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ABSTRACT: Automotive radar has emerged as a critical component in Advanced Driver Assistance Systems (ADAS)
and autonomous driving, enabling robust environmental perception through precise range-Doppler and angular
measurements. It plays a pivotal role in enhancing road safety by supporting accurate detection and localization
of surrounding objects. However, real-world deployment of automotive radar faces significant challenges, including
mutual interference among radar units and dense clutter due to multiple dynamic targets, which demand advanced
signal processing solutions beyond conventional methodologies. This paper presents a comprehensive review of
traditional signal processing techniques and recent advancements specifically designed to address contemporary
operational challenges in automotive radar. Emphasis is placed on direction-of-arrival (DoA) estimation algorithms
such as Bartlett beamforming, Minimum Variance Distortionless Response (MVDR), Multiple Signal Classification
(MUSIC), and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT). Among these, ESPRIT
offers superior resolution for multi-target scenarios with reduced computational complexity compared to MUSIC,
making it particularly advantageous for real-time applications. Furthermore, the study evaluates state-of-the-art
tracking algorithms, including the Kalman Filter (KF), Extended KF (EKF), Unscented KF, and Bayesian filter. EKF is
especially suitable for radar systems due to its capability to linearize nonlinear measurement models. The integration of
machine learning approaches for target detection and classification is also discussed, highlighting the trade-off between
the simplicity of implementation in K-Nearest Neighbors (KNN) and the enhanced accuracy provided by Support
Vector Machines (SVM). A brief overview of benchmark radar datasets, performance metrics, and relevant standards
is included to support future research. The paper concludes by outlining ongoing challenges and identifying promising
research directions in automotive radar signal processing, particularly in the context of increasingly complex traffic
scenarios and autonomous navigation systems.
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1 Introduction
Next-generation vehicles are equipped with Advanced Driver Assistance Systems (ADAS) designed to

enhance driving safety while ensuring a safe and stress-free journey [1]. According to the report provided by
the World Health Organization (WHO), road traffic accidents resulted in approximately 1.19 million fatalities
in 2023 [2]. The high rate of casualties, significant financial losses, and the growing demand for intelligent
safety systems have driven manufacturers to advance autonomous driving technologies [3].

In fully automated vehicles, human drivers are replaced by intelligent systems responsible for both
sensing and decision-making. The ADAS framework integrates multiple sensors, including radar, LiDAR,
and cameras, to ensure reliable vehicle performance and improve driver assistance. Among these, radar is
particularly effective for detecting the range and velocity of objects, processing data efficiently, and operating
under challenging weather conditions. LiDAR offers high-range accuracy and superior angular resolution
but is susceptible to adverse weather conditions and interference [4]. Cameras provide color distinction,
high angular resolution, and accurate target classification but cannot measure velocity and range, and their
performance is compromised in low-light and adverse weather conditions [5]. Given these limitations,
automotive radar is the primary sensing modality for automated vehicles [6].

Radars were developed as military tools during and after World War II [7]. Over time, the applications
expanded to include air traffic control, weather Radars, ground-penetrating radars, guided missile target
locating systems, and more. Automotive Radar applications were first developed in the early 1970s as part
of a German research program (NTO 49) aimed at reducing road accidents [8]. In recent times, the Euro
New Car Assessment Program (NCAP) for European road safety requires Adaptive Cruise Control (ACC),
Automotive Emergency Braking (AEB), Lane Change Assist (LCA), etc. In [9], a semi-physical Radar
modeling technique has been adopted to observe the accuracy of the probability density function of Radar
data and the Radar Cross Section (RCS) values obtained are similar to the values for global vehicle target
validation of NCAP.

Automotive Radars are mostly used in the 24 and 77 GHz ranges of the frequency spectrum. A 4 GHz
bandwidth, improved range resolution, proper Doppler sensitivity that leads to velocity resolution, and a
reduced antenna aperture, which is useful for fitting on vehicles, are the important advantages of using the
77–81 GHz frequency band. Automotive Radars operating in the 24 GHz frequency band are used for ultra-
wideband applications. An arrangement of planar grid antenna array for this Radar improves the antenna
gain and impedance bandwidth [10]. Performance criteria of automotive Radar include target resolution,
range resolution, dynamic range in terms of velocity, and direction of arrival of the received signal. Fig. 1
represents a 360 degree surround sensing by Radar scenario of an autonomous car [11]. A Long Range Radar
(LRR) having a range of 10–250 m is mounted in front of a vehicle and is suitable for ACC [12]. Medium
Range Radars (MRR) with a range of 1–100 m are fitted on the front and rear sides and are applicable for
Lane Change Assistance and warning of rear collisions. Short-range radars (SRRs) with a range of 0.15–30
m are fitted at the four corners of a car and are applicable for parking assist, obstacle detection, etc. [13]. The
various radars, along with their respective functions, are depicted in Fig. 1.

Automotive radar systems are generally composed of three main components: the transmitter, the
receiver, and the signal processing subsystem. On the transmitter side, the antenna operates using a
frequency-modulated continuous wave (FMCW) chirp waveform [14]. Signal processing at this stage
involves generating a series of up-and-down chirps using a frequency-generating circuit, which are then
transmitted via the antenna. The antenna radiates power that is regulated by design constraints, thereby
influencing the transmitter architecture. Notably, the maximum detectable range is proportional to the
square root of the transmitted power. The transmitter typically consists of a waveform generator, an
upconverter, and a power amplifier. The waveform generator produces a predefined signal, either continuous
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or pulsed, at an intermediate frequency (IF). This signal is then converted to a higher radio frequency (RF) via
the up-converter and subsequently amplified using a power amplifier with adjustable gain. The transmitted
signal reflects off-targets and returns to the radar system, where it is received and mixed with a copy of
the transmitted signal, resulting in a beat frequency. The receiver must maximize the signal-to-noise ratio
(SNR) to suppress or eliminate unwanted signals and clutter. To achieve this, the receiver includes a low-
noise amplifier (LNA) and a down-converter, which utilizes a local oscillator to convert the RF signal back
to IF.

Figure 1: Vehicle in 360○ Automotive radar coverage for collision avoidance

The signal processing subsystem plays a crucial role in extracting range and velocity information. It
involves applying a Fourier Transform to the beat frequencies to perform range estimation and analyzing the
Doppler-induced phase shifts across multiple chirps to measure target velocity. This is typically accomplished
through a two-stage Fast Fourier Transform (FFT): a fast-time FFT for range estimation and a slow-time FFT
for Doppler estimation, followed by beamforming techniques [15,16]. Direction of arrival (DOA) estimation
is performed using array processing techniques, such as digital beamforming. Based on the extracted
information, a target list is generated, enabling detection and analysis of target parameters. This is followed
by stationary and dynamic target processing, wherein stationary targets undergo classification while moving
targets are subject to tracking and classification. A high-level block diagram of the automotive radar signal
processing chain is presented in Fig. 2.

Automotive Radar operational hurdles [17]:
1. In urban environments, automotive radar systems are significantly affected by multipath propaga-

tion, which arises from reflections of various surrounding objects such as pedestrians, vehicles, road
infrastructure, and animals. These objects exhibit varying Radar Cross Section (RCS), velocities, and
movement patterns, necessitating high precision in target detection, localization, tracking, and classifi-
cation. Multipath interference can introduce false target detections, which can adversely impact overall
radar performance. Mitigating these effects requires applying advanced signal processing techniques,
which, in turn, increases the computational complexity of the system.

2. In automotive radar systems, any object above the road surface that interferes with signal reception
is classified as clutter. Clutter originating from nearby obstacles significantly influences the required
suppression levels of antenna sidelobes, particularly in the elevation plane. Echoes received through
sidelobes can, in some cases, exhibit greater power than returns from weaker targets captured by the
main lobe, potentially causing signal interference. Consequently, the design of radar detectors capable
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of accurately identifying weak targets in the presence of strong clutter is essential to ensure robust and
reliable system performance.

3. Automotive radar systems also encounter significant challenges due to interference, which can be
broadly classified into three categories: self-interference, intra-vehicle cross-interference, and inter-vehicle
cross-interference. Self-interference arises from reflections of the radar signal off the vehicle’s structure,
such as the frame or radome, which can hinder the operation of SRR systems. Intra-vehicle cross-
interference occurs when multiple radar units installed on the same vehicle have overlapping fields of
view, leading to mutual signal disruption. Inter-vehicle cross-interference is induced by radar systems
mounted on other vehicles in close proximity, with the severity of interference determined by the relative
distance between vehicles and the characteristics of their transmitted waveforms. Addressing these
interference sources is critical for maintaining the integrity and reliability of radar-based perception
systems in automotive environments.

Radar waveform
generator Up converter Power

amplifier

Duplexer

Low noise
amplifier

Down converterSignal processorHuman- machine
interface

Transmitter

Receiver

Local
oscillator

Figure 2: Automotive radar processing system

As stated before, the application areas of automotive radars include ACC, AEB, etc., which further help
in the process of vehicle automation. With this ADAS system, the Society of Automotive Engineers (S.A.E.)
and the National Highway Traffic Safety Administration have thus standardized six levels of autonomous
driving [18]:

1. Level 0: The driver undertakes driving tasks without any automation
2. Level 1: Automation system takes over either steering or acceleration, but the driver monitors, like the

Cross Traffic Assist function
3. Level 2: The system takes over functions like adaptive cruise control and brake assist, but the driver

still monitors.
4. Level 3: Most tasks are automated, and the system informs the driver when necessary.
5. Level 4: The whole driving task is to be automated and the human driver is to be notified only in

undefined cases.
6. Level 5: Fully automated with no driver intervention.

Fig. 3 presents the evolution of automotive Radar for ADAS applications and economic
development [19].
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Figure 3: Evolution of automotive radar for ADAS [19]

The contributions of this paper include:

1. A comprehensive overview of automotive radar signal processing techniques, including range and
velocity estimation, has been presented. Additionally, a comparative analysis of various waveform
types has been conducted, highlighting their respective advantages and limitations in the context of
automotive applications. The study also examines different forms of interference encountered in radar
systems. Furthermore, a comparative summary of existing review articles on automotive radar offers
insight into the current state of research and emerging trends in the field.

2. A detailed analysis of target detection methods and various DOA estimation algorithms has been
presented. Comparative evaluations of these algorithms are provided in tabular form, highlighting their
respective advantages and limitations. This analysis facilitates a clearer understanding of the trade-offs
involved in selecting appropriate DOA estimation techniques for automotive radar applications.

3. Various target tracking algorithms, as proposed in key contributions from existing literature, have
been discussed. A comparative table is also included to illustrate the respective advantages and disad-
vantages of each algorithm, providing insight into their applicability and performance in automotive
radar systems.

4. Target recognition and classification using Machine Learning (ML) algorithms has emerged as a sig-
nificant area of research in automotive radar systems. Various algorithms currently under investigation
have been discussed in detail, along with an analysis of their respective strengths and limitations.

5. Key research challenges in the field of automotive radar have also been outlined to support future efforts
aimed at addressing these issues and advancing the state of the art.

6. To obtain the training data for the ML algorithms, a large Radar dataset is used that contains a detailed
description of the surrounding environment. In this work, the publicly available important datasets
are described concisely. Additionally, automotive Radar evaluation metrics and global standards are
also provided.

Table 1 presents a comparison between earlier review works on signal processing techniques for
automotive radars and this work.
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Table 1: An analysis of review works conducted for automotive Radar

Ref. Year Paper type Comparative
analysis of
waveform

Range and
velocity

estimation

DOA
estimation

Target
tracking

Target
classification

Algorithm
analysis

Radar
Dataset
analysis

[20] 2023 Review – ✓ – ✓ – – ✓
[21] 2019 Magazine ✓ ✓ – – – – –
[22] 2022 Survey – ✓ ✓ ✓ ✓ – –
[8] 2021 Review – ✓ ✓ – – – –
[15] 2021 Survey – ✓ ✓ ✓ ✓ – –
[17] 2019 Magazine – ✓ ✓ ✓ – – –
[14] 2018 Survey – ✓ ✓ – – – –
[11] 2017 Magazine ✓ ✓ ✓ ✓ – – –

This paper 2025 Survey ✓ ✓ ✓ ✓ ✓ ✓ ✓

The remainder of this paper is organized as follows: Section 2 provides an overview of automotive radar
systems, including fundamental mathematical formulations and commonly used radar waveforms. Section 3
presents a detailed analysis of existing research on target detection and Direction-of-Arrival (DOA) esti-
mation techniques. Section 4 discusses various target-tracking methods explored in the literature. Section 5
reviews recent advances in target recognition and classification approaches. Section 6 outlines the key
research challenges and potential future directions in the field of automotive radar. Section 7 presents an
overview of the various automotive Radar databases available publicly for further research in this field, as
well as the standards and parameter evaluation metrics for automotive Radar. Finally, the paper concludes
with a summary of key findings.

2 Overview of Automotive Radar
Modern automotive Radar generally applies a frequency-modulated continuous chirp waveform

(FMCW), working in frequency ranges of 24 and 76–81 GHz. To detect targets, a series of signals with up
chirp and down chirp is generated by a frequency-generating circuit like a phase locked loop (PLL) and
transmitted using a transmit antenna [20]. This chirp waveform in the time-frequency domain is presented
in Fig. 4, where the transmitted wave, received wave, and beat frequency are identified.
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Figure 4: Time vs. frequency domain representation of FMCW radar
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The transmitted signal Tx can be expressed as [21],

STx = ATx . cos (2π f0t + πkt2) (1)

for, t ∈ [0Tch], in which Tch is the length of time of one chirp, ATx is the amplitude of transmitter signal and
f0 is the initial frequency of transmitter signal, k = B/Tch is the chirp’s frequency slope with chirp bandwidth
presented as B.

A corresponding echo is reflected from the surroundings for each chirp incident on the targets. For
simplicity, a target can be considered as a point target. The received signal is a time-delayed and attenuated
form of the transmitted signal. The received signal is presented as,

SRx =
N
∑
i=1

ATx .αi . cos (2π f0 (t − τi) + πk (t − τi)2) (2)

where αi is taken as a damping factor present due to path loss and losses due to reflection corresponding to
the received signal from the ith target, and τi is the time delay for a round-trip.

2.1 Range Measurement
At the receiving end, the received signal is multiplied by the transmitted signal and then filtered using a

low-pass filter to get a signal having IF. The basic mathematical model to estimate the velocity and range of
a desired mobile target can be derived from processing this IF frequency signal, which is shown as follows:

SIF(t) = [STx(t).SRx(t)] ∗ hL(t) =
N
∑
i=1

AIF , i . cos (2π fB , i t + θi) (3)

in which, hL (t) is considered as the impulse response of filter and * is a convolution function, AIF , i =
((A2

Tx) × αi) /2 is the received signal’s amplitude from ith target, θi = 2π f0τi − πkϕ2
i is the constant phase of

the echo signal reflected from ith target, and fB , i is considered as the beat frequency, that is the dissimilarity of
frequency in-between the oscillator and received signal of each point target. This fB , i is directly proportionate
to the distance di in-between the i-th target and the Radar.

fB , i = kτi =
B

Tch
. 2di

c
(4)

Using this fB , i range is measured by the application of the FFT. Thus, Range,

R = cτi

2
(5)

Whether the received signal is coming from a recent chirp or a previous one leads to ambiguity. The
maximal unambiguous range can be shown as,

Rmax =
c Tch

2
(6)

where Tch is chirp duration. Range resolution is defined as the capability of Radar to differentiate between
two targets placed very near to each other. It is expressed as [22],

Rreso =
c

2B
(7)

This proves that range resolution improves when bandwidth is increased.
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2.2 Velocity Measurement
Velocity measurement of a particular target using Radar depends on the Doppler effect. Here, two targets

at equal distances but in motion in reverse directions with corresponding velocities v1 and v2 are considered.
These targets are assumed to be in the same range domain to differentiate based on velocity only. The time-
varying delay corresponding to the i th target can be expressed as,

τi (t) = τ0, i +
2vi

c
t (8)

where τ0, i is the initial time delay of the round trip of the ith target. Using this delay time, the IF signal might
be rewritten as,

SIF (t) =
N
∑
i=1

AIF , i . cos (2π ( fB , i + fD , i) t + θi) (9)

where fD , i = f0 (2vi/c) is the Doppler frequency. A Range-Doppler map is created for the estimation of
velocity in the FMCW Radar model. This Range-Doppler map is calculated by assembling the complex-
valued IF signal spectra into matrix form and applying an FFT over the slow-time axis. The velocity can be
presented as,

v = λΔθ
4πTch

(10)

For the two targets considered above, the velocities are given as,

v1 =
λϕ1

4πTch
and v2 =

λϕ2

4πTch
(11)

where ϕ1 and ϕ2 are respective phase differences between chirps and λ is the wavelength. Velocity resolution
is the capability of Radar to distinguish between two targets’ velocities. It is expressed as

vreso =
λ

2Tf
(12)

where Tf is the duration of the chirp frame.

