: The forecasting metric results for Dataset 3 (Bold values indicate the best performance for each metric)

Training
Metrics ANFIS BiLSTM  LSTM LSTM-SCO MLP ELM TR-Net
MAE 14.067 12.405 14.221 13.368 20.813 14.288 18.972
MSE 435.64 430.73 416.42 413.8 713.16 459.30 719.01
RMSE 20.872 20.754 20.406 20.342 26.705 21.424 26.814
MARE 0.2245 0.1980 0.2270 0.2134 0.3322 0.2281 0.3028
MSRE 0.0504 0.0392 0.0515 0.0455 0.1104 0.0520 0.0917
RMSPE% 22.45 19.80 22.70 21.34 33.22 22.81 30.29
R? 0.83287  0.83476  0.84025 0.84125 0.72641  0.82382  0.72420

(Continued)
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Table 4 (continued)

Test
Metrics ANFIS BiLSTM LSTM LSTM-SCO MLP ELM TR-Net
MAE 15.007 13.472 15.497 14.262 22.904 15.339 20.005
MSE 550.86 568.02 541.45 531.11 868.09 581.48 868.47
RMSE 23.47 23.833 23.269 23.046 29.463 24.108 29.470
MARE 0.2654 0.2383 0.2741 0.2523 0.4051 0.2713 0.3538
MSRE 0.0704 0.0568 0.0751 0.0637 0.1641 0.0736 0.1252
RMSPE% 26.54 23.83 2741 25.23 40.51 27.13 35.38
R? 0.79044 0.78391 0.79402 0.79795 0.66975 0.77879 0.66960

Observing the values in the table, it is apparent that the proposed model exhibited the most success,
achieving an MSE of 413.8, RMSE of 20.342, and R* of 0.84125 during the training period and an MSE of
531.11, RMSE of 23.046, and R? of 0.79795 during the test period. Additionally, in terms of MAE values, the
BiLSTM model outperformed the others, with effective results of 12.405 and 13.472 in the training and test
phases, respectively.

Fig. 7 presents graphical curves representing the forecasting results of all the implemented models for
the Horns Power dataset during the testing phase. Upon closer inspection within the zoomed window, it was
observed that the purple curve, representing the LSTM-SCO model, closely approximates the black target
curve. Conversely, the green curve corresponding to the MLP model was the least successful in tracking the
target curve. For the Horns power dataset, analyses were performed while considering the presence of zero
data points. As observed in Table 4, the performance metric results were notably high for RMSE, MSE, and
MAE. Similarly, in Fig. 7, the performance of the proposed model is lower than that of the other datasets,
owing to the presence of zero points. The decision not to implement filtering or smoothing techniques here
is intentional, as it confirms the analyses conducted during periods when wind turbines are inactive.
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Figure 7: Results of used models for Dataset 3
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By analyzing the R? results for the training and testing phases of the models used in Fig. 8, it is evident
that the LSTM-SCO model, shown in green, emerged as the most successful in both phases. In both the
training and testing phases, the LSTM model was very close to the proposed model, establishing itself as the
second most successful model, with results close to those of the proposed model.
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Figure 8: Results of R* for Dataset3

4 Conclusion

This study proposed a new hybrid model, LSTM-SCO, by integrating the SCO algorithm into a
traditional LSTM model. The SCO algorithm determines the initial parameters of the LSTM model, improves
the starting point of the model, and speeds up the optimization process, resulting in improved performance.
This method introduces a novel approach for wind power forecasting with faster runtime. The success of the
LSTM-SCO model was assessed using various performance metrics in the results section, demonstrating the
potential of this new hybrid model in the field of wind power forecasting.

The study applied the proposed LSTM-SCO hybrid model to observed wind data from three offshore
wind-energy farms and developed a highly accurate prediction model. The model outperformed benchmark
models, including LSTM, BiLSTM, MLP, and ANFIS, thereby demonstrating its superior accuracy. The
results showed that the LSTM-SCO hybrid model was the most successful. In the Dataset 2, the LSTM-
SCO model outperformed all other models in both the training and testing phases. By integrating the SCO
metaheuristic approach into the LSTM model, there was a noticeable 12.5% enhancement in terms of the
MSE value for Dataset 2. Similarly, in the Dataset 1 and Dataset 3, the LSTM-SCO model was more successful
in both training and testing, except for the MAE values. Consequently, the proposed hybrid LSTM-SCO
model outperformed singular forecasting models, as demonstrated in this study.