2.3 Angle Measurement
The position of a particular target is shown in a spherical coordinate system presented as (R,θ,φ) with

R as Range, θ as azimuth, and φ as elevation angles. To determine the angle of targets, algorithms such
as Multiple Signal Classification (MUSIC) and Estimation of Signal Parameters via Rotational Invariance
Technique (ESPRIT) are applied. The Radar usually collects received signal data across multiple discrete
dimensions. These dimensions can be modeled using combinations of time, frequency, and space. Since mm-
wave bands have smaller wavelengths, this requires smaller aperture sizes, allowing several antenna units to
be tightly packed into an antenna array. This results in an active radiation beam that is sharper and stronger,
and helps to increase the resolution of angular measurements.

2.4 Waveforms
Automotive radar performance is evaluated based on several metrics, including velocity resolution,

range resolution, angular resolution, and target detection probability. The choice of waveform has a
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significant impact on these performance parameters. Radar waveforms are generally categorized into
continuous wave (CW), pulsed, and modulated types. Modulated waveforms comprise FMCW, Orthogonal
Frequency Division Multiplexing (OFDM), and Phase Modulated Continuous Wave (PMCW) [11]. A
detailed discussion of these waveform types is provided in the following.

2.4.1 Continuous Wave
In a CW waveform, the transmitted and received signals are processed using a conjugate product,

generating a signal corresponding to the specific target’s Doppler frequency. However, due to the continuous
behavior of this waveform, measuring the delay due to the round-trip is challenging, making range resolution
difficult to achieve. Typically, CW radar systems require separate antennas for transmission and reception.

2.4.2 Pulsed Continuous Wave
The duration of a pulse and pulse repetition frequency (PRF) are used for designing this waveform with

the required range and velocity estimation. For a pulsed waveform, one antenna system can be used for both
transmission and reception processes. Fig. 5 presents a comparative representation of a continuous wave and
a pulsed continuous wave.

Figure 5: Representation of continuous wave and pulsed continuous wave

2.4.3 Frequency Modulated Continuous Wave
For the FMCW [23] automotive Radar, the carrier signal is modulated by the transmitter by a linear

increase of the frequency over time for a predefined interval called a chirp. The main characteristic of FMCW
is that the velocity and range of the target can be simultaneously estimated using the 2-dimensional (2D)
FFT process. A wide sweep bandwidth improves range resolution as these factors are inversely proportional.
The Doppler resolution is determined by the pulse width and the total number of pulses required for this
measurement. In the Linear FMCW waveform, the beat frequency for a single mobile target can be derived
after the received echo signal is combined with the signal transmitted. Thus, it is composed of a Doppler
frequency shift fd and a frequency component due to range fb .

fd =
2
λ

vr (13)

fb = 2 R
c

Bsw ee p

Ts
(14)
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Here, λ is the wavelength of the carrier, vr is the radial velocity of the target, Bsw ee p is sweep bandwidth,
Ts is “sweep time”, R is target’s range, and velocity of light is taken as c. Fig. 6 presents a linear FMCW
waveform for the estimation of the velocity and range of a target.
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Figure 6: Beat frequency generation using chirp signal to estimate range and velocity

Two beat frequencies, one each for the upward slope fbu and the downward slope fbd of a chirp signal,
can be obtained.

fbu = fb − fd = 2 R
c

Bsw ee p

Ts
− 2

λ
vr (15)

fbd = fb + fd = 2 R
c

Bsw ee p

Ts
+ 2

λ
vr (16)

By applying the FFT on each reflected chirp, the target’s range is measured as:

R = cTs

4Bsw ee p
( fbd + fbu) (17)

After Range-FFT, another “Fourier transform”, “Doppler-FFT” is applied to obtain the velocities of
multiple targets

vr =
λ
4
( fbd − fbu) (18)

Stepped FMCW—For this waveform, a sequence of sinusoidal signals is transmitted at distinct frequen-
cies, and the phase shift and steady-state amplitude caused by the Radar channel at each distinct frequency
are measured. The inverse discrete Fourier transformation (IDFT) measures the target range. Sparse stepped
frequency waveform [24] provides lower levels of range sidelobe for the detection of weak targets. Using a
sparse array interpolation method, the sidelobes are reduced, resulting in a mitigation of the likelihood of a
“false alarm” during the evaluation of the target angle. Interrupted FMCW—In Interrupted FMCW, reception
of target echo is allowed only when the timing signal is off. For short-range targets, the total reception
time is reduced, making it difficult to detect those targets. But the effect is reversed for long-range targets.
So, an arrangement needs to be made between SRR and LRR. An online learning approach based on the
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Thompson sampling technique can be applied to identify which FMCW waveform will be beneficial for target
classification [25].

2.4.4 Fast Chirp Ramp Sequence Waveform
The advantage of a fast chirp waveform [26] over a usual FMCW waveform is that a 2D-FFT processing

enables range and velocity estimation of a target accurately. To collect range information, this 2D-FFT is
applied first for each chirp and then across chirps to obtain velocity information. Additionally, the beat
frequency signals from targets are greater than the noise corner frequency, providing an improved SNR for
detecting weak targets. An example of a fast chirp ramp sequence in the time-frequency domain is indicated
in Fig. 7.

Fr
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y

Time
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signal

Transmit
chirp signaltd

t0
Tchirp

fb

Figure 7: Fast chirp ramp sequence

2.4.5 OFDM Waveform
OFDM [27] is a digitally modulated waveform comprising a set of orthogonal complex subcarriers.

In vehicular radar applications, modulation symbols are mapped onto the complex amplitudes of these
subcarriers. The orthogonality among subcarriers is ensured by designing each subcarrier to complete an
integer number of cycles within the duration of an OFDM symbol, also referred to as the evaluation interval.
To mitigate inter-carrier interference (ICI), the subcarrier spacing must exceed the maximum expected
Doppler shift.

At the receiver, the radar modulation symbols can be efficiently demodulated using the FFT, making
OFDM a suitable choice for digital vehicular radar systems. The range profile is extracted through frequency-
domain channel estimation. Range and velocity estimations are performed along two distinct dimensions.
Specifically, target velocity estimation can be viewed as a decomposition of the conventional two-dimensional
matched filtering process into two one-dimensional matched filters, each is applied independently in its
respective measurement domain.

2.4.6 Phase Modulated Continuous Wave
The PMCW waveform [28] consists of a sequence of periodically transmitted symbols that phase

modulate a carrier frequency. The estimation of the target range is performed through the correlation
between the received and transmitted signals. PMCW radar systems require sampling across the full
bandwidth of the transmitted signal, necessitating high-speed sampling and high-resolution analog-to-
digital converters (ADCs). Binary PMCW waveforms are commonly employed for automotive applications
due to their simplicity and robustness. Binary PMCW is usually used for automotive applications. A PMCW
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waveform consists of a few symbols of binary nature Ir (0,1) containing 0-π degree mapping of a carrier
frequency. The signal transmitted with R quantity of chirps and a time extent of chirp of Tch is represented
as,

STx =
R−1
∑
r=0

g (t − RTch) . cos (2π f0t + Ir π) (19)

where f0 is the carrier frequency, and g(t) is a gate function in the time interval of (0, Tch), having unit
amplitude. The signal that is received can be represented as,

SRx = ATx ST (t − τd) . exp ( j2π fd t) (20)

where τd is the propagation delay. The correlation between the signal received and the signal that is
transmitted provides the range information. An FFT is conducted on every range bin in the different
sequences to extract Doppler information, which is then used for target velocity measurement. For a stepped-
frequency PMCW, the bandwidth of each pulse is reduced when the range resolution is more than assumed
limit for that bandwidth [29].

2.4.7 Combined Frequency Shift Keying (FSK) Modulated Waveform and FMCW Waveform
This waveform helps to remove ghost targets and accurately detect multiple targets with high-range res-

olution for short ranges. Here two-stepped Linear Frequency Modulated Continuous Waveforms (LFMCW),
(designated as X and Y) are used, having the same sweep bandwidth and center frequencies, but split by a
specific frequency, fshi f t . Total sweep time is 2NT where N is the number of steps and the frequency of each
waveform increases by a factor fste p after every step. The unambiguous range is dependent on this fste p as per
the relation, R = (c/ fste p). Multiple targets with varying ranges or velocities are detected based on the N-FFT
of both the waveforms and the phase difference between them. In an automotive radar, cost, size, weight, and
power (CSWAP) reduction is required, and for this purpose, multiple-input and multiple-output (MIMO)
radars are beneficial. MIMO Radar can create virtual arrays of antennas with a bigger aperture by using a
smaller number of transmit antennas and receive antennas [30]. For the MIMO, the transmitted signals must
be differentiated orthogonally to create the virtual array. This can be attained by Time Division Multiplexing
(TDM), Frequency Division Multiplexing (FDM) or Doppler Division Multiplexing (DDM) [31].

Orthogonal waveform using TDM: In TDM MIMO automotive Radar, one transmitting antenna
transmits a signal at each time slot. A specific antenna transmits N chirps at each time slot with a switching
delay of δt = TPRI between antennas (PRI is pulse repetition interval). At every receiver antenna, FFTs with
length Nr are applied on every chirp. Doppler FFT of length 2Nd chirps are arranged in double matrices as
per even and odd chirp series. These subarrays integrate to form a bigger virtual array. In the case of a mobile
target, switching delays of the transmit antennas cause a phase shift of the target in a virtual array, which
must be corrected before angle estimation. This phase shift is calculated after every target velocity is obtained,
depending on the 2D FFT of one receiver antenna or the 2D FFT integration of the respective subarray.

Orthogonal waveform using FDM: In this method, different carrier frequencies modulate the transmitter
signals, and then these are separated from each other in a way that the nth FMCW chirp is shifted by
frequency fo f f ,n . To make the transmitted signals separable at the receiver, differences between every fo f f ,n
must be higher than twice the cutoff frequency of the bandpass filter, f max

b . At each receiver, the reflected
signal is first joined with the carrier frequency. The transmit signal is separated by frequency shifting,
followed by low-pass filtering with cutoff frequency f max

b . This frequency shift and filtering is done Mt times,
Mt being the number of transmit antennas, resulting in high-range resolution.
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Orthogonal waveform using DDM: In this technique, a total N chirps are transmitted in a sequence with
TPRI . All antennas transmit simultaneously, but each transmitted waveform is multiplied by a phase code
specific for every antenna and modified within pulses. At the receiver, range FFT is first applied, and then
Doppler demodulation in slow time is done on all range bins of the exact chirp to separate the transmit
signals. One method for this is to use phase codes where the interference Doppler FFT is transferred to a
higher frequency than the highest detectable Doppler frequency f max

d . Interference can hence be removed by
low-pass filtering. Another method is to use phase codes, so that the interference Doppler FFT is distributed
as pseudo-random noise over the Doppler spectrum. Finally, Doppler FFT can be applied to the demodulated
outputs. Another type of waveform, the Random Sparse Step-Frequency Waveform (RSSFW), is presented in
[24], where orthogonality is achieved through DDM and provides low-range sidelobe levels for the detection
of weaker targets. A joint sparse spectrum and 2D sparse array model helps to obtain higher resolution in
Doppler, range, elevation, and azimuth measurements. A comparative analysis [11,32] is presented in Table 2
for understanding vehicular radar waveforms and their features.

Table 2: Comparison of different vehicular radar waveforms

Feature CW FMCW Chirp OFDM PMCW
Principle Measures

Doppler shift
Frequency

modulation for
range and velocity

Uses chirp signals
for range and

velocity

Uses orthogonal
frequency
subcarriers

Uses phase
modulation for

interference
resistance

Range
measurement

Difficult to
determine

Achievable via
frequency shift

Achievable via
chirp signals

Good due to
multi-tone
processing

Achievable via
phase modulation

Velocity
measurement

Direct from
Doppler shift

Estimated from
beat frequency

Extracted from
chirp rate and
Doppler shift

High accuracy Achievable using
phase shifts

Interference
resistance

Low Moderate Moderate High (due to
orthogonality)

High (due to
phase coding)

Computational
complexity

Low Moderate Moderate High High

Antenna
requirement

Separate Tx/Rx
antennas

Single antenna
with TDM

Single antenna Multiple antennas
required

Multiple antennas
required

Applications Speed
measurement

ADAS, collision
avoidance

Automotive and
aerospace

High-resolution
automotive radar

Short-range
automotive radar

Table 3 presents an analysis of the different types of waveforms, generally used for automotive Radar,
based on range and Doppler resolution values.

Table 3: A comparative analysis of the resolution corresponds to various waveforms used for automotive Radar

Type of
waveforms

Resolution Properties

Continuous
wave

Δ fd = 1/T No accurate range resolution

Pulsed CW ΔR =
cTp

2
, fd = 1/Tp Range-Doppler measurement trade-off

(Continued)
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Table 3 (continued)

Type of
waveforms

Resolution Properties

FMCW ΔR = c
2B

, fd = 1/PT0 Range and Doppler information

Fast chirp ramp ΔR = c
2B

, vreso = λ/2Tf 2D-FFT provides accurate Range and Doppler
measurements

OFDM ΔR = c
NΔ f

, Δ fd = 1/PTN Digital Radar, Range and Doppler processing done
in two independent dimensions

PMCW ΔR = c
2 fc l k

, Δ f = Fs/NPRBS Digital Coded Radar

Combined FSK
and FMCW

ΔR = c
2B

, Δ fd = 1/PT0 Maximum range is decided by Δ f

B = Radar bandwidth, T = time duration when data is obtained, N = samples used in CW and carriers
used in OFDM, Tp = duration of the rectangular pulse, P = number of FMCW or OFDM blocks having
duration of t0 and of TN , respectively, TF = duration of the chirp frame, fc l k = PMCW binary modulation
frequency which is reflected from target while encoded, fs = sampling rate and NPRBS = length of PRBS
in PMCW.

For automotive Radar, conventionally, the FMCW chirp waveform is used due to the advantage of 2D-
FFT processing for accurate range and velocity estimation. An RF sweep bandwidth increases the range
resolution, and a fast ramp slope helps to achieve maximum unambiguous relative velocity. The fast ramp
slope and wide IF bandwidth facilitate the separation of targets in the beat frequency domain, ensuring that
the noise from a strong target produces less interference during the detection of a weak target. Recently,
however, PMCW Radar has been preferred for automotive applications due to its capability to separate weak
RCS targets from those of strong RCS targets. Binary PMCW Radars also provide no range-Doppler coupling
and integration of Radar and communication waveforms. Polyphase-coded spread spectrum Radar system
can be used for estimation of RCS over ultra-high-frequency radio channels [1,16,33–35].

2.5 Waveform Interference in Automotive Radar Systems
Interference due to Radars occurs when multiple Radars are in proximity, and the interference level

depends on the in-between distance and the waveform pattern [36]. A particular vehicle fitted with an
interfering Radar present at a distance R, is considered to create interference for a victim Radar. Here, the
interfering radar acts as a target for the radar, which is assumed to be a victim. The interference-to-noise ratio
(INR) measures the sensitivity of a victim Radar to interference. It depends on the variables of the interfering
Radar and the victim Radar, the interfering Radar’s signal modulation pattern, and the demodulation process
of the victim Radar. The interfering Radar is considered to have a bandwidth B, and at the victim, Radar, the
power spectral density (PSD) of the interference is written as [6],
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PSDint = [
PtGT λLTx L f NTx

B (4πR2) ] [
GR λLRx L f NRx

4π
] (D f ) (KF MCW)

=
PtGT LTx L f NTx λ2GR LRx L f NRx

B (4πR)2 (D f ) (KF MCW)
(21)

where GT and GR = antenna gains for interfering and victim Radars, respectively, λ = Radar signal
wavelength, PT= power transmitted by interfering Radar, NTx and NRx = numbers of antennas used for
transmission for interfering Radar and receiving antennas of victim Radar, respectively, LTx and LRx =
transmit loss for interfering Radar and receive loss of victim Radar, respectively, L f = loss due to fascia of
all Radars, D f = duty factor for the time the interfering Radar works within dwell time and band of victim
Radar, varying from 0 to 1, KF MCW = applies to FMCW modulation for interfering and victim Radars and is
presented by,

KF MCW =
PSDBb

I

PSDR f
I

=
ΔFR f

I

ΔFBb
I

(22)

where PSDRF
I is the PSD of interference in the receiver of victim Radar at RF before down conversion, and

PSDBb
I is the interference PSD at baseband after down conversion in the Radar assumed as a victim, δFRF

I is
the sweep bandwidth in RF range of the interfering FMCW Radar, and δFBb

I is the bandwidth of interference
in the receiver of victim FMCW Radar after down conversion to baseband.

2.5.1 FMCW-FMCW Interference
When the victim FMCW signal overlaps with the interfering FMCW signal, this results in a specific

type of interference. After down-conversion at the radar receiver, the interference appears as a linear chirp
signal that sweeps across the radar’s passband, occupying a wide bandwidth. After bandpass filtering, the
interference signal becomes an “impulse-like signal” in the time domain. The slope and relative timing of
the frequency modulation of both the victim and interfering radars determine the position and width of
this interference signal. The difference in frequency modulation (FM) sweep rates between the interfering
radar and the victim radar, along with their timing and frequency alignments, determines the bandwidth of
the interference observed after down-conversion in the victim radar. Type A: interfering Radar and Radar
assumed to be the victim, sweep with similar time duration Ts , start frequency, and start time,

KF MCW =
ΔFR f

I

ΔFBb
I
= ∣ SwI TS

(Swv − SwI)Ts
∣ = ∣ SwI

Swv − SwI
∣ (23)

Type B: interfering Radar and victim Radar sweeps with similar time duration Ts , start time, and center
frequency

KF MCW = 2 ∣ SwI TS

(Swv − SwI)Ts
∣ = 2 ∣ SwI

Swv − SwI
∣ (24)

where SwI and SwV = FM sweep modulation rates for interfering Radar and victim Radar, respectively. So,
the value of K will be 1 if the FM sweep of Radar assumed to be interfering, having a sweep rate SI , have the
same magnitude but is reversed in sign to the sweep rate of the Radar assumed as victim, SV .
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2.5.2 PMCW-PMCW Interference
This kind of interference is noticed when the “interfering PMCW” signal overlaps the victim PMCW

signal. A PMCW interference is assumed with arbitrary, noise-type biphase coding with chirp rate Δ fi = 1
Tc

and looks like a spread-spectrum noise-type signal having bandwidth Δ fi = 1
Tc

and carrier frequency fc . A
victim Radar with PMCW is supposed to transmit a noise-type signal that is biphase-coded and has the
chirp rate Δ fi and bandwidth Δ fv = 1

Tc
and carrier frequency same as that of interfering PMCW Radar but

using a spreading code which is independent, and uncorrelated. The signal received is down-converted at
the victim PMCW Radar, with a persistent oscillator frequency (given as fi = fc), and then demodulated
using a delayed version of the PMCW biphase code. The interference is converted into a noise-type signal in
the time and frequency domains through downconversion, demodulation. Finally, bandpass filtering in the
receiver of the Radar assumed as the victim. The frequency spectrum of this signal is wideband and typically
above the level of background noise.

2.5.3 FMCW-PMCW Interference
In both cases of FMCW victim and PMCW interferer or PMCW victim and FMCW interferer, the

interference appears like noise in time and frequency domains. The INR is the same.

2.5.4 Interference Mitigation
The techniques for interference mitigation in automotive Radar can be classified into two categories:

techniques at the transmitter (such as frequency hopping and timing jitter) and methods at the receiver
(such as time domain excision). Transmission techniques are usually designed to ensure that separate Radars
transmit in a way where the signals are nearly perpendicular to each other in domains like time, frequency, or
polarization. Mostly, interference mitigation is done at the receiver side. For FMCW-FMCW interference, a
matched filtering is usually adopted to obtain integration gain for a constant frequency signal considered as a
target and the interference spreads as noise [6]. For PMCW on PMCW interference, Code Division Multiple
Access (CDMA) ensures that every Radar has a unique spreading code, and the interference becomes a wide-
band noise signal. An FMCW interference is similar to a jammer in a spread-spectrum system for a PMCW
victim Radar, and adaptive filtering can be used for mitigation. A PMCW interference on an FMCW victim
can be reduced by separation in the polarization or frequency domain. Additionally, Neural network (NN)
methods can be used for mitigating multi-channel interference [37]. The signal separation neural network
can separate the interference from the beat signal, making it interference-free, and reconstruct the signal.

3 Target Detection and DOA Estimation

3.1 Signal Processing for Target Detection
A signal processing framework [17] is required for target detection with automotive Radar. An automo-

tive Radar is considered to transmit a series of identical waveforms (like FMCW chirps, PMCW symbols, or
OFDM). These transmitted waveforms are reflected from the targets and clutter and received at the receiver
end, where they are down-converted as a combination of various Radar signal echoes along with additional
noise from the receiver. The work aims to reduce additive noise and detect and then classify echoes obtained
from various objects that are separable in the spectral domains of Doppler, range, and Direction of Arrival
(DOA). For i = 1, . . . , N targets, the baseband data model present at rth chirp and mth antenna receiver with
one transmitter is given by,
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xm ,r (t) =
N
∑
i=1

Ai S (t − τi) exp ( j2π fd i rTc) . exp ( j2π fc Δτi ,m) + Vm ,r (t) (25)

where S(t) is the transmitted signal and Ai , i, fd i are the amplitude of the ith target, delay in time, and
Doppler shift of the ith target, respectively. The difference in time is the time difference between the origin of
the array of the antenna and the nth antenna for the ith target, and is denoted as Δτi ,m . The additive noise is
represented as Vm ,r(t). Next, the signal received is multiplied by the conjugated transmitted signal. In case
of Linear Frequency Modulated (LFM) signal, S (t) = exp ( jπBϕ2

i ).

x̃m ,r (t) = xm ,r (t) s∗ (t) =
N
∑
i=1

Ãi exp (− j2πBτi) . exp ( j2πT fd i r) . exp ( j2π fc Δτi ,m) + Ṽm ,r (t) (26)

where Ãi = Am exp ( jπBϕ2
i ). For a uniform planar array antenna structure, τi ,m is linear for horizontal

and vertical array elements. So, the above equation contains a product of sinusoids in slow-time l and fast-
time t data and a product of sinusoids in antenna array elements. Thus, to obtain Doppler, range, azimuth,
and elevation values, the implementation of 4D FFT is required. Before FFT, the signal is sampled with Ts
sampling time to get x [l , r, m] = x̃m ,r (lTs). Now, the FFT is performed by,

X [p, q, θ , φ] =
M
∑

mv=1

M
∑

mh=1

R
∑
r=1

L
∑
l=1

x [l , r, m] exp(− j2πp l
L
) exp(− j2πq r

R
)

. exp( j2π da

λ
mh sin θ cos φ) . exp( j2π da

λ
mv sin φ)

(27)

where mh , mv are the horizontal and vertical antenna indices with da as antenna spacing. To detect a target,
it needs to be distinguishable in a minimum of one of these parameters. Next, Constant False Alarm Rate
(CFAR) detection is used. The CFAR method used in the Doppler range domain, is used where the guard
cell is modified and data sorting is eliminated, leading to faster response with improved detection accuracy
[38]. The Cell Averaging CFAR (CA-CFAR) is the most common method, where a target is detected for cells
that satisfy the following conditions:

∣X [p, q, θ , φ]∣ 2 > TCFAR + σ 2
nv [p, q, θ , φ] , ∀ p, q, θ , φ (28)

where TCFAR is the CA-CFAR detection threshold and σ 2
nv [p, q, θ , φ] is noise variance, estimated around

the cell under test. The Cell Averaging CFAR (CA-CFAR) detector determines the power threshold for every
bin of the Range angle map, referred to as the Cell Under Test (CUT) [23]. A comparison is made between
the CUT and the average of its neighboring cells. The target vehicle is detected when the CUT output power
exceeds the average power threshold. The cells immediately adjacent to the CUT, called guard cells, are
ignored to avoid corrupting the average power with power from the CUT itself. The process begins with
a single cell and is repeated for all cells. An example of the working principle of the CA-CFAR method is
presented in Fig. 8.

In Greatest-of-cell-averaging (GOCA-CFAR), two windows are considered on either side of the CUT,
each having the same number of training/neighbouring cells. The mean of these two windows is calculated,
and the maximum value of these mean values is taken as the threshold value. On the other hand, in Smallest-
of-cell-averaging (SOCA-CFAR), the mean of the two windows is calculated, and the minimum value of
these is taken as the threshold. In Order static CFAR (OS-CFAR), the values of the training cells are organised
in ascending order, and one value is selected. This OS-CFAR detector is used in [39] for targets in micro-
motion, and to cluster these targets, the image dilation algorithm is applied. Inclusion of deep learning
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techniques such as Convolutional Neural Network (CNN) [40] provides an increased rate of detection of
targets compared to CFAR. A comparative analysis of these CFAR methods is presented in Table 4.

Square law detector Threshold of
detection

Comparator

Reference
cells

Reference
cellsGuard

cells

Guard
cellsCell Under

Test

Input

Output

KCFAR

ZCFAR

KCFAR ZCFAR

MCFAR/2 MCFAR/2

Figure 8: Working principle of the CA-CFAR method

Table 4: A comparative analysis of the CFAR techniques

Type of
algorithms

Method of threshold detection Advantages Disadvantages

CA-CFAR Average power of neighboring cells
taken as threshold

High SNR in uniform
noise

Not beneficial for
multiple target

detection
GOCA-
CFAR

Mean of two windows on either
side of CUT calculated and the
maximum becomes threshold

Good for false alarm
control in clutter

Not beneficial for
multiple target

detection
SOCA-
CFAR

Mean of two windows on either
side of CUT calculated and the
minimum becomes threshold

Higher false alarm
rate

Beneficial for multiple
target detection

OS-CFAR Values of training cells arranged in
ascending order and one specific

value is taken as threshold

Longer computation
duration

Beneficial for multiple
target detection

Clustering and tracking methods are adopted for additional detection required for automotive radar.
Tracking of the target mainly includes prediction, association, and update procedures, as observed in the case
of the Kalman filter. Tracking helps to improve target localization, deduce accurate velocity and trajectory,
and create a picture of the target’s surroundings. The final task is called classification, where knowledge of
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the detected and then tracked target is obtained from echoes received from the target. This is achieved using
selected micro-Doppler features, spatial spread, and other parameters.

3.2 Direction of Arrival (DOA) Estimation
Under real-world road conditions, an unknown number of signal echoes from targets in various

directions may arrive at the receiver antenna. These target echoes, combined with noise and interference,
pose significant challenges for reliable target detection and tracking. To enable accurate beamforming and to
place nulls in the direction of interfering signals, precise estimation of the DOA of the desired target signal
is essential. Various DOA estimation techniques for target echoes are illustrated in Fig. 9.

DOA

evaluation

Beamforming

approaches

Maximum

likelihood estimator
Subspace based

approaches

Bartlett beamforming

MVDR beamforming
MUSIC

ESPRIT

Figure 9: DOA evaluation techniques

A radar signal model is presented in Fig. 10 to estimate the DOA of the received signal.

1  d 2 d  3 d  4  d  5 d  6  .... M
x1(t) x2(t) x3(t) x4(t) x5(t) x6(t) xM(t)

Incident wave

Wavefront

ds
in

(th
et

a)

theta

Figure 10: Signal model for DOA estimation

An automotive radar system is considered to contain a series of M antenna elements on which signals
from kt targets are received [23]. The received signal is given as,

X (t) = A(θ) S (t) + N (t) (29)

where X (t) = [x1 (t) , ..., xm (t)]T is the (M × 1) Radar data vector that is received, A(θ) =
[a (θ1) , ..., a (θkt)] is the (M ∗ kt) steering matrix, S (t) = [s1 (t) , ..., skt (t)]T is the (i × 1) source signal
vector and N (t) = [n1 (t) , ..., nM (t)]T is the (M × 1) sensor noise vector of variance σ 2. The steering matrix
is formed of steering vectors, given as,
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a (θi) = [1, exp − j2πd sin (θi)
λ

, ..., exp − j2πd (N − 1) sin (θi)
λ

]
T

(30)

where d is the spacing of elements for a Uniform Linear Array (ULA) antenna, θi is the angle of arrival of
the signal from the ith source, and T means transpose. For digital beamforming and Minimum Variance
Distortionless Response (MVDR), optimization of weights is needed. The weighted combination of the linear
nature of sensor outputs is given as,

Y (t) = wH X (31)

With H denoting the Hermitian response. Then the power at the output of the array of sensors is given
as,

P (w) = E [∣y (t)∣2] = wHE [XXH]w = wH Rcmw (32)

where E[.] is the expectation operation and Rcm is the input signal covariance matrix. The various DOA
estimation methods are described below [41].

3.2.1 Bartlett Beamforming
Beamforming is a technique used to create a desired radiation pattern by coherently combining signals

from multiple antennas, each weighted according to its appropriate value. This process enhances signals
arriving from a specific direction while suppressing interference and noise from undesired directions. The
Bartlett algorithm, also known as conventional beamforming, is used to enhance the signal from a specific
direction by compensating for the phase shifts of the incoming wavefront. The optimal weight vector in the
Bartlett method ca be written as, w = a(θ) and the power of the signal at angle θ is obtained as:

Pbar t =
aH (θ)Rcm a (θ)

aH (θ) a (θ) (33)

The limitations of Bartlett beamforming include: i) Applicable only for a single source of signal, ii) In
the presence of multiple sources, it provides low resolution, resulting in ambiguity.

3.2.2 Minimum Variance Distortionless Response (MVDR)
In this algorithm, a persistent gain is maintained for the signal from a desired direction, and a lesser

weight is added to the direction of the interfering signal and noise. The weight vector is given as

min (P (w)) sub ject to (wH a (θ)) = 1 (34)

The weight vector for beamforming angle θ is given as,

wMV DR =
R−1

cm a (θ)
aH (θ)R−1

cm a (θ) (35)

The power spectrum at angle θ is given as:

PMV DR =
1

aH (θ)R−1
cm a (θ) (36)
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This method provides improved resolution than Bartlett, but not as much as subspace methods. To
enhance the angular resolution of beamforming algorithms, a method can be employed to determine the
transformation vector that represents the relationship between received signals and create extrapolated
elements outside the region of the array’s actual antenna elements [42]. With both original and extrapolated
signals, the direction of the target echo is estimated with higher resolution.

3.2.3 Multiple Signal Classification (MUSIC)
This method is based on the subspace approach, where the covariance matrix is decomposed into a

signal subspace and a noise subspace. The steering vectors are observed to be orthogonal to the noise. In the
spatial power spectrum, a peak provides the required direction. Considering the equation of the received
signal as shown in (29) and (30), the covariance matrix is presented as,

Rcm = A(θ)Rs A(θ)H + σ 2I (37)

where Rs is the covariance matrix of the signal at the source and I is the identity matrix. The Rcm matrix is
broken into matrices of eigenvalues and eigenvectors. The size of the subspace of the signal is kt , and M − kt
eigenvalues of Rcm are a part of the noise subspace. For the Eigenvalue Decomposition (EVD), the Hermitian
covariance matrix Rcm can be decomposed as:

Rcm = UΛUH (38)

where the eigenvalues are sorted as,

λ1 ≥ λ2 ≥ . . . ≥ λKt > λKt+1 = . . . = λM = σ 2 (39)

The parameters can be defined as,

Us = [u1 , . . . , uKt] (signal subspace) (40)
Un = [uK+1 , . . . , uM] (noise subspace) (41)

The basic principle of the MUSIC algorithm is that for a real source direction θkt , the steering vector
a(θkt) is orthogonal to the noise subspace:

aH(θkt)Un = 0T (42)

Therefore,

aH(θ)UnUH
n a(θ) ≈ 0 if θ = θkt (43)

The MUSIC algorithm observes the angles θkt , such that the signal subspace is observed to be
perpendicular to the noise subspace. Thus, the MUSIC algorithm’s spatial spectrum is given as,

PMU SIC =
1

aH (θ)UnUH
n a (θ) (44)

The main disadvantages of the MUSIC algorithm are that it requires prior knowledge of the signal
sources and its complex computation.

The MUSIC algorithm can be summarised as follows:
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1. The sample covariance matrix is computed, using the source covariance matrix
2. The Eigenvalue decomposition of Rcm is done.
3. The noise subspace Un is then separated.
4. For each angle θ, PMU SIC(θ) is evaluated.
5. The DoAs are obtained from the peaks of the pseudo-spectrum.

3.2.4 Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
This method, ESPRIT, is computationally less complicated than MUSIC as it does not consider all

direction vectors. The subspace of incident signals is lengthened by two responses displaced by a recognized
vector, using which the DOA can be obtained. The equation of the received signal is presented in (29)
and (30). The assumptions for the ESPRIT algorithm can be stated as,

• The array needs to have a structure of translational invariance (e.g., two identical subarrays).
• Prior information is present for the number of sources Kt < M.
• The source signals are considered uncorrelated.
• Likewise, the noise is uncorrelated with the signals and spatially white.