In addition to improvements observed in terms of MSE and MAE, the proposed LSTM-SCO model
also achieved noticeable enhancements in MARE across all datasets. For instance, in Dataset 2, the test phase
MARE value of the LSTM-SCO model was 0.1447, which corresponds to a relative error reduction of 6.7%
compared with the baseline LSTM model. Similarly, in Dataset 1 and Dataset 3, the LSTM-SCO model yielded
lower MARE values than all other models except BiLSTM, further confirming its robustness and effectiveness
in minimizing relative forecasting errors.

The results obtained in this study can contribute to the groundwork of further research. The structural
description of the proposed LSTM-SCO model and the ability of the SCO algorithm to optimize the
initial parameters provide insight into the development of new approaches in the domain of wind energy
prediction. Future studies may aim to integrate data preprocessing algorithms into this model and make it
compatible with different optimization techniques. Furthermore, evaluating the performance of the LSTM-
SCO model on different datasets and time intervals is an important research area. Based on the results of the
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proposed hybrid model, this study contributes to the development of more effective and accurate models for
different regions.

Although the proposed LSTM-SCO hybrid model demonstrated superior performance across multiple
offshore wind power datasets, several challenges and limitations should be acknowledged, offering avenues
for future research. While the SCO algorithm offers a lightweight and fast convergence solution compared to
population-based metaheuristics, its single-solution-based strategy may limit the exploration capability in
highly complex optimization landscapes. Additionally, because SCO was employed only for the initialization
of the LSTM parameters, potential improvements from deeper integration during training were not explored.
Another limitation stems from the use of a relatively fixed LSTM architecture across the different datasets.
More adaptive architectures may yield enhanced performances. Furthermore, the model was validated for
one-hour-ahead forecasting using historical offshore wind data sets. Real-world applications may involve
more dynamic or noisy environments, grid constraints, or missing data, which were not addressed in the
current study.

To further improve model performance and robustness, future studies may incorporate decomposition-
based preprocessing techniques such as VMD, CEEMDAN, or wavelet transforms to better extract signal
components. In addition, hybrid models can be extended to include ensemble or attention-based architec-
tures to better capture temporal dependencies. The integration of LLM-based time-series forecasters presents
a novel research avenue, either through intra-modal fine-tuning or cross-modal prompting, especially in
scenarios with limited training data.
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Abbreviations

AGRU Attention-based Gated Recurrent Unit

Al Artificial Intelligence

ANN Artificial Neural Network

ANFIS Adaptive-Network-Based Fuzzy Inference System

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

AVMD-ODRMKELM Adaptive Variational Mode Decomposition and Optimized Deep

Learning Mixed Kernel Extreme Learning Machine
BiLSTM Bidirectional Long Short-Term Memory
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CEEMDAN

CNN

CSA

ELM

ES
FS-BO-BILSTM

GA

GPT4TS

GRU

GW

GWEC

GWO

GWO-LSTM

GWO-nested CEEMDAN-CNN-BiLSTM

HBO-LSTM
HBO
ICEEMDAN-LSTM-GWO

IEA
LCWOA-ELM

LCWOA
LLMs
LSTM
LSTM-GWO
LSTM-SCO
MAE
MARE
MLP
MLP-WOA
MSE

MSRE
QPSO

R2

RNNs
RMSE
RMSPE
SARIMA
SCO
SWD-Meta-ELM
SVM
TR-Net
VMD

WT
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Complete Ensemble Empirical Mode Decomposition with Adap-
tive Noise

Convolutional Neural Network

Crow Search Algorithm

Extreme Learning Machine

Feature Selection

Feature Selection, Bayesian Optimization and Bidirectional Long
Short-Term Memory

Genetic Algorithm

Generative Pre-trained Transformer for Time Series

Gated Recurrent Units

Gigawatt

Global Wind Energy Council

Grey Wolf Optimizer

Grey Wolf Optimizer and Long Short-Term Memory

Grey Wolf Optimizer, Complete Ensemble Empirical Mode Decom-
position with Adaptive Noise, Convolutional Neural Network and
Bidirectional Long Short-Term Memory

Heap-Based Optimizer and Long Short-Term Memory

Heap-Based Optimizer

Improved Complementary Ensemble Empirical Mode Decompo-
sition with Adaptive Noise, Long Short-Term Memory and Grey
Wolf Optimizer