Now two overlapping subarrays of size (M − 1) are assumed and constructed as:

xe1(t) = Je1x(t) (45)
xe2(t) = Je2x(t) (46)

where Je1 and Je2 are selection matrices:

Je1 = [IM−1 0], Je2 = [0 IM−1]

Hence, the subarray outputs can be written as:

xe1(t) = A1s(t) + n1(t) (47)
xe2(t) = A2s(t) + n2(t) (48)

Here, A2 = A1Φ, where Φ is a diagonal matrix containing the phase shifts:

Φ = diag(e jψ1 , . . . , e jψK) (49)

For the estimation of Subspace, the equation form the data matrix:

Xe = [xe(1), . . . , xe(Nes)] ∈ CM×Nes (50)

The sample covariance matrix is computed as follows:

R̂cm =
1

Nes
XeXH

e (51)

The eigen-decomposition of R̂cm is computed by using the equation:

R̂cm = Us ΛsUH
s +Un ΛnUH

n (52)

The matrix Us ∈ CM×Kt is assumed to span the signal subspace.
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For the estimation of Rotational Invariance and Eigenvalue, Us is split into two parts:

U1 = Je1Us ∈ C(M−1)×Kt (53)

U2 = Je2Us ∈ C(M−1)×Kt (54)

It is assumed that, A2 = A1Φ and the columns of Us span the same space as A, and hence it can be
written:

U2 = U1Ψ (55)

for an unknown matrix Ψ.
For the estimation of Ψ, the least squares problem is solved:

Ψ = (U†
1 )U2 (56)

Then the he eigenvalues of Ψ are computed:

Ψvkt = λktvkt , kt = 1, . . . , Kt (57)

Every eigenvalue needs to satisfy the following condition:

λkt = e jψkt = e j 2πd
λ sin(θ kt) (58)

Finally, the angle of arrival can be estimated by using:

θkt = arcsin( λ
2πd

arg(λkt)) (59)

The ESPRIT algorithm can be summarised as follows:

1. Nes snapshots are collected and computation od the data matrix X is done.
2. The covariance matrix R̂cm is evaluated.
3. The signal subspace Us is computed from eigen-decomposition.
4. Us is then partitioned into U1 and U2 with the help of selection matrices.
5. Estimation of Ψ = U†

1 U2 is conducted.
6. The eigenvalues λk of Ψ are computed.
7. Finally, estimation of the DoAs is done:

θkt = arcsin( λ
2πd

arg(λkt))

Here, the eigenvalues of ψ are similar to the diagonal elements of ϕ, and DOA is measured using that.
The primary disadvantage of the ESPRIT algorithm is its high computational cost. In [41], the authors have
introduced a new method where the DOA is obtained by comparison of the difference of phase between two
sensors by applying the phase angle of the antenna steering vector having θ as a variable along with the phase
of the input signal. This method has the smallest average and standard deviations of errors compared to those
obtained from the dissimilarity between the real angle and the evaluated angle using conventional Bartlett
and MUSIC algorithms. The authors have used Kurtosis to measure the number of observation values at the
center. To improve cross-range resolution in FMCW Radar, discrete Fourier transform (DFT) can be applied
for high efficiency, and with the MUSIC algorithm, high angular resolution is obtained for Ultra Wide Band
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(UWB) MIMO automotive Radar [43]. A method of pseudo peak suppression can also be applied for angular
resolution of targets that are placed closely in angular dimension [44].

A MUSIC algorithm with enhanced beamspace can lessen the computational complexity and storage
space, which is beneficial for automotive Radar [45]. The parameter space can be reduced by utilizing
prior information to improve beamformer design. To mitigate the consequences of a lower SNR value and
incorrect sample covariance in a single snapshot, a modified estimator can be employed, which considers
the relationship between a signal with an interference model of sample covariance and the subspace model.
Furthermore, to enhance direction estimation for two closely spaced targets, the averaging of sub-matrices
of sample covariance evaluation and the utilization of the Toeplitz structure are employed. This new
algorithm offers a higher resolution probability than conventional MUSIC at the same signal-to-noise ratio
(SNR). For the processing of range and angle, a single-snapshot MUSIC is used in [46], which reduces
the computational complexity. Another process involves obtaining DOA with single-snapshot MUSIC and
evaluation of the performance with analog-to-digital allocations [47]. A new way for better resolution of
angles is the application of a two-stage MUSIC algorithm [48]. Here, a crude estimation is initially performed
using MUSIC. However, this estimation won’t be accurate if the targets are closely placed and have low SNR.
Based on these values, each antenna element is directed to specific directions using a calibration technique
that focuses on signals coming from particular directions, as presented in the first stage. The Root Mean
Squared Error (RMSE) values of this new method with Root-MUSIC are less than those of standard Root-
MUSIC in the low SNR region. In [49], a compressive sensing alternating descent conditional gradient
(CS-ADCG) algorithm has been used. Using a gridless process and minimization of the atomic norm, the
observation scene has been discretized to prepare an atomic set. The signal sources’ angles are obtained by
measuring the inner product of this atomic set with fragments from every iteration and are used as primary
values for searching. Finally, a function for mapping is made of the sources of the signal, and gradient descent
is applied for iterative optimization. This step is conducted in a continuous domain to reduce the off-grid
effect. To determine DOA in the presence of interference, the variational mode decomposition method is
used. Then, with the signal-to-interference ratio obtained from this algorithm, a weighted MUSIC algorithm
is applied for obtaining DOA [50].

The time complexity of MUSIC or MVDR is obtained as O(M3) where the number of elements of the
antenna array is M, and the high latency due to this computational load makes these algorithms impractical
for use in automotive Radar systems. In [51], the authors have proposed an efficient MUSIC (E-MUSIC)
algorithm that achieves target detection with better resolution at the linear complexity O(z2M), where z
is a user-specific parameter that balances between complex modeling and angular accuracy. The authors
approximate large R ∈ CM×M using three smaller sketches in the form of R ≈ QBH Q, where CM∗M is a M ×M
complex matrix and Q ∈ CM×z comprises of the orthonormal basis for the sketch matrix’s range profile, C ∈
CM×z that is obtained from R by utilizing a arbitrary but uniform sampling method. B ∈ Cz×z is a weight
matrix that reduces the approximation error. This algorithm utilizes a (16 × 8) sketch matrix, compared to
the (16 × 16) covariance matrix of MUSIC, and achieves an accuracy nearly identical to that of MUSIC in
high SNR regions for FMCW automotive Radar. A relative comparison between Bartlett, MVDR, MUSIC,
and ESPRIT is presented in Table 5.
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Table 5: Comparison of Bartlett, MVDR, MUSIC, and ESPRIT

Feature Bartlett beamforming MVDR MUSIC ESPRIT
Concept Conventional

beamforming method.
It scans the spatial

domain by calculating
the spatial power

spectrum with the array
steering vector at

various angles.

Adaptive beamforming
that minimizes

interference and noise
while retaining a

distortion-free response
to the desired signal

direction.

It uses the eigenstructure of the
covariance matrix to separate

the signal and noise subspaces.

It avoids the computationally
expensive spectral search by

taking advantage of the
rotational invariance of

signal subspaces.

Mathematical
basis*

The power spectrum,
PB(θ) = aH(θ)Ra(θ)

[52]

The power spectrum,
PMVDR(θ) =

1
aH(θ)R−1a(θ)

[53]

The power spectrum,
PMUSIC(θ) =

1
aH(θ)EN EH

N a(θ)
[54]

R = ES ΛS EH
S + EN ΛN EH

N ;
Ψ = E(1)†

S E(2)
S [55]

Computational
complexity**

O(M) [52] O(M3) [53] O(M3) [54] O(M2) [55]

Resolution Poor; this is due to wide
main lobes and high

sidelobes [52].

Moderate as it is still
limited when sources
are closely spaced or

correlated [53,56].

High; can resolve closely spaced
sources by exploiting noise and

signal subspaces. [54,56]

Similar to MUSIC, but
performs better for

correlated sources [55,56].

Sensitivity to
noise

High [52] Moderate [53] Low [54] Low [55]

DOA estimation
accuracy

Low; high sidelobes
[52,56].

Moderate [53,56]. High; super-resolution [54,56]. High; super-resolution
without spectral search

[55,56].
Robustness to

correlated
sources.

Poor [52]. Moderate [53]. Poor unless modified [54]. Excellent [55].

Impact of
velocity

High, Velocity
fluctuations impact

phase coherence,
resulting in blurring of
the beam pattern and

reduced resolution [52].

Moderate, the adaptive
nature helps to mitigate

some of the effects of
velocity, but it is

sensitive to covariance
matrix errors,

particularly with
Doppler spread [53].

High, high velocity causes
snapshot decorrelation, which
reduces performance unless

Doppler adjustment is provided
[54,57].

Lower, due to direct matrix
manipulation, it is less

sensitive to velocity than
MUSIC, although it is still

influenced by fast
time-varying channels [55].

Main
applications

Simple beamforming
[52].

Radar, wireless comm
[53].

High-resolution DOA [54]. Array processing, geophysics
[55].

Target scenarios For single target [52]. For closely placed
targets [53].

For multiple targets with
high-resolution DOA

estimation and high accuracy
[54].

For multiple targets with
high resolution DOA

evaluation and high accuracy
[55].

Note: *where a(θ) is the steering vector; R is the covariance matrix of the received signals; EN is the matrix of noise
eigenvectors; ES is the matrix of signal eigenvectors; ΛS and ΛN diagonal matrices of corresponding eigenvalues.
**where M is the number of antennas.

A different method of lowering the computational complexity is by application of digital beam-forming
(DBF), which is suitable for dynamic environments as seen in road scenarios of automotive Radar [58]. A
77 GHz automotive Radar uses an improved angular resolution DOA algorithm, which is formed by a bigger
virtual array using the relative motion observed between the automotive Radar and targets. The proposed
DBF-based method can obtain a crude evaluation of the target angle. The radial velocity produced by the
relative motion observed between the radar and targets is taken as if only produced by radar, with the targets
motionless. Thus, alongside the vehicle’s moving direction, a velocity that differs from its actual velocity can
be measured. Lastly, the positions of the array for NDBF number of coherent processing intervals (CPIs)
are calculated with high accuracy. All these positions of the antenna array will be joined to form a larger
non-uniform array of size MNDBF , with M as the number of antenna units in the array. The computational
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complexity results in approximately O(M NDBF) when applying the DBF method to this virtual array.
Another method for obtaining high-resolution DOA for a side-looking Radar is obtained by operating on a
limited number of snapshots based on vehicle motion and formulating the steering vector to balance phase
error and estimate the time tag [59].

Sparse matrix-based representation of Radar signals can be used for DOA estimation in MIMO Radar
[60]. For sparse uniform linear array (ULA) structure, FMCW radar is preferred as it can provide highly
accurate range information even in high SNR situations [61]. A sparse matrix depiction is developed for a
bistatic model of Radar for 2D-location, i.e., range, DOA, and Doppler estimation [62]. Here, the road is
characterized by a Cartesian map using which the targets’ coordinates and total multi-path Doppler for target
velocity are estimated. In a sparse version of the raw Radar data, after controlling the bistatic formation’s
geometry, the source vectors have a familiar support set, which helps in the application of group-sparsity
(GS) based optimization. This algorithm for estimating 2D location and Doppler performs better compared
to MUSIC. A further addition to this algorithm is the application of a 3-dimensional (3D) multi-static
FMCW signal model, followed by an evaluation of the multi-target location and Doppler method using the
GS methodology [63]. Furthermore, an association of multi-target parameters via cross-correlation and an
ESPRIT algorithm, as well as based on Least Squares, is demonstrated. The GS joint shows better results than
MUSIC at every level of SNR in the evaluation of Doppler and location. Additionally, the GS method can
be used to determine the Doppler frequency first, and then the Doppler parameters are used for obtaining
range parameters, and finally, the DOA is evaluated with these target parameters [64]. A signal processing
method for DOA measurement based on Compressive Sensing (CS) theory is presented, which provides
good resolution and accuracy while allowing an improved degree of design [65]. This algorithm enables the
utilization of configurations with sparse antennas, featuring a reduced number of transmitter and receiver
channels, while maintaining a larger effective antenna aperture. The authors have provided four sparse
reconstruction algorithms along with the MUSIC algorithm. Orthogonal Matching Pursuit (OMP) is better
suited for automotive Radar applications, as it offers improved detection efficiency and is faster than MUSIC.
A method for ghost target detection is shown in [66] where the CS method is used for angle estimation of
direct paths and multipaths.

Deterministic maximum likelihood (DML) is a parametric-based DOA estimation approach that
estimates DOA by a projection of vectors of the received signal to the steering matrix’s null space. In [67],
different transmit signals having orthogonal properties are generated with space-time block codes, and
depending on the number of transmit antennas, the transmit signals have their phases shifted at orderly
intervals. Each of the signals transmitted is matched to its respective transmitting antenna by applying the
DML algorithm to find the proper array for DOA estimation. Upon identifying the signal transmitted from
the initial transmitter antenna, the highest velocity to be detected is not compromised, and the accuracy
of DOA analysis is improved. When the transmitted signals are not matched, the correlation value of the
received echo signal and the steering matrix is degraded, and DOA estimation is worsened, even if the
number of targets is appropriately detected. Based on ML assessment [68,69] MARS-a super-resolution
real-time DOA used for automotive Radar. Here, the evaluation results from earlier timestamps are used
to create an adequate and reduced search space. To decrease computation time, problems at every step
are decomposed into separate sub-problems, and the GPU is utilized for parallel computing. Through
simulation-type experiments, it has been demonstrated that only MARS can handle up to one hundred
bins consisting of reflection points with a resolution of 1○ within 1 ms. A DOA estimation based on Fast
Variational Bayesian method helps to lessen the high sidelobes in sparse arrays and improve resolution for
closely placed reflectors [70]. The implementation of sparse Bayesian algorithms for DOA evaluation, which
provides improved accuracy and lower hardware costs, is demonstrated in [71].
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Machine learning algorithms for DOA measurement can be classified based on Regression, model
order methods, and spectrum [72]. To improve DOA estimation and reduce computational complexity, in
[73], the authors utilize a look-up table (LUT) based on data storage, which can mitigate measurement
errors. Then, the authors propose Support Vector Machine (SVM), an ML classifier, to decrease the high
storage complexity. The ideal azimuth selection issue is considered a multi-classification problem, in which
a considerable quantity of training samples is obtained from the ultra-SRR and used to improve the
classifier. Depending on these data for training, the SVM algorithm is applied to receive more precise
azimuth information in SRR. Table 6 contains a detailed analysis of research works available regarding DOA
estimation of targets using automotive Radar.

Table 6: An analysis of research works for DOA estimation

Ref. Year Algorithms adopted Performance metrics and
achievements

Drawbacks

[49] 2025 CS alternating descent conditional
gradient method for DOA estimation

in non-uniform linear arrays.

(a) Root mean square error plot of the
CS-ADCG method converges with
increased SNR, showing that the

off-grid effect is not hampering the
result. (b) With an increasing number

of signal sources, this algorithm is
better than MUSIC. (c) Using real

Radar data, when the angle in-between
two corner signal reflectors is reduced

to 10 and 20 from 30, CS-ADCG
reconstructs two sources effectively.

Computation time is
slightly more than
MUSIC when the

number of arrays is 20 in
a uniform linear array, a
random linear array, and
a Coprime linear array.

[63] 2024 (a) Group-sparsity method used for
multistatic Cartesian 2D range

resolution and Doppler estimation. (b)
Association of multi-target parameters

is done using a least-squares-based
minimization method.

(a) With increasing SNR, GS
outperforms the MUSIC-average
algorithm in range and Doppler

estimation. (b) Comparison of the
least-square-based pair matching

method with the
cross-correlation-based ESPRIT pair

matching method shows that the
former outperforms the latter,
considering the probability of

successful parameter (DOA and
bistatic velocity) association.

Computational
complexity due to

GS-based optimization
and Least Square

(LS)-based parameter
pairing methods.

[62] 2023 A sparse matrix architecture developed
for a bistatic type automotive Radar
model for range, DOA, and Doppler

estimation.

(a) Root mean square error of Doppler
decreases with increasing SNR. (b)
With increasing Radar data size on

performance evaluation, the
sparsity-based method provides better

results than MUSIC in location and
Doppler estimation.

Computational cost
increases.

[51] 2023 The E-MUSIC that achieves a
resolution in target detection with
complexity O(z2 M), where z is a

user-specific parameter that balances
between complex modeling and

angular accuracy, and the number of
array elements is M.

(a) E-MUSIC is computationally fastest
among other algorithms like MUSIC
and MVDR, considered against array

elements. (b) Accuracy is almost
similar to MUSIC when PSD is plotted

against rising SNR values.

Only the line-of-sight
channel is studied.

(Continued)
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Table 6 (continued)

Ref. Year Algorithms adopted Performance metrics and
achievements

Drawbacks

[68] 2022 Based on Maximum Likelihood
Estimation, MARS-a super-resolution
real-time DOA presented to control
approximately 100 bins consisting of

reflection points with super-resolution
of 1○ within the time of 1 msec,

beneficial for automotive purposes.

(a) With the same number of DOA in 1
bin, the RMSE value against increasing

SNR is obtained as 1 deg by only the
MARS algorithm. (b) Computation
time of MARS is lower than MUSIC

and ESPRIT.

Performance evaluation
with simulation
experiment only.

[67] 2020 (a) Different transmit signals having
orthogonal properties are generated
using space-time block codes, and
based on the number of transmit

antennas, their phases are shifted at
regular intervals. (b) Each transmitted

signal is matched to its transmit
antenna by the DML algorithm to find

the appropriate array for DOA
measurement.

Normalised MUSIC pseudo-spectrum
presented against DOA shows accurate

DOA estimation of two targets only
when true matching of arrays is done.

In true matching of
ar-rays, at low SNR, a
slight angle estimation

error occurs.

[58] 2020 (a) Array positions for NDBF number
of coherent processing intervals (CPIs)
are calculated with high accuracy, and
the array positions are joined to form a

large non-uniform array of size
(MNDBF). (b) On application of the

DBF method to a virtual array,
computational complexity results in

about O(MNDBF).

The proposed method can better
separate two targets in the angular

dimension than MUSIC, sparse
recovery-based methods.

Angular resolution is not
accurate at 0 SNR, and is
possible only with higher

values.

[45] 2020 (a) Enhanced beam-space MUSIC
algorithm to reduce parameter space by
utilizing prior information to improve

beam-former design. (b) Modified
MUSIC estimator used to lessen the

impact of low SNR and wrong sample
covariance in one snapshot. (c)
Considers relation between a

signal-plus-interference model of
sample covariance and a subspace

model.

(a) With target number = 1, the
performance of this algorithm is better

for the mean deviation and standard
deviation of the angle estimated

compared to beamforming MUSIC and
classical MUSIC. (b) With the same

angular separations, this algorithm has
a better probability of resolution under

the same SNR.

Beamformer design is
unsuitable for a

restricted Field of View
(FOV). DOA evaluation

is done on a specific
Doppler and range cell

that contains one or
more targets.

[42] 2019 (a) DOA estimation method to extract
the connection among the received
echo signals and create extrapolated
elements outside the region of the

actual array of antenna elements. (b)
With both original and extrapolated

signals, DOA is estimated with higher
resolution, almost 99% with expanded

signals.

(a) Bartlett algorithm with the
suggested method provides the best

resolution probability and least RMSE,
compared to conventional Linear Least

Squares. (b) Lower computational
complexity.

Computational
complexity marginally

increased.

(Continued)
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Table 6 (continued)

Ref. Year Algorithms adopted Performance metrics and
achievements

Drawbacks

[73] 2019 (a) Uses a LUT as a data storage-based
method for outputting azimuth angle.

(b) SVM classifier used to decrease
high storage complexity. Depending on
the training data, the SVM algorithm is

applied to obtain more accurate
azimuth information in SRR.

(a) Average azimuth error increases
with decreasing range value. (b) LUT

and proposed SVM are more robust to
this.

[43] 2018 DFT applied for high efficiency, and
with the MUSIC algorithm, high

angular resolution is obtained in UWB
MIMO Automotive Radar.

(a) In the range vs. angle plot, the
spectra for a car are narrower for
super-resolution than those of the

beamforming method. (b) The
DFT-MUSIC algorithm provides better
resolution than the DFT-BF algorithm.

DFT-MUSIC is
computationally slower

than DFT-BF.

[65] 2018 (a) Method based on CS theory
provides good resolution and accuracy

while allowing a better front-end
design. (b) Uses a sparse configuration
of antennas with fewer transmitter and

receiver channels and a big effective
antenna aperture.

(a) Accuracy of the different estimators
with RMSE between valid target
detections and their positions is
considered. (b) False alarm ratio,

probability of detection, and detection
efficiency are measured. (c) OMP
reconstruction algorithm provides

better detection efficiency and is faster
than MUSIC. (d) Sparse reconstruction

algorithms capable of resolving two
closely-spaced targets due to the

increased aperture of the sparse array.

Sparse reconstruction
requires more

computational time than
FFT and is more

dependent on
hyperparameter tuning.

[41] 2017 (a) DOA estimation by comparison of
a phase difference between two Radars

using the phase angle of the steering
vector. (b) Kurtosis measures how

many observation values are present at
the center.

(a) Average values and “standard
deviations of errors” obtained from the

difference between actual angles and
estimated angles, which shows the

proposed method has a smaller average
error. (b) The Kurtosis value of this

algorithm is 31.9140, suggesting main
lobes with large peak values and side
lobes have smaller values, providing

better resolution.

As SNR changes, the
method has an error of

DOA estimation like for
MUSIC and Bartlett, but

with more
computational

complexity.

[48] 2017 (a) Crude estimation is done using
MUSIC. (b) Based on these values, each

antenna element is turned to specific
directions using a calibration technique

focusing on signals from target
directions obtained in the first stage.

MUSIC with this technique results in
lower RMSE values at low SNR regions

compared to conventional MUSIC.

In a high SNR region,
the approximation error

is observed when
estimated phase delays
are multiplied by the

received signals.

Table 7 contains an analysis of various DOA estimation algorithms.
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Table 7: An analysis of various DOA estimation algorithms

Ref. Year Algorithms adopted Advantages Drawbacks Scenarios
[49] 2025 Compressive sensing

alternating descent
conditional gradient

method for DOA
estimation in

non-uniform linear
arrays.

(a) Off-grid effect is not
hampering the result. (b) Using
real Radar data, the algorithm
can reconstruct two sources
effectively when the angle

between two corner reflectors
is reduced.

Computation time is
slightly more than
MUSIC when the

number of arrays is
much less.

Urban roads.

[63] 2024 (a) Group-sparsity
method. (b) Association

of multi-target
parameters is done using

least-square-based
minimization method.

The least-squares-based pair
matching method is good for
the probability of successful

parameter (DOA and bistatic
velocity) association,

Computational
complexity.

Urban roads.

[62] 2023 GS based algorithm. With increasing Radar data size
on performance evaluation, the

sparsity-based method
provides a better result than

MUSIC.

Computational cost
increases.

Urban roads.

[51] 2023 E-MUSIC algorithm. E-MUSIC is computationally
fastest among algorithms like

MUSIC, and MVDR,
considered against the array

elements.

Only the line of sight
channel is studied.

Highway.

[68] 2022 MARS-based on
Maximum likelihood.

With the same number of DOA
in 1 bin, the RMSE value
against increasing SNR is

obtained as 1 deg by only the
MARS algorithm.

Performance evaluation
with simulation
experiment only.

Dynamic driving
situations on
urban roads.

[67] 2020 Deterministic Maximum
Likelihood.

Accurate DOA estimation of
two targets only when true
matching of arrays is done.

In true matching of
ar-rays, at low SNR, a
slight angle estimation

error occurs.

Highway.

[58] 2020 Digital Beamforming
method to virtual array.

Two targets are separated better
in the angular dimension.

Angular resolution is
inaccurate at 0 SNR, and

is possible only with
higher values.

Dynamic
environment such
as on a highway.

[45] 2020 Enhanced beam-space
MUSIC algorithm.

With target number = 1, the
performance of this algorithm

is better compared to
beamforming MUSIC and

classical MUSIC.

Beamformer design is
unsuitable for a

restricted Field of View
(FOV).

Dense traffic
condition.

[42] 2019 DOA estimation with
both original and

extrapolated signals.

Bartlett algorithm with the
suggested method provides a
higher resolution probability

and lower RMSE when plotted
against SNR.

Computational
complexity marginally

increased.

Urban roads.

[73] 2019 (a) LUT as a data
storage-based method.

(b) Support Vector
Machine.

LUT and proposed SVM are
more robust to azimuth error

when plotted against the
number of data samples.

Urban roads.

(Continued)
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Table 7 (continued)

Ref. Year Algorithms adopted Advantages Drawbacks Scenarios
[43] 2018 DFT applied with

MUSIC algorithm.
DFT-MUSIC algorithm
provides better angular

resolution.

DFT-MUSIC is
computationally slower

than DFT-BF.

Parking area of
university campus
with static targets

and slowly
moving targets.

[65] 2018 Method based on
Compressive Sensing.

Sparse reconstruction
algorithms can resolve two

closely-spaced targets due to
the increased aperture of the

sparse array.

Sparse reconstruction
requires more

computational time
compared to FFT and is

more dependent on
hyperparameter tuning.

Outdoor parking
area.

[41] 2017 Comparison of the phase
difference between two

Radars using phase angle
of steering vector.

the kurtosis value of this
algorithm is 31.9140, providing

better resolution.

As SNR changes, the
method has more

computational
complexity.

Urban roads and
parking area.

[48] 2017 (a) Crude estimation is
done using MUSIC (b)
The Antenna element is

turned in specific
directions using a

calibration technique

Lower RMSE values at low SNR
region, compared to
conventional MUSIC

In high SNR region,
approximation error is

observed when
estimated phase delays

are multiplied by
received signals.

Highway.

4 Target Tracking
After target detection by Radar, filtering and tracking techniques for obtaining target motion dynamics

are required to stay informed about the target’s position and avoid collision [74,75] as in the ACC application.
Different target modeling models are present, like dynamic target modeling and static target modeling, which
are further categorized into occupancy grip mapping, amplitude grid mapping, and free space mapping
[76]. Fig. 11 draws a flowchart of the target tracking signal processing method.

Detection to object

association

Separation of

clutter

Object to track

association and

management of track

Tracking

method

Valid target tracks

obtained

Target cartesian position

measurement

Range, radial velocity,

azimuth angle at time t

Figure 11: Signal processing for target tracking

The target parameters measured are range, velocity, and azimuth angle obtained at time instant t. The
target is separated from clutter by discriminating between moving and stationary targets, where stationary
targets are not considered. Object association is achieved by grouping multiple detections from the same
target into a single object. When an object does not match any existing track, a new track is initiated, resulting
in valid and false tracks. Only valid tracks of real targets are input to the tracking filter. The target position
represented in Cartesian coordinates obtained from range and angle measurements is fed to tracking filters.
The output from the tracking filter is a valid track for a particular target.
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The main characteristics of multi-target tracking are [77,78]:

1. Motion model for the target.
2. Prediction and update of the target state.
3. Data association of measurements of tracks.
4. Target Track Management applied for track initiation, confirmation of track, and termination of track.

4.1 Motion Model for Target
To detect a target vehicle, motion models are utilized, where the parameters of the target are assembled

from sensor data. These models are designed according to the movement of vehicles and classified as constant
velocity (CV), constant acceleration (CA), constant turn rate (CTR), and constant turn rate and acceleration
(CTRA).

4.2 Prediction and Update of Target State
Track initiation establishes a sufficiently accurate track in terms of position, velocity, and direction

within the shortest time possible. The Kalman filter (KF) is typically used to estimate the location of actual
targets at the current instant in time, utilizing prediction and update processes. The Bayesian method is also
being introduced for this purpose.

4.2.1 Kalman Filter
The KF is a recursive filter used to estimate the state of a discrete-time linear type dynamic system from

noise-filled measurements. It consists of a Prediction step and an Update step. Prediction step: A new value
called the predicted value is assumed based on the initial value, and then the error present in the prediction
is obtained according to various noises in the Radar system. Predicted value,

x′t = F .xt−1 +Wt−1 (60)

where F is the state transition matrix, x is the mean state vector having position and velocity values of the
target, W is the Gaussian state noise vector, and t is the time stamp. The covariance matrix can be denoted
as,

P′t = F .Pt−1 .FT + Q (61)

where Q is noise and T stands for transpose. Update step: The actual measurement coming from the Radar
is obtained and named as the measured value. The difference between the measured and predicted values is
evaluated, and then it is decided which value to keep based on the Kalman gain. Based on the Kalman gain,
these new values and new errors are calculated, which will be the predictions done by the KF in the first
iteration. The Kalman gain is the parameter that determines the weight assigned to predicted and measured
values. It determines whether the actual value is closer to the expected value or the measured value. The
output of this Update step is fed back to the predicted state, and this cycle continues until the error between
predicted and real values conve rges to zero.

KGt =
error in prediction

error in prediction + error in measurement
= P′t HT

H P′t HT + Rn
(62)

where H is state transition matrix containing no unwanted information, Rn is measurement noise. The value
of Kalman gain ranges from 0 to 1. When the value is closer to 0, the predicted value approaches the real
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value, and when the value is closer to 1, the measured value approaches the real value.

xt = x′t + KGt . (Zt −Hx′t) (63)

where Zt is the actual measured value from Radar and the term (Zt −Hx′t) denotes the difference between
measured value and predicted value.

Pt = (I − KGt .H) .P′t (64)

These new xt and Pt values will be sent for the next prediction step, and the cycle continues. Fig. 12
shows a pictorial presentation of the Kalman filter algorithm.

Initialize with x0

At each time step t

1 2Predict Update

xt
' = F.xt-1 + Wt-1

Pt
' = F.Pt-1 . FT+ Q

KGt = Pt
' HT (H. Pt

' . HT + Rn)-1

xt = xt
' + KGt (Zt -H.xt

')

Pt = (I- KGt . H). Pt
'

Figure 12: Kalman filter algorithm

4.2.2 Extended Kalman Filter (EKF)
The limitation of the “Kalman filter” is that it works with a Gaussian distribution and linear functions.

Radar data involves non-linear functions, which must be approximated to make them linear. This approxi-
mation is typically performed using the Taylor series, and the EKF can be applied afterward. Prediction step:
The prediction step is similar to the Kalman filter.

Predicted value , x′t = F .xt−1 +Wt−1 (65)

where F is a matrix of state transition, x is the mean state vector having position and velocity values of the
target, W is the Gaussian state noise vector, and t is the time stamp. The covariance matrix can be denoted
as,

P′t = F .Pt−1 .FT + Q (66)

where Q is noise and T stands for transpose. Update step: the difference in-between the measured value and
the actual value is given as,

y = Zt − hx′t (67)

where Zt is the actual measured value from Radar in polar coordinates and h is a function that specifies how
position and velocity are mapped to polar coordinates.

Total error, S = H jP′tH
T
j + R (68)
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Kalman Gain, KGt =
P′tHT

j

S
(69)

where H j is the Jacobian matrix, which is the first-order derivative of the Taylor series. Now,

xt = x′t + KGt .y (70)
Pt = (I − KGt .H j) .P′t (71)

Fig. 13 shows a pictorial presentation of the Extended Kalman filter method.
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Figure 13: Extended Kalman filter algorithm

4.2.3 Unscented Kalman Filter (UKF)
The UKF is similar to the EKF and tries to address its problems. Here, the transformation is a nonlinear

unscented transformation and is considered a replacement for the linearization process in EKF. In this
method, a precise nonlinear function is employed to approximate the probability distribution of the state.

4.2.4 Bayesian Filter
To work with non-Gaussian Radar systems, Bayesian filtering and the particle filter (PF) are sometimes

employed. With the help of random samples, this method estimates the state Probability Density Function
(PDF). The model for the system can be shown as,

x (t) = F (x (t − 1) , Vn (t − 1)) (72)

where F is a transition matrix and Vn is zero-mean white noise of known PDF. The equation for measurement
is shown as,

Z (t) = H (x (t) , W (t)) (73)

where H is taken as the transition function and W is taken as zero-mean white noise. The PF algorithm can
approximate the posterior PDF P(x(t)∣Z(1:t)) by particles, which are a set of weighted random samples. The
first prior distribution of the state P(x(0)) and PDF P(x(t−1)∣Z(1: t−1)) at time (t−1) are assumed to be known.
The PDF is written as,

P (x (t) ∣Z (1 ∶ t − 1)) = ∫ P (x (t) ∣x (1 ∶ t − 1))P (x (t − 1) ∣Z (1 ∶ t − 1)) dx (t − 1) (74)
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The prediction is then updated with the help of the current measurement y(t) based on Bayes’ theorem,

P (x (t) ∣Z (1 ∶ t)) = P (y (t) ∣x (t))P (x (t) ∣Z (1 ∶ t − 1))
P (Z (t) ∣Z (1 ∶ t − 1)) (75)

in which, P(y(Z)∣Z(1:t−1)) is a normalizing constant. The optimal state can be derived as

E (x (t) ∣Z (1 ∶ t)) = ∫ x (t) P (x (t) ∣Z (1 ∶ t) dx (t)) (76)

A limitation of this method is that the unknown integrals are hard to compute, so approximations
are needed.