International Energy Agency

Lévy Flight Chaotic Whale Optimization Algorithm and Extreme
Learning Machine

Lévy flight Chaotic Whale Optimization Algorithm

Large Language Models

Long Short-Term Memory

Long Short-Term Memory and Grey Wolf Optimizer

Long Short-Term Memory and Single Candidate Optimizer

Mean Absolute Error

Mean Absolute Relative Error

Multi-Layer Perceptron

Multi-Layer Perceptron and Whale Optimization Algorithm

Mean Squared Error

Mean Squared Relative Error

Quantum Particle Swarm Optimization Algorithm

R-squared (Coefficient of Determination)

Recurrent Neural Networks

Root Mean Squared Error

Root Mean Squared Percentage Error

Seasonal Autoregressive Integrated Moving Average

Single Candidate Optimizer

Swarm Decomposition and Meta-Extreme Learning Machine
Support Vector Machine

Transformer Model

Variational Mode Decomposition

Wavelet Transform
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WT-DBN-LGBM

WT-DBN-RF
WPD-PSR-ADQPSO-MKLSSVM
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Wavelet Transform, Deep Belief Network and Light Gradient Boost-
ing Machine

Wavelet Transform, Deep Belief Network and Random Forest
Wavelet Packet Decomposition, Phase Space Reconstruction, Quan-
tum Particle Swarm Optimization with Chaos Initialization, Gaussian
Distribution Local Attraction Points and Disturbance Operator and
Multi-Kernel Least Square Support Vector Machine

First input for Long Short-Term Memory

Preceding cell state for Long Short-Term Memory

Cell state for Long Short-Term Memory

Forget gate for Long Short-Term Memory

Input gate for Long Short-Term Memory

Weight of the input connections for Long Short-Term Memory
Weight of the recurrent connections for Long Short-Term Memory
Stands for bias vector for Long Short-Term Memory

Subscript iteration for Long Short-Term Memory

Sigma activation function for Long Short-Term Memory

Hidden state vector for Long Short-Term Memory

Prior memory state for Long Short-Term Memory

Output gate for Long Short-Term Memory

Defines candidate solution position for Single Candidate Optimiza-
tion Algorithm

Indicates the dimension for Single Candidate Optimization
Algorithm

Represents the weight for Single Candidate Optimization Algorithm
Stands for the best candidate solution for Single Candidate Optimiza-
tion Algorithm

Constant for Single Candidate Optimization Algorithm

Current iteration for Single Candidate Optimization Algorithm
Maximum iteration count for Single Candidate Optimization
Algorithm

Random number for Single Candidate Optimization Algorithm
Upper limit for Single Candidate Optimization Algorithm

Lower limit for Single Candidate Optimization Algorithm

Stand for the random numbers in Single Candidate Optimiza-
tion Algorithm

Input-to-hidden weights for Long Short-Term Memory-Single Can-
didate Optimization Algorithm

Hidden-to-hidden weights for Long Short-Term Memory-Single
Candidate Optimization Algorithm

Bias vectors for Long Short-Term Memory-Single Candidate Opti-
mization Algorithm

Actual wind power value at time t for Long Short-Term Memory-
Single Candidate Optimization Algorithm

Prediction made by the Long Short-Term Memory-Single Candidate
Optimization Algorithm

Parameters for Long Short-Term Memory-Single Candidate Opti-
mization Algorithm
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N Number of training samples for Long Short-Term Memory-Single
Candidate Optimization Algorithm

Xy Selected as the initial set of parameters for Long Short-Term Memory-
Single Candidate Optimization Algorithm

n Learning rate for Long Short-Term Memory-Single Candidate Opti-

mization Algorithm

€ A small constant to prevent division by zero for Long Short-Term

Memory-Single Candidate Optimization Algorithm
p1and 3, Exponential decay rates for the moment estimates in Long Short-Term
Memory-Single Candidate Optimization Algorithm

References

1. L E.A.(IEA). World energy balances: overview world; 2020 [Internet]. [cited 2023 Sep 15]. Available from: https://
www.iea.org/reports/world-energy-balances- overview/world.

2. Sun S, Du Z, Jin K, Li H, Wang S. Spatiotemporal wind power forecasting approach based on multi-factor
extraction method and an indirect strategy. Appl Energy. 2023;350(2):121749. doi:10.1016/j.apenergy.2023.121749.