A single target localization method by applying a collocated MIMO-monopulse approach to FFT
processing is adopted in a real-life experiment [79]. To improve the velocity uncertainty of a moving
target, a cascaded KF as described in [80], can be applied, where KF is first applied on polar coordinates
to derive velocity and predict the acceleration. Next, an EKF is used to improve velocity measurements
and minimize measurement error when the motion state is in Cartesian coordinates, and measurements
are provided in polar coordinates. An improved adaptive EKF is used in [81] to enhance the robustness
and accuracy of the tracking process. A cubature Kalman filter (CKF) applies the cubature rules to
approximate recursive Bayesian estimation integrals with a Gaussian assumption. The square-root CKF
(SRCKF) algorithm distributes the factors, which are the square roots of the predicted and posterior error
covariance matrices, to prevent the square rooting of the matrix. The iterative SRCKF algorithm in [82],
iteratively optimizes the SRCKF measurement and update processes by the Gauss-Newton method, leading
to a lower error component. In [83], a threshold method is first used to filter out ghost targets and empty
targets. This is followed by application of the Adaptive Interactive Multiple Model Kalman Filter and the
Hungarian algorithm for association and tracking of multiple targets, which reduces the error as compared
to conventional UKF algorithms. In [84], a multi-target tracking algorithm based on a 4D Radar point cloud
has been proposed for obtaining the intensity, location, velocity, and structure of the targets. The method
provides compensation for point cloud clustering, velocity, static state, and dynamic state updates, as well
as 3D border generation of the dynamic target using the Kalman filter, contour updates of the static target,
and a target trajectory control procedure. Tracking of targets in the presence of velocity ambiguity requires
a tracking algorithm with TDM where disambiguation of Doppler is done before angle estimation [85].

A reweighted robust PF (RR-PF) is proven to improve state values in a nonlinear model and is more
robust to outliers [86]. The method utilizes inputs from the particle weights of true particles and filters out
inputs from unreliable particles through the discriminative treatment of detected Radar data. A track-before-
detect (TBD) algorithm uses the targets’ kinematic constraints on road and graph theory algorithms to define
every plot as a potential target or clutter [87]. The algorithm involves a discriminant metric, which refers
to mathematical calculation rules of a plot and its trajectory, followed by the state transition of the plot,
and requires transition conditions. The post-processing is done for motion state estimation of confirmed
targets, after which significant results in target detection and effective clutter removal are observed. A multi-
frame TBD can adjust the threshold value of detection depending on the existence of mobile targets present
within the Radar field-of-view and also considers the self-positioning errors of the ego vehicle [88]. Another
application of TBD is the motion compensation technique on the dynamic programming-based TBD [89],
which works for ground Radars to decrease the error of the conventional algorithm. In [90], the Cramer-Rao
lower bound method is applied to detect the location and velocity of a mobile target, and an active sensing
application is further used to improve tracking accuracy.
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Linear Regression with KF: A machine learning algorithm like Linear regression can be applied with KF
for more accurate estimation of target parameters. Linear regression helps identify a statistical relationship
between an independent variable and a dependent variable. Here, time (t) can be assumed as independent
and ‘x’ or ‘y’ position as dependent variables. It is believed that the relation between time and position is of
second order polynomial and hypothesis is hθ (t) = θ0 + θ1t + θ2t2, where, θ is weight determined by LR.

The motion in both ‘x’ and ‘y’ directions is trained using the last position values or training examples
and these weights. Final estimated position values are calculated by applying KF. The expected outcome is to
minimize the total error in prediction.

4.3 Data Association and Measurement of Tracks
Data association is used to combine multiple detections from the same target into a single object. If an

object does not match the current track, a new track has to be initialized. Thus, valid and false tracks are
produced. The valid tracks are considered for updating the states [91]. In the global nearest neighbor (GNN)
algorithm, the association depends on the minimum Euclidean distances between measured and predicted
values. However, this algorithm performs poorly in high-clutter regions.

The Joint Probabilistic Data Association Filter (JPDAF) algorithm is more efficient for tracking targets,
where the probability of βi , j is measured, which shows a measure of i obtained from a target track j. In
this case, measurements from targets are assumed to be of a Gaussian distribution, whereas the clutter is
uniformly generated. A hypothesis tree is created by the hypothesis filter, considering three associations: a
measurement will either belong to an existing track or a new one, or it is due to a false alarm. The probability of
each hypothesis is based on the Bayes rule, and the likelihood of each association is calculated. The Hungarian
algorithm is an assignment algorithm used to find an appropriate “target track assignment” for a specific cost
matrix. The cost matrix is square and contains elements Ci , j, which denote the cost for the measurement
assignment i to target track j. The elements are calculated from the likelihood function, which is determined
by radar properties such as measurement noise, the probability of target detection, and the detection of false
alarms for the initialization of track and target properties.

A micro-Doppler-based leg tracking framework for pedestrian detection to enable behavioral signs
within one measurement cycle has been presented in [92]. A model is designed to estimate the spatial
movement of the feet, segment the body in a vertical format, and extract the reflection points resulting
from leg movement. An elevation-resolving antenna is used. Then, EKF is used for target tracking. After
data association is completed with Joint Probabilistic Data Association (JPDA), the reflection points can be
assigned to a particular leg. Then the location, kinematic data, and velocity of each foot can be filtered. In [93],
an Interacting Multiple Model (IMM) algorithm with the JPDA algorithm is shown to achieve tracking of
multiple maneuvering targets. Since the effect of this algorithm is less pronounced in the nonlinear case, UKF
with Doppler measurement is applied to achieve better position and velocity accuracy. In [94], the spatial
distribution of the measurement model produced by a target vehicle is presented using a variational Gaussian
mixture (VGM) model. For mapping of the extended target tracking problem, the Probability Generating
Functional formulation has been used.

An adaptive strong tracking extended KF (ASTEKF) helps to lessen the impact of state transitions and
parameter changes on the measurement process and for better resilience to interferences [95]. The adaptive
attenuation factor is updated whenever the time fading factor changes, helping to mitigate the divergence
problem in a tracking process. This algorithm offers enhanced capacity to track abrupt changes in the target’s
motion states. A number of clustering algorithms are used for identification, investigation, and tracking
of targets [96]. The Density Based Spatial Clustering of Applications with Noise (DBSCAN) clustering
algorithm can be applied to range-angle data to obtain the centroids of the cluster points, which then provides
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the target position [97]. An imaging method for a target moving at high speed utilizes the Doppler Range
Processing (DRP) method to achieve velocity and range resolutions, thereby obtaining coherent integration
gains through range-Doppler processing [98]. Initially, Doppler processing is performed using the FFT
on slow-time samples. A velocity bin interpolation method, and lastly, processing of the range is done
via FFT over Doppler migration lines. The complexity of computation of this algorithm is calculated as
O (NL log (NL) + NL), where N is the number of samples in PRI, and L is the periods of chirps in a CPI.

A hybrid smooth variable structure filter (SVSF) is presented in [99] by combining generalized time-
varying smoothing boundary layer (GVBL) and Tanh-SVSF to prevent parameter sensitivity and control
the unwanted chattering matter. A non-linear generalized variable smoothing boundary layer (NGVBL)
parameter is used to create a hybrid switching scheme that leads to an ideal Kalman filter (KF) in cases
of low model uncertainty. For solving data association and clustering problems, a Deep Neural Network
(DNN), called Radar Tracking Network or TrackNet, can be used, which applies point clouds of Radar data
from several time stamps to get desired objects on the road and provide the information on tracking [100].
In this architecture, features are extracted independently for each cell and timestamp using a PointNet++-
based method that incorporates long-distance point sampling and multi-scale grouping. This is followed by
processes of convolution and max-pooling applied to smaller point clouds within each cell. For extended
object tracking, a measurement modeling and estimation method, known as the data-region association
process, partitions an object into several regions. A simple measurement distribution is performed over
each area, and a complex method is applied to the target [101]. Also, a new gating method is used for
data association.

4.4 Target Track Management
For multiple targets, a management process is required to filter false alarms and efficiently track them

under changing detectability scenarios [102]. Tracks can be classified into two categories: provisional and
verified tracks. After each measurement round, the values are updated and verified in the first phase. The
remaining measurements are tested for association with provisional tracks in the second phase. If these
measurements do not correlate with known tracks, they initialize new provisional tracks. After further
examination, these tracks become either confirmed or deleted. For this purpose, the M/N test can be applied,
where a provisional track is confirmed if a minimum M number of detections is obtained for N scans of data.
If K or fewer detections are obtained for N scans, the provisional track is rejected. A composite method can
be formed by combining two or more M/N tests by a logical OR operation. This will provide more accurate
results with little increase in computational difficulty. For target tracking, a medium access control (MAC)
technique has been adapted so that automotive Radars can have a common channel and suggest the best
MAC parameter for a particular vehicle and corresponding road traffic [103]. Table 8 contains a detailed
analysis of research works available regarding target tracking using automotive Radar.
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Table 8: An analysis of research works for target tracking

Ref. Year Algorithms adopted Performance metrics and achievements Drawbacks
[102] 2025 (a) Track management methods: Naïve

approach, track history-based, and existence
probability-based. (b) The Naïve method is used

in sensor-to-sensor track fusion architecture
where all sensors are assumed to detect and track

all targets within their respective field-of-view.
(c) For the track history-based method, the

history of a target track’s association is used to
confirm the track in multi-target tracking. (d) In
the existence probability method, a probability

value is set to a global track and is compared to a
threshold value to determine track confirmation

and deletion.

(a) Performance metrics include
precision, recall and Multiple Object

Tracking Accuracy (MOTA) and
F-measure F1 score. (b) The Recall value

of the Radar is higher than that of a
camera. (c) The Existence

probability-based method, depending on
the sensor to global Dempster-Shafer

rule, creates a balance between recall and
precision and high F1 and MOTA scores,
providing better performance than other

methods.

The Existence
probability-based
method does not

provide a better recall
value than the central
tracking algorithm.

[95] 2024 (a) Adaptive strong tracking extended Kalman
filter to prevent filtering divergence problem. (b)

DBSCAN algorithm to merge target tracks on
the real main route. (c) Data association is done

with JPDA.

(a) Root mean square errors in location
and velocity are lower using ASTEKF

than with EKF and strong tracking
extended KF (STEKF). (b) Target

vehicle’s filtered tracks are almost the
same as the real track, as it changes
roads and velocity filtering values

intersect fast with lesser error.

Only the Constant
acceleration motion
model is considered.

[84] 2023 (a) 4D Radar cloud-based measurement model
for obtaining intensity, location, velocity, and

structure of targets for tracking. (b) The binary
Bayesian filtering technique is applied to identify
the size of dynamic and static targets. (c) Kalman

filter used for dynamic target tracking.

If the radial velocity is less, rotation
angle estimation is done from velocity

measurements from many points, and a
smaller range is better for obtaining the

rotation angle.

Research is required for
motion models of

moving targets and pose
estimation of the

ego-vehicle.

[92] 2022 (a) Micro-Doppler-based leg tracking
framework for pedestrian detection to enable

behavioral signs within one measurement cycle.
(b) EKF is used for target tracking. (c) Data
association was done with JPDA, reflection

points were set to respective legs, and finally,
filtering of each foot’s velocity, position, and

kinematic data.

(a) Micro-Doppler spectrum of the
lower body of a pedestrian, dependent
on time range, shows tracking of a foot

movement. (b) Required for
determining the state of a pedestrian,
like drunk or not, for safety purposes.

Data association conflict
arises if targets are close

to one another.

[99] 2022 (a) Hybrid SVSF presented by combining
generalized time-varying boundary layer

(GVBL) and Tanh-SVSF to prevent parameter
sensitivity and control unwanted chattering

phenomenon. (b) Non-linear GVBL parameter
to create a hybrid switching scheme for ideal

Kalman filtering in case of low model
uncertainty. (c) NGVBL-SVSF corrects the

optimization problem and gets a quasi-optimal
NGVBL parameter.

(a) NGVBL-SVSF compared to common
SVSF and Tanh-SVF, considering

parameters like Root Mean Square Error
of target’s position and velocity

measurements and track continuity. (b)
NGVBL-SVSF attains the least RMSE in

low model and high uncertainty level
cases.

Cost of NGVBL-SVSF is
more than Kalman filter,

common SVSF, due to
hybrid switching.

[86] 2022 (a) For the generative model, the Bayesian
algorithm is used to treat the weights of each

entry in measurement data probabilistically. (b)
Reweighted robust particle filter method uses

inputs from particle weights of reliable particles
and deteriorates the inputs from unreliable

particles by discriminative treatment of detected
Radar data, to improve state estimates in a

nonlinear model.

(a) RMSE and Normalized Mean
Squared Error (NMSE) are performance
metrics observed against outlier ratios.
(b) This method has the lowest NMSE

and average Mahalanobis distance
throughout the range of outlier ratios
compared to other particle filters. (c)

Better trajectory tracking of pedestrian.

In detecting walking
pedestrians with real
data, few fluctuations

were observed.

(Continued)
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Table 8 (continued)

Ref. Year Algorithms adopted Performance metrics and achievements Drawbacks
[87] 2021 (a) Track-before-detect algorithm uses

kinematic constraints of targets on the road and
graph theory algorithms to define every plot for

a potential target or clutter. (b) Involves a
discriminant metric, referring to mathematical
calculations of a plot and its trajectory. (c) Next,

the state transition of the plot that describes a
state variable in the case of plots. (d)

Post-processing for motion state estimation of
confirmed targets.

(a) Probability of detection (PD),
Receiver operating characteristic (ROC),

and clutter elimination rate are
performance metrics. (b) In PD vs.

signal-to-disturbance ratio (SDR), TBD
shows better performance in the

detection of target and high clutter
elimination rate. (c) With different

SDRs, this method provides better target
detection and clutter elimination

compared to successive track
cancellation algorithms.

TBD can not perform
properly in case of a

large signal loss.

[98] 2021 (a) Imaging method for target moving with high
speed, Doppler Range processing (DRP) used to
achieve velocity and range resolutions and obtain

coherent integration gains of range-Doppler
processing. (b) Doppler processing is performed
via FFT on slow time samples, then a velocity bin

interpolation method, and lastly, range
processing is done with FFT.

(a) Considering point spreading
functions of moving target in

range-Doppler plot, DRP performs
better than conventional Range-Doppler
Processing (RDP). (b) DRP has the same

coherent integration gain for different
Radar bandwidths and target velocities.

The results are proven
theoretically only.

[93] 2021 (a) IMM with JPDA is proposed to achieve
tracking of multiple targets in the case of

maneuvering targets. (b) DUKF applied for
better position and velocity accuracy.

(a) Smaller correlation coefficient results
in smaller range RMSE and range

average RMSE. (b) Value of RMSE of
velocity tracking and RMSE of velocity

average is largest at zero correlation
coefficient value. As the correlation value

becomes negative, RMSE values
decrease.

The algorithm cannot
correctly derive the

target motion state of a
high-velocity vehicle

with maneuvering
acceleration. The

accuracy of target range
tracking is reduced.

[100] 2020 For solving data association and clustering
problems, Radar TrackNet applied Radar data

point clouds from several time stamps to detect
desired objects on the road and provide tracking
information. The IMM with JPDA is proposed to

achieve multi-target tracking of maneuvering
targets.

Radar TrackNet provides improved
performance with multiple object

tracking accuracy and precision values
compared to classification-assisted and

basic clustering tracker methods.

Probability of missing an
actual track is more than

showing false tracks.

[94] 2020 (a) Spatial distribution of measurement model
produced by a target vehicle presented using a

variational Gaussian mixture (VGM) model. (b)
For mapping of the extended target tracking

problem, the Probability Generating Function
formulation is used.

Plot of Wasserstein distance vs. traces
from Nusense’s data set shows the

algorithm has improved performance in
terms of average Wasserstein distance

(WSD) and median WSD.

Computationally
complex.

[80] 2018 (a) Kalman filter applied on polar coordinates to
derive velocity and acceleration. (b) Extended

Kalman filter used to improve velocity
measurements and minimize the measurement

error where the motion state is in Cartesian
coordinates.

Cascaded KF can estimate the velocity
ambiguity number whether the target
velocity is at the hopping stage or not.

The algorithm is not tested on a real road
environment.

[77] 2018 (a) UKF applied to CTRA motion model. (b)
Tracking accuracy improved by linear regression
technique. (c) JPDA algorithm applied for data
association to update the state estimate of the

target. (d) For track management, the M/N test
is used to determine tentative tracks for approval

or deletion.

(a) Root Mean Square (RMS) error in
target position over time proves the

accuracy of the CTRA-UKF model on
highly curved tracks, compared to the
KF model with constant velocity and

constant acceleration models. (b)
Considering different probabilities of

detection, clutter density, and high and
low resolution of Radars, RMS error in
velocity is constant for the CTRA-UKF

model.

For low-resolution
radars, selecting or
deleting tracks is

considered after many
cycles to prevent errors

in the track
management step.

(Continued)
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Table 8 (continued)

Ref. Year Algorithms adopted Performance metrics and achievements Drawbacks
[82] 2018 (a) Iterative SRCKF iteratively improves the

SRCKF process, leading to a lower error
component. (b) To obtain cubature points and
weights, a three-order cubature rule is used. (c)
Instant time is updated, and then measurement

update is done with the Gauss-Newton
nonlinear iteration process.

(a) Mean square relative error of radial
distance for SRCKF and ISRCKF filters
shows that the latter has a lower error

than the former. (b) Mean square
relative error (MSRE) of radial distance

improves with increasing iteration
number, providing better filtering.

On-road experiments
are not present.

Table 9 contains an analysis of various algorithms for target tracking using automotive Radar.

Table 9: An analysis of various target tracking algorithms

Ref. Year Algorithms adopted Advantages Drawbacks Scenario

[102] 2025 (a) Track management methods:
Naïve approach, track

history-based, and existence
probability-based. (b) track

fusion architectures: sensor to
sensor and global.

(a) Recall value of Radar is
higher than a camera. (b)

Existence probability-based
method, depending on the sensor
to global Dempster-Shafer rule,

provides high F1 and MOTA
scores, providing better
performance than other

methods.

Existence
probability-based

method does not provide
better recall value than

central tracking
algorithm.

Dynamically
changing road

conditions.

[95] 2024 (a) Adaptive strong tracking
extended Kalman filter. (b)

DBSCAN algorithm to merge
target tracks on a real main

route. (c) Data association is
done with JPDA.

(a) Root mean square errors in
position and velocity are lower

using ASTEKF. (b) Target
vehicle’s filtered tracks are

almost the same as the real track,
as it changes lanes and velocity

filtering values converge fast
with lesser error.

Only the Constant
acceleration motion
model is considered.

Road traffic
scenario.

[84] 2023 (a) millimeter-wave Radar 4D
point cloud-based measurement

model. (b) For identifying the
size of dynamic and static

targets, a binary Bayesian filter
was applied. (c) KF.

If the radial velocity is less,
rotation angle estimation is done
with velocity measurements from

multiple points, and a shorter
range is better for obtaining the

rotation angle.

Research is required for
motion models of

moving targets and pose
estimation of the

ego-vehicle.

Roads with
static and

dynamic targets.

[92] 2022 (a) Micro-Doppler-based leg
tracking framework for

pedestrian detection. (b) EKF. (c)
Data association is done with

JPDA.

Micro-Doppler spectrum of the
lower body of a pedestrian,

dependent on time range, shows
tracking of a foot movement.

Data association conflict
arises if targets are close

to one another.

Roads for
pedestrians.

[99] 2022 (a) Hybrid SVSF presented by
combining GVBL and

Tanh-SVSF. (b) Non-linear
GVBL parameter with SVSF.

NGVBL-SVSF attains the lowest
RMSE in both low and

high-uncertainty-level cases.

The cost of
NGVBL-SVSF is higher
than that of the Kalman

filter, common SVSF, due
to the hybrid switching.

Urban roads.

[86] 2022 Reweighted robust particle filter. the proposed method has the
lowest NMSE and lowest average

Mahalanobis distance
throughout the range of outlier

ratios compared to other particle
filters.

In detecting walking
pedestrians with real

data, few fluctuations are
observed.

Roads for
pedestrians.

[87] 2021 Track-before-detect algorithm
uses kinematic constraints of
targets on the road and graph

theory algorithms.

In PD vs. SDR, TBD shows better
performance in target detection
and a high clutter elimination

rate.

TBD can not perform
properly in case of a

large amount of signal
loss.

Roads with less
traffic.

(Continued)
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Table 9 (continued)

Ref. Year Algorithms adopted Advantages Drawbacks Scenario

[98] 2021 Imaging method for target
moving with high speed, Doppler

Range processing used.

Considering point spreading
functions of moving target in the

range-Doppler plot, DRP
performs better than

conventional RDP.

The results are proven
theoretically only.

Roads with fast
moving cars

[93] 2021 (a) IMM algorithm with JPDA
algorithm. (b) DUKF applied.

IMM-JPDA-DUKF provides
improved accuracy with the

maneuvering target.

The algorithm is unable
to correctly derive the
target motion state of a

high-velocity vehicle
with maneuvering

acceleration.

Curved roads
with multiple

targets.

[100] 2020 Deep neural network Radar
TrackNet.

Improved performance with
multiple object tracking accuracy
and precision values compared to
basic clustering tracker methods.

The probability of missing an
actual track is greater than

showing false tracks.

Urban roads
with pedestrians

and different
types of
vehicles.

[94] 2020 Probability Generating
Functional formulation used.

Plot of Wasserstein distance vs.
traces from Nusense’s data set

shows the algorithm has
improved average WSD and
median WSD performance.

Computationally
complex.

Urban roads.

[80] 2018 (a) Kalman filter applied on polar
coordinates. (b) EKF is used to
improve velocity measurements
and minimize the measurement

error where the motion state is in
Cartesian coordinates.

Cascaded KF can estimate the
velocity ambiguity number

whether the target velocity is at
the hopping stage.

The algorithm has not
been tested on a real
road environment.

Simulation
environment

considers long
roads.

[77] 2018 (a) UKF applied to Constant
Turn Rate and Acceleration
(CTRA) motion model. (b)

Linear regression technique. (c)
JPDA algorithm applied for data

association. (d) For track
management M/N test is used.

RMS error in target position over
time proves the accuracy of the

CTRA-UKF model on highly
curved tracks.

For Radar with low
resolution, the decision
to select or delete tracks

is considered after a
large number of cycles to

prevent errors in the
track management step.

Curved roads
with multiple

vehicles.

[82] 2018 (a) Iterative SRCKF. (b) To
obtain cubature points and

weights, a three-order cubature
rule is used. (c) Measurement

update is done with the
Gauss-Newton nonlinear

iteration process.

MSRE of radial distance
improves with increasing

iteration number, providing
better filtering.

On-road experiments
are not present.

Simulation
model of urban

roads.

5 Target Recognition and Classification
The road scenario in which automotive Radar operates is very cluttered, so the classification of targets

with high accuracy is essential. A flowchart for the target recognition and classification process is depicted
in Fig. 14. Using the raw Radar data, a potential target is observed and its features like RCS, range, and
Doppler are extracted.

A training data set containing representative Radar data examples is required. Now, the data measured
from the target is considered along with the training data. The result is classifying the new data, i.e., the new
target, into different classes or categories. The target recognition problem in Radars can be addressed from an
ML algorithm perspective. The principle of an ML is to find the direction from a group of unknown data and
then utilize this to predict the next step in advance or classify the remaining data. ML algorithms are divided
into three types: Supervised learning algorithms, Semi-supervised learning, and Unsupervised learning
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algorithms. The supervised methods are applied when training datasets are available to predict the output of
the algorithm, and the well-known examples include K-Nearest Neighbor (KNN) algorithm, Support Vector
Machine (SVM) algorithm, and Artificial Neural Networks (ANN). Semi-supervised methods are used when
labeled data is insufficient and unlabeled data is used for training the algorithm; certain Convolutional Neural
Networks (CNNs) fall into this category. Unsupervised algorithms such as K-means clustering and Principal
Component Analysis (PCA) are applied when labeled data is not available for training purposes.

Automotive radar raw

measurements

Target extraction

Target feature

extraction

Target classification

Target classes

Target tracking

Training/ testing

Data model

Target recognition

Figure 14: Signal flowchart of automotive radar for target recognition and classification

5.1 K-Nearest Neighbor (KNN) Algorithm
In the scenario of Automotive Radar data, the supervised learning algorithm, KNN algorithm [104], can

be used to classify Radar signals into different categories based on their similarity to other signals. To derive
this classifier, a training set containing representative examples of the Radar data is required. Data obtained
from the Range-Doppler map is considered. The main steps for the KNN algorithm can be written as:

1. Calculation of distance between the fresh data point, known as query, and every data point in the
training dataset with the help of a distance metric, e.g., Euclidean distance as used here:

Distance =
√
(X2 − X1)2 + (Y2 − Y1)2 (77)

where X2 and Y2 are the new Velocity and Range values, respectively, and X1 and Y1 are the existing
velocity and Range values from the training dataset;

2. This equation is conducted on each existing data point with the new data;
3. Once all distances are obtained, these are sorted in ascending order to find the k-nearest neighbors;
4. The k-nearest neighbors with the smallest distances are selected with k value, usually in odd numbers

as 3 or 5;
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5. Lastly, the class of the query point is obtained based on the majority class among the k-nearest neighbors.

5.2 Support Vector Machine (SVM) Algorithm
The SVM is a set of supervised learning algorithms used to classify targets, regression, and outlier

detection [23]. The SVM algorithm chooses the decision threshold from an indefinite quantity of probable
ones, leaving the biggest margin between the nearest data point and the hyperplane, called support vectors.
A classifier of linear type is of the form,

f (x) = wT
s x + b (78)

where ws is weight vector and b is bias. Let the available dataset be x1 , ..., xn and the two class labels are
termed as yi = (−1, 1). The decision threshold is defined as,

yi (wT
s x + b) ≥ 1 ∀i (79)

The issue of optimization is stated as,

Minimize ∶ 1
2
∥ws∥2 , sub ject to ∶ yi (wT

s x + b) ≥ 1 ∀i (80)

This problem is expressed by defining the Lagrangian

L = 1
2
∥ws∥2 +

n
∑
i=1

βi (1 − yi (wT
s x + b)) (81)

where βi are the Lagrange multipliers. Considering derivatives of L with reference to 1
2 ∥ws∥2 and b and

making the result equal to zero, the final results are obtained,

ws =
n
∑
i=1

βi yi xi

n
∑
i=1

βi yi = 0 (82)

After substituting ws into L, the result is obtained as,

L =
n
∑
i=1

βi yi −
1
2

n
∑
i=1

n
∑
i=1

βi β j yi y jxT
i x j (83)

The initial problem of optimization can be finally given as,

Increased to maximum ∶
n
∑
i=1

βi yi −
1
2

n
∑
i=1

n
∑
i=1

βi β j yi y jxT
i x j l iabl e to ∶

n
∑
i=1

βi yi = 0, βi ≥ 0 (84)

So, if βi is provided, then ws will be obtained and finally the margin m = 2
∥ws∥

can be calculated.
A classifier based on bidirectional long short-term memory (LSTM) applies the feature of relative

velocity, range, and signal amplitude to classify targets at ground level and targets at overhead on real
roads, useful for collision avoidance [105]. FFT and cell-averaging CFAR (CA-CFAR) have been used for the
implementation of this LSTM, which provides a precision of around 98.18% inside a range of value 13 m and
a correctness of around 94.97% within a range of 20 m. A convolutional LSTM and a convolutional gated
recurrent unit (GRU) are used to obtain the dynamics of input of the time-series range-velocity (RV) images
to perform classification of the target [106]. The proposed network comprises one convolutional recurrent
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layer, whose input is 2D time series signals received from an automotive Radar, a convolutional layer, and
a fully connected layer. In [107], three types of neural network (NN) architectures are presented, namely,
Visual Geometry Group (VGG16) but a scaled-down version, the ResNET-50 for better generalization, and a
supervised algorithm Convolutional Neural Network (CNN) with LSTM, to extract features from segments
of the micro-Doppler spectrogram. For target classification using the height, length, and width of a target, 3D
point cloud data can be launched in orthogonal directions onto the yz, xy, and zx planes, respectively, to create
images of three types [108]. A parallel input CNN or a serial input CNN is used to classify images of targets
after detection from three features into one of the four types of targets, such as pedestrian, cyclist, sedan, or
Sport Utility Vehicle (SUV). A Radar range-Doppler flow and a method for radial acceleration for clustering
of Radar data point cloud helps in effective clustering in congested traffic conditions on urban roads [109].
This clustering is an unsupervised learning algorithm. DNN algorithm provides better classification of targets
even if a specific target try to be imitate other targets [110]. In [111], a classification method based on phase
estimation is proposed for pedestrians and vehicles. After the extraction of phase patterns obtained from
received signals reflected from different targets and differences in phase, these are taken as inputs for a DNN.

A hybrid method of SVM and CNN techniques for target classification is proposed in [112]. At first, the
range-Doppler image is obtained by 2D DFT, followed by the extraction of features of targets by CA-CFAR
and a DBSCAN algorithm. Then, SVM is applied for the first stage classification, and finally, the remaining
image samples with no identified category are used as input into the CNN to retrain. Based on conventional
RCS, Root Radar Cross Section (RRCS) is defined in [113], for real-time target classification using 77 GHz
FMCW Radar. The RRCS is determined by using the amplitudes of the received and transmitted signals from
the frequency domain. Hence, the reflection characteristics of targets can be extracted from the amplitude of
the transmitted signal. The SVM can be applied to pedestrian and vehicle classification based on the proposed
characteristics obtained from RRCS. Another method of using SVM in conjunction with a Deep Learning
(DL) model, specifically You Only Look Once (YOLO), for classifying vehicles and humans is presented in
[114]. The range-angle Cartesian plot is transformed into an image and used for training and classification
with the YOLOv3 model. The SVM utilizes target boundary boxes from the YOLO V3 model to enhance
classification, and by combining each result, the classification performance is further improved. The YOLO
V3 is also presented in [115] for classifying humans, vehicles, and aerial vehicles, such as drones. This is
applied after detecting range and angle using a rotating millimeter-wave (mmWave) FMCW Radar, where
the range is calculated from Analog-to-Digital converter (ADC) samples, and the angle axis is calculated
from the rotational frames. Another application of YOLO trained using a transformed range-angle domain is
presented in [116]. In a Radar image, YOLO studies the bounding box and probability of class as a regression
problem, assuming the location and type of the target by only looking at the image once, hence the name.
These images are partitioned into grid cells, where each cell consists of bounding boxes and a confidence
score, representing the likelihood of the target’s presence based on the intersection over union (IoU). The
performance of this model is presented in mean average precision (mAP). YOLO V4 is used in [117] also for
obtaining IoU values. The YOLO V5 model has been utilized for human classification to achieve improved
accuracy [118]. The DL can be applied to data of imaging Radar to classify vehicles, pedestrians, and cyclists
and estimate their direction [119].

In [120], the classification of pedestrians’ speed rate and movement of hands is done by applying unsu-
pervised Principal Component Analysis (PCA) for the extraction of features. Then supervised classification
algorithms like SVMs and KNN are used to classify between fast walk, slow walk, and slow walk while
keeping hands in pockets of pedestrians. A high fidelity physics-based simulation method has been used in
[121] for obtaining several spectrograms from the micro-Doppler parameters of the vulnerable road users
like pedestrians. This is the training data for a 5-layer convolutional neural network, which achieves nearly
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100% classification accuracy after five iterations. A method based on the Hough transform can be used to
determine the direction of movement and the size of the vehicle [122]. An integrated method of classifier and
tracking by KF leads to better tracking association and classification [123]. UKF is applied to a constant radial
velocity model in Cartesian coordinates to track the location and velocity of the targets, and classification
is performed using the KNN algorithm for stabilized classification of pedestrians and cyclists. The KNN
algorithm is best suited for classification of vehicles by a type of bistatic Radar called the forward scattering
Radar [124].

Considering the information obtained from a target’s statistical RCS, the classification accuracy of
around 90% and more has been achieved by the usage of Artificial Neural Network (ANN) [125]. In
continuation of this work, more classification models have been introduced in [126], for different types of
data from mmwave Radar, like distributed RCS data classification, 2D range-azimuth angle Radar images
classification is proposed for Radars that scan in the direction of azimuth and Radar images in 3D for Radars
which have elevation and azimuth beam-steering capability. Suppose targets are observed at long range, or
Radar doesn’t have imaging capability. In this case, methods based on statistical RCS and data from the
time domain are employed, and an ANN model is applied for classification. Meanwhile, the CNN model is
applied for classification based on range-phase images of radar data for short-range targets and radars with
beam-steering. This paper shows that the model based on 3D Radar images shows the best classification
results. CNN applied on dual automotive Radar system provides improved target classification [127]. A
lightweight deep learning method based on the level of reflection of Radar data is used in [128] for target
classification. Table 10 contains a detailed analysis of research works available regarding target recognition
and classification using automotive Radar.

Table 10: An analysis of research works for target classification

Ref. Year Algorithms adopted Performance metrics and
achievements

Drawbacks

[119] 2025 (a) Spatial clustering method based on
density to imaging Radar data projected
in X-Y domain to cluster target data and

filter out remaining data as noise. (b)
Dividing out of data points on the X-Y

domain is changed to an image and
used as input to a DL network to
classify the target and detect its

direction of movement.

(a) Accuracy of classification is highest
with 96.10% compared to ResNet50,
GoogleNet. (b) This method showed

the lowest average RMSE to assess the
correctness of estimating the target’s

moving direction, at 9.68%, compared
to other methods with the shortest

runtime of 0.1 s.

In the case of pedestrians, the
RMSE of the estimated angle is
higher than that for cyclists and
vehicles, making it difficult to

predict the pedestrian’s moving
direction.