3. Wu YK, Hong]JS. A literature review of wind forecasting technology in the world. In: 2007 IEEE Lausanne Power
Tech; 2007 Jul 1-5; Lausanne, Switzerland. p. 504-9. doi:10.1109/PCT.2007.4538368.

4. Wang ], Qian Y, Zhang L, Wang K, Zhang H. A novel wind power forecasting system integrating time series
refining, nonlinear multi-objective optimized deep learning and linear error correction. Energy Convers Manag.
2024;299:117818. doi:10.1016/j.enconman.2023.117818.

5. LiN,Dong], LiuL, Li H, Yan J. A novel EMD and causal convolutional network integrated with Transformer for
ultra short-term wind power forecasting. Int J Electr Power Energy Syst. 2023;154(3):109470. doi:10.1016/j.ijepes.
2023.109470.

6. Dokur E, Karakuzu C, Yiizge¢ U, Kurban M. Using optimal choice of parameters for meta-extreme learning
machine method in wind energy application. COMPEL. 2021;40(3):390-401. d0i:10.1108/ COMPEL-07-2020- 0246.

7. Hong YY, Rioflorido CLPP, Zhang W. Hybrid deep learning and quantum-inspired neural network for day-ahead
spatiotemporal wind speed forecasting. Expert Syst Appl. 2024;241(2):122645. doi:10.1016/j.eswa.2023.122645.

8. Zheng]J, Wang]. Short-term wind speed forecasting based on recurrent neural networks and Levy crystal structure
algorithm. Energy. 2024;293:130580. doi:10.1016/j.energy.2024.130580.

9. Zhang D, Hu G, Song J, Gao H, Ren H, Chen W. A novel spatio-temporal wind speed forecasting method based
on the microscale meteorological model and a hybrid deep learning model. Energy. 2024;288:129823. d0i:10.1016/
j.energy.2023.129823.

10. Balci M, Dokur E, Yuzgec U, Erdogan N. Multiple decomposition-aided long short-term memory network for
enhanced short-term wind power forecasting. IET Renew Power Gener. 2024;18(3):331-47. doi:10.1049/rpg2.12919.

11. Tawn R, Browell J. A review of very short-term wind and solar power forecasting. Renew Sustain Energ Rev.
2022;153(10):111758. d0i:10.1016/j.rser.2021.111758.

12. Hong T, Pinson P, Wang Y, Weron R, Yang D, Zareipour H. Energy forecasting: a review and outlook. IEEE Open
Access ] Power Energy. 2020;7:376-88. doi:10.1109/OAJPE.2020.3029979.

13. Yang T, Yang Z, Li £ Wang H. A short-term wind power forecasting method based on multivariate signal
decomposition and variable selection. Appl Energy. 2024;360(15):122759. doi:10.1016/j.apenergy.2024.122759.

14. Chen N, Qian Z, Nabney IT, Meng X. Wind power forecasts using Gaussian processes and numerical weather
prediction. IEEE Trans Power Syst. 2013;29(2):656-65. doi:10.1109/TPWRS.2013.2282366.

15.  Zhao J, Guo Y, Xiao X, Wang J, Chi D, Guo Z. Multi-step wind speed and power forecasts based on a WRF
simulation and an optimized association method. Appl Energy. 2017;197:183-202. doi:10.1016/j.apenergy.2017.
04.017.

16. JungJ, Broadwater RP. Current status and future advances for wind speed and power forecasting. Renew Sustain

Energ Rev. 2014;31:762-77. d0i:10.1016/j.rser.2013.12.054.


https://www.iea.org/reports/world-energy-balances-overview/world
https://www.iea.org/reports/world-energy-balances-overview/world
https://doi.org/10.1016/j.apenergy.2023.121749
https://doi.org/10.1109/PCT.2007.4538368
https://doi.org/10.1016/j.enconman.2023.117818
https://doi.org/10.1016/j.ijepes.2023.109470
https://doi.org/10.1016/j.ijepes.2023.109470
https://doi.org/10.1108/COMPEL-07-2020-0246
https://doi.org/10.1016/j.eswa.2023.122645
https://doi.org/10.1016/j.energy.2024.130580
https://doi.org/10.1016/j.energy.2023.129823
https://doi.org/10.1016/j.energy.2023.129823
https://doi.org/10.1049/rpg2.12919
https://doi.org/10.1016/j.rser.2021.111758
https://doi.org/10.1109/OAJPE.2020.3029979
https://doi.org/10.1016/j.apenergy.2024.122759
https://doi.org/10.1109/TPWRS.2013.2282366
https://doi.org/10.1016/j.apenergy.2017.04.017
https://doi.org/10.1016/j.apenergy.2017.04.017
https://doi.org/10.1016/j.rser.2013.12.054

Comput Model Eng Sci. 2025;144(1) 967

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Erdem E, Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy.
2011;88(4):1405-14. doi:10.1016/j.apenergy.2010.10.031.

Liu X, Lin Z, Feng Z. Short-term offshore wind speed forecast by seasonal ARIMA—a comparison against GRU
and LSTM. Energy. 2021;227:120492. d0i:10.1016/j.energy.2021.120492.

Singh SN, Mohapatra A. Repeated wavelet transform based ARIMA model for very short-term wind speed
forecasting. Renew Energy. 2019;136(1):758-68. doi:10.1016/j.renene.2019.01.031.

Wang J, Niu X, Zhang L, Liu Z, Huang X. A wind speed forecasting system for the construction of a smart
grid with two-stage data processing based on improved ELM and deep learning strategies. Expert Syst Appl.
2024;241(4):122487. doi:10.1016/j.eswa.2023.122487.

Abedinia O, Ghasemi-Marzbali A, Shafiei M, Sobhani B, Gharehpetian GB, Bagheri M. A multi-level model
for hybrid short term wind forecasting based on SVM, wavelet transform and feature selection. In: 2022 IEEE
International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial
Power Systems Europe (EEEIC/I&CPS Europe); 2022 Jun 28-Jul 1; Prague, Czech Republic. p. 1-6. doi:10.1109/
EEEIC/ICPSEurope54979.2022.9854519.

Zhang Y, Pan G, Chen B, Han J, Zhao Y, Zhang C. Short-term wind speed prediction model based on GA-ANN
improved by VMD. Renew Energy. 2020;156(1):1373-88. doi:10.1016/j.renene.2019.12.047.

Rayi VK, Mishra SP, Naik ], Dash PK. Adaptive VMD based optimized deep learning mixed kernel ELM
autoencoder for single and multistep wind power forecasting. Energy. 2022;244(2):122585. doi:10.1016/j.energy.
2021.122585.

Samadianfard S, Hashemi S, Kargar K, Izadyar M, Mostafaeipour A, Mosavi A, et al. Wind speed prediction using
a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Rep. 2020;6(3):1147-59.
doi:10.1016/j.egyr.2020.05.001.

Memarzadeh G, Keynia F. A new short-term wind speed forecasting method based on fine-tuned LSTM neural
network and optimal input sets. Energy Convers Manag. 2020;213:112824. doi:10.1016/j.enconman.2020.112824.
Joseph LP, Deo RC, Prasad R, Salcedo-Sanz S, Raj N, Soar J. Near real-time wind speed forecast model with
bidirectional LSTM networks. Renew Energy. 2023;204(7):39-58. doi:10.1016/j.renene.2022.12.123.

HeJJ, Yu CJ, Li YL, Xiang HY. Ultra-short term wind prediction with wavelet transform, deep belief network and
ensemble learning. Energy Convers Manag. 2020;205:112418. doi:10.1016/j.enconman.2019.112418.

Niu Z, Yu Z, Tang W, Wu Q, Reformat M. Wind power forecasting using attention-based gated recurrent unit
network. Energy. 2020;196(3):117081. doi:10.1016/j.energy.2020.117081.

Duan Z, Bian C, Yang S, Li C. Prompting large language model for multi-location multi-step zero-shot wind power
forecasting. Expert Syst Appl. 2025;280(3):127436. doi:10.1016/j.eswa.2025.127436.

Lai Z, Wu T, Fei X, Ling Q. BERT4ST: fine-tuning pre-trained large language model for wind power forecasting.
Energy Convers Manag. 2024;307(8):118331. doi:10.1016/j.enconman.2024.118331.

Ewees AA, Al-qaness MA, Abualigah L, Abd Elaziz M. HBO-LSTM: optimized long short term memory with
heap-based optimizer for wind power forecasting. Energy Convers Manag. 2022;268(16):116022. doi:10.1016/j.
enconman.2022.116022.

Altan A, Karasu S, Zio E. A new hybrid model for wind speed forecasting combining long short-term memory
neural network, decomposition methods and grey wolf optimizer. Appl Soft Comput. 2021;100(4):106996. doi:10.
1016/j.as0¢.2020.106996.

Syama S, Ramprabhakar J, Anand R, Guerrero JM. A hybrid extreme learning machine model with lévy flight
chaotic whale optimization algorithm for wind speed forecasting. Res Eng. 2023;19(1):101274. doi:10.1016/j.rineng.
2023.101274.

Dokur E, Erdogan N, Salari ME, Karakuzu C, Murphy J. Offshore wind speed short-term forecasting based on a
hybrid method: swarm decomposition and meta-extreme learning machine. Energy. 2022;248:123595. doi:10.1016/
j.energy.2022.123595.

Sun S, Wang Y, Meng Y, Wang C, Zhu X. Multi-step wind speed forecasting model using a compound forecasting
architecture and an improved QPSO-based synchronous optimization. Energy Rep. 2022;8:9899-918. doi:10.1016/
j.egyr.2022.07.164.


https://doi.org/10.1016/j.apenergy.2010.10.031
https://doi.org/10.1016/j.energy.2021.120492
https://doi.org/10.1016/j.renene.2019.01.031
https://doi.org/10.1016/j.eswa.2023.122487
https://doi.org/10.1109/EEEIC/ICPSEurope54979.2022.9854519
https://doi.org/10.1109/EEEIC/ICPSEurope54979.2022.9854519
https://doi.org/10.1016/j.renene.2019.12.047
https://doi.org/10.1016/j.energy.2021.122585
https://doi.org/10.1016/j.energy.2021.122585
https://doi.org/10.1016/j.egyr.2020.05.001
https://doi.org/10.1016/j.enconman.2020.112824
https://doi.org/10.1016/j.renene.2022.12.123
https://doi.org/10.1016/j.enconman.2019.112418
https://doi.org/10.1016/j.energy.2020.117081
https://doi.org/10.1016/j.eswa.2025.127436
https://doi.org/10.1016/j.enconman.2024.118331
https://doi.org/10.1016/j.enconman.2022.116022
https://doi.org/10.1016/j.enconman.2022.116022
https://doi.org/10.1016/j.asoc.2020.106996
https://doi.org/10.1016/j.asoc.2020.106996
https://doi.org/10.1016/j.rineng.2023.101274
https://doi.org/10.1016/j.rineng.2023.101274
https://doi.org/10.1016/j.energy.2022.123595
https://doi.org/10.1016/j.energy.2022.123595
https://doi.org/10.1016/j.egyr.2022.07.164
https://doi.org/10.1016/j.egyr.2022.07.164

968

36.

37.

38.

39.

40.

41.

Comput Model Eng Sci. 2025;144(1)

Phan QB, Nguyen TT. Enhancing wind speed forecasting accuracy using a GWO-nested CEEMDAN-CNN-
BiLSTM model. ICT Express. 2024;10(3):485-90. d0i:10.1016/j.icte.2023.11.009.

Cai Z, Dai S, Ding Q, Zhang J, Xu D, Li Y. Gray wolf optimization-based wind power load mid-long term
forecasting algorithm. Comput Electr Eng. 2023;109(5):108769. doi:10.1016/j.compeleceng.2023.108769.

Shami TM, Grace D, Burr A, Mitchell PD. Single candidate optimizer: a novel optimization algorithm. Evol Intell.
2024;17(2):863-87. d0i:10.1007/512065-022-00762-7.

Yuan X, Karbasforoushha MA, Syah RB, Khajehzadeh M, Keawsawasvong S, Nehdi ML. An effective metaheuristic
approach for building energy optimization problems. Buildings. 2022;13(1):80. d0i:10.3390/buildings13010080.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-80. doi:10.1162/neco.1997.
9.8.1735.

Wang Y, Zou R, Liu F, Zhang L, Liu Q. A review of wind speed and wind power forecasting with deep neural
networks. Appl Energy. 2021;304(1):117766. doi:10.1016/j.apenergy.2021.117766.


https://doi.org/10.1016/j.icte.2023.11.009
https://doi.org/10.1016/j.compeleceng.2023.108769
https://doi.org/10.1007/s12065-022-00762-7
https://doi.org/10.3390/buildings13010080
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.apenergy.2021.117766

	A Hybrid LSTM-Single Candidate Optimizer Model for Short-Term Wind Power
obreakspace Prediction
	1 Introduction
	2 Materials and Methods
	3 Forecasting Results and Performance Evaluation
	4 Conclusion
	Abbreviations
	References