[105] 2024 (a) The Neural network is a
Bidirectional long short-term

memory-based classifier that uses the
relative velocity, range, and signal

amplitude to classify targets at overhead
and road level targets on a real road. (b)
FFT and cell averaging CFAR are used

to implement the algorithm.

Classification of the reflector’s
installation height is observed to be

accurate when the distance in-between
the reflector and the Radar ranges from

13 to 3 m.

Percentage of overheaddata
wrongly predicted as ground is
more than that of ground data
wrongly predicted as overhead,

and this increases with
classification distance.

[108] 2022 (a) For classification using the height,
length, and width of a target, a cloud of
data comprising 3D points is projected

in orthogonal directions onto the yz, xy,
and zx planes, respectively, to create

images of three types. (b) Parallel input
CNN classifies targets using three

parallel images after training.

(a) Classification accuracy for SUVs is
highest, next for sedans and for

pedestrians, and lastly for cyclists. (b)
With increasing hidden layers from 1 to

5, classification accuracy remained
almost the same, but training time

increased.

Cyclists have spatial size the
same as pedestrians and thus

tend to be wrongly classified as
pedestrians.

(Continued)
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Table 10 (continued)

Ref. Year Algorithms adopted Performance metrics and
achievements

Drawbacks

[123] 2021 (a) UKF is applied to a constant radial
velocity model in Cartesian coordinates.

(b) Classification is done using the
KNN algorithm for the stabilized

classification of pedestrians and cyclists.
(c) Integration of output from the
classifier into the tracker helps to

process uncertainty related to the target
state.

Micro-Doppler images show less
misclassification between closely related

targets, such as teenagers and men, or
between cyclists, compared to results

obtained using a stand-alone classifier.

Only simulation model
developed in MATLAB.

[115] 2021 (a) Range bin obtained from ADC
samples in frequency bins and range

calculated by applying a 1-dimensional
FFT of the sampled IF signal. (b) Field
of View is divided into angle bins. (c)
YOLO V3 applied on data from angle

vs. range heatmap plot.

(a) Precision: ratio of appropriately
predicted positive results to predicted

positive results. (b) Recall: ratio of
rightly predicted positive results to
results in the real positive class. (c)

Specificity: ratio of actual negatives to
all negatives. (d) F1 score: combining
recall and precision. (e) Classification

accuracy value of 97.4% obtained, based
on above parameters.

For closely placed targets,
bounding boxes overlap in

range-angle maps. To resolve
targets, these boxes must be

made distinguishable,
increasing complexity.

[126] 2021 (a) The proposed algorithm is based on
statistical RCS values and data from the
time domain, utilizing an ANN model
for classification. (b) For short-range

targets and Radars with beam-steering,
the CNN model is applied for

classification based on range-phase
images of Radar data. (c) CNN is used

for Radar that provides
azimuth-elevation angle images and 3D

images.

Image-based classification provides
more accurate results compared to

Doppler-based methods. The
performance of the former remains the
same for stationary targets, unlike the

latter method.

Radar with imaging ability is
more complicated than usual

MIMO Radar.

[114] 2020 (a) Range-angle (RA) cartesian plot of
Radar data transformed into an image
form and utilized for training of target
and classification of target with YOLO

V3. (b) Detection points obtained from
range-angle (RA) data through order
static CFAR and range, RCS, angle,

mean, variance, and kurtosis extracted
from this matrix. (c) SVM gets target
boundary boxes from the YOLOV3

model to improve classification.

Considering classification accuracy, the
proposed method outperforms YOLO
and SVM with target boundary boxes.

The accuracy of classification in
humans is slightly lower than

that of vehicles due to
consistent changes in the arms

and torsos of humans.

[116] 2020 (a) YOLO studies the bounding box and
image class probability as a regression
problem and assumes the location and

type of target by only looking at the
image once. (b) Images used for input

are partitioned into grid cells,
representing the chances of the presence

of a target that depends on the IoU.

(a) Performance presented in mAP,
called a general DL performance index,

and in this paper, mAP with the
threshold value of 0.5 IoU is obtained as

93.44%. (b) The Proposed method
shows better recognition for long

vehicles compared to SVM.

Classification performance of
pedestrians is lower than that

of trailers and cars.

(Continued)
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Table 10 (continued)

Ref. Year Algorithms adopted Performance metrics and
achievements

Drawbacks

[120] 2020 (a) PCA is for the extraction of possible
features, and t-SNE is used to decrease

data dimensionality. (b) SVM and KNN
are used to classify between fast
walking, slow walking, and slow
walking with hands in pockets of

pedestrians.

(a) Range-Doppler plot and Doppler vs.
time plot show that the slow walk and
fast walk of the pedestrian are easier to
distinguish. (b) Considering FMCW

Radar, SVM provides better
classification precision than KNN.

Slow walking with hands in
pockets is the same as walking
with free hands, which is not

easily recognized.

[125] 2019 With information from a target’s
statistical RCS, the classification of a

target is done using an Artificial Neural
Network.

(a) A Huge amount of RCS images from
various targets with varying aspect

angles but at the exact range are
considered. (b) At the range of 10 m, the
accuracy of recognition is observed to

be 99%.

The Accuracy of classification
decreases with an increase in

distance to the target.

[112] 2019 (a) A Hybrid method of SVM and CNN
techniques for target classification is
proposed. (b) Range-Doppler image

obtained by 2D DFT, followed by
extraction of features of targets by

CA-CFAR and DB-SCAN. (c) SVM
applied for first stage classification for

classifying vehicle samples. (d)
Remaining image samples with no

identified category are used as input
into the CNN to retrain.

(a) Precision: a measure of correctly
predicted positive results to total

predicted positive results. (b) Recall: a
measure of rightly predicted positive
results compared to results in the real
positive class. (c) To improve recall for

cyclists in the SVM method and
precision of the same in CNN, this

hybrid method is used.

Complex computational model.

[111] 2019 (a) Classification method based on
phase estimation proposed for

pedestrians and vehicles. (b) Phase
patterns obtained from received signals
and the phase differences are taken as

inputs for a DNN.

(a) Accuracy of classification increases
with an increasing number of nodes

present in the hidden layer of the NN
and is maximum at 25. (b) Accuracy
decreases with an increase in hidden

layers and so is set to 1. (c) With these
parameters and input of phase

difference, higher accuracy is observed.

Large amount of Radar data is
required for better classification

accuracy.

[106] 2018 Convolutional LSTM and convolutional
GRU are used to obtain the dynamics of

the input time-series RV images and
classify a target.

(a) Activation function relu or tanh is
used. (b) The ReLU-based model

performs better than the baseline one

Complex computation.

[107] 2018 Three types of neural network
architectures presented, VGG16, but a
scaled-down version, the ResNET-50,

and CNN with LSTM, to extract
features from segments of

micro-Doppler spectrogram

(a) CNN-LSTM provides better
classification (93–83)% for car and

pedestrian. (b) VGG provides accuracy
of about 80% for car, pedestrian and

bicycle.

Problem of overfitting for cases
when less data is available. It is
unable to detect differences in

spectrograms of multiple target
types.

[113] 2017 (a) The RRCS is defined by the
amplitudes of the transmitted and

received signal in frequency and used
for the target classification. (b)

Magnitude value of RRCS, moving
outline along RRCS, and slopes around

RRCS is obtained from
distance-regulated FFT. (c) SVM is
applied based on the above features.

(a) SVM applied on each feature
separately shows that higher

classification accuracy is obtained using
the magnitude value of RRCS. (b)

Better accuracy is obtained when all
three features are used together for

classification rather than using one or
two features

Table 11 contains an analysis of various algorithms used for target classification by automotive Radar.
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Table 11: An analysis of various target classification algorithms

Ref. Year Algorithms adopted Advantages Drawbacks Scenarios

[119] 2025 (a) Density based spatial
clustering method. (b) Deep
learning network for target

classification and detection of
its moving direction.

(a) Accuracy of classification is
highest with 96.10% compared
to ResNet50, GoogleNet. (b)

This method showed the lowest
average RMSE to assess the
accuracy of estimating the

target’s moving direction, at
9.68%, compared to other
methods with the shortest

runtime of 0.1 s.

In the case of
pedestrians, the RMSE

of the estimated angle is
higher than that for

cyclists and vehicles,
making it difficult to

predict the pedestrian’s
moving direction.

Urban roads.

[105] 2024 Neural network, a classifier
based on Bidirectional LSTM.

Classification of the reflector’s
installation height is observed

to be accurate when the
distance in-between the

reflector and the Radar ranges
from 13 to 3 m.

Percentage of overhead
data wrongly predicted
as ground is more than

that of ground data
wrongly predicted as

overhead, and this
increases with

classification distance.

Road with static
targets like
buildings.

[108] 2022 (a) Cloud data is put across in
orthogonal directions onto the

yz, xy, and zx planes,
respectively, to create images of

three types. (b) Parallel input
CNN and serial input CNN.

Classification accuracy for
SUVs is highest for sedans,

pedestrians, and cyclists.
Cyclists have a spatial size

similar to that of pedestrians
and thus tend to be wrongly

classified as pedestrians.

Urban roads with
pedestrians and
various kinds of

vehicles.

[123] 2021 (a) UKF is applied to a constant
radial velocity model in

Cartesian coordinates. (b)
Classification is done using the
KNN algorithm. (c) Integration

of output from classifier into
the tracker.

Micro-Doppler images show
less misclassification between
closely related targets, such as
teenagers and men, or between

cyclists, compared to results
obtained using a stand-alone

classifier.

Only simulation model
developed in MATLAB.

Simulation of roads
for cyclists and

pedestrians.

[115] 2021 YOLO V3 applied to data from
angle vs. range heatmap plot.

A classification accuracy value
of 97.4% was obtained based on

precision, recall, specificity,
and F1 score.

For closely placed
targets, bounding boxes
overlap in range-angle

maps. To resolve targets,
these boxes are to be

made distinguishable,
increasing complexity.

Urban roads.

[126] 2021 (a) Targets at the long-range or
if the Radar sensor doesn’t have

the ability for imaging,
methods used are based on

statistical RCS value and data
from the time domain with an

ANN model. (b) For
short-range targets and Radars
with beam-steering, the CNN
model is applied. (c) CNN is
used for Radar that provides

azimuth-elevation angle images
and 3D images.

Image-based classification
provides more accurate results

compared to Doppler-based
methods.

Radar with imaging
ability is more

complicated than usual
MIMO Radar.

Urban roads with
less traffic.

(Continued)
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Table 11 (continued)

Ref. Year Algorithms adopted Advantages Drawbacks Scenarios

[114] 2020 (a) Range-angle cartesian plot
of Radar data transformed into

an image and utilized for
training of targets and

classification of targets with
YOLO V3. (b) SVM gets target

boundary boxes from the
YOLO V3 model to improve

classification, and each
classification result is

combined.

Considering classification
accuracy, the proposed method
outperforms YOLO and SVM.

The accuracy of
classification in humans

is slightly lower than
that of vehicles due to

consistent changes in the
arms and torsos of

humans.

Urban roads with
pedestrians and

vehicles.

[116] 2020 The CNN model with YOLO. (a) The Mean average precision
(mAP), called a general deep
learning performance index,

with a 0.5 IoU threshold value,
is obtained as 93.44%. (b)

Provides better recognition for
long vehicles than SVM.

Classification
performance of

pedestrians is lower than
that of trailers and cars.

Roads with
different types of

vehicles and human
targets.

[120] 2020 (a) PCA and t-SNE algorithms.
(b) SVM and KNN.

Range-Doppler plots and
Doppler vs. time plots show

that the slow walking and fast
walking of pedestrians are

easier to distinguish.

Slow walking with hands
in pockets is the same as
walking with free hands,

which is not easily
recognized.

Roads for
pedestrians.

[125] 2019 An Artificial Neural Network. At range 10 m, recognition
accuracy is observed to be 99%.

The Accuracy of
classification decreases

with an increase in
distance to the target.

Urban roads.

[112] 2019 (a) Range-Doppler image
obtained by 2D DFT, followed

by extraction of features of
targets by CA-CFAR and

DB-SCAN. (b) SVM applied for
the first stage classification for
classifying vehicle samples. (c)
Remaining image samples with
no identified category are used

as input into the CNN to
retrain.

To improve recall for cyclists in
the SVM method and precision
of the same in CNN, this hybrid

method is used.

Complex computational
model.

Roads with
pedestrians, cyclists

and vehicles.

[111] 2019 A classification method using a
DNN based on phase

estimation is proposed.

(a) Accuracy of classification
increases with an increasing

number of nodes in the hidden
layer of the neural network and
is maximum at 25. (b) Accuracy

decreases with an increase in
hidden layers and so is set to 1.
(c) With these parameters and

input of phase difference,
higher accuracy is observed.

Large amount of Radar
data is required for
better classification

accuracy.

Urban roads.

[106] 2018 Convolutional LSTM and
convolutional GRU.

(a) Activation function relu or
tanh is used. (b) The

ReLU-based model performs
better than the tanh-based one

Complex computation. Urban roads.

[107] 2018 Three types of neural network
architectures presented,

VGG16, but a scaled-down
version, the ResNET-50 and

CNN with LSTM.

CNN-LSTM provides better
classification (93–83)% for car

and pedestrian.

Problem of overfitting
for cases when less data
is available. It is unable
to detect differences in

spectrograms of multiple
target types.

Roads with
pedestrian, cyclist,

and vehicle.

(Continued)
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Table 11 (continued)

Ref. Year Algorithms adopted Advantages Drawbacks Scenarios

[113] 2017 SVM is applied based on the
magnitude value of RRCS,

moving out of the line along
RRCS and slopes around RRCS.

(a) SVM applied on each
feature separately shows that

higher classification accuracy is
obtained using the magnitude

value of RRCS. (b) Better
accuracy is obtained when all

three features are used together
for classification rather than

using one or two features.

Urban roads.

6 Research Challenges and Future Scope

6.1 Challenges in Automotive Radar Signal Processing
The challenges faced in the signal processing of automotive Radar are explained in brief.

1. Interference—The introduction of more radar-fitted vehicles on the road leads to interference, such as
self-interference originating from Radar signals reflected by the vehicle and radome, cross-interference
from separate radars on the same vehicle, and cross-interference from Radars on another vehicle.
Based on the waveforms, these are primarily FMCW-FMCW and FMCW-PMCW interference, and
the interference level depends on the separation between Radars, beam pattern, and signal processing
method. Interferences increase the likelihood of false alarms and obscure actual targets.
Solution: Methods like matched filtering for reducing FMCW waveform interference, and CDMA for
reducing PMCW waveform interference are used. Recently, neural network-based mitigation methods
have been studied.

2. High resolution—Automotive Radar is required to obtain information on the surrounding targets
and classify them. For this purpose, high resolution is required in range, Doppler, elevation, and
azimuth angles. High resolution is obtained using 2D-FFT in the range-Doppler domain, increasing the
processor cost.
Solution: To maintain a balance between angular resolution and unambiguous field of view, in uniform
rectangular arrays (URA), the resolution and field of view are monitored by horizontal and vertical
antenna spacings. More research is underway to properly calibrate the array after vehicle integration and
throughout Radar’s lifespan.

3. Estimation of parameters in Multipath and clutter scenarios—The operation scenario includes various
targets like pedestrians, vehicles, animals, bridges, road structures, etc. Automotive Radar has to operate
accurately to detect, track, and classify every target even in the presence of multipath propagation in
urban road scenarios. The multi-path effect increases false alarms. The tracking of low-altitude targets,
such as vehicles, is affected mainly by ground clutter.
Solution: Radar detection methods, based on the Convolutional Neural Network, can be used for
complex clutter conditions.

4. Multi-target detection and ghost object removal—The detection of multiple targets is a difficult task as
it involves proper clustering of Radar data associated with a specific target and tracking the position of
every target in motion. Multi-target tracking algorithms can be applied to track the positions of multiple
targets continuously. Sometimes, multiple radar reflections of the Radar signal produce ghost targets,
i.e., targets which are not present.
Solution: To eliminate such an ambiguity, neural network-based classifiers can be used.
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5. Detection in low SNR environments-Radars can usually operate under low SNR environments, like
weather conditions with fog or snow. But in very adverse conditions, especially for automotive purposes,
detection problems may occur.
Solution: During extreme bad weather conditions, continuous wave Radars with longer observation time
are required for high range detection and range resolution.

6. Real-time constraints in embedded processing. The Operation of automotive Radar is a time-critical
process. It is designed to detect and track targets, update target positions, and monitor the surrounding
environment, all within a strict time duration, failing which can lead to accidents.
Solution: Adaptive signal processing and efficient algorithms with reduced computational complexities
help to provide real-time, accurate Radar data.

7. Dataset scarcity and lack of standardization—Authorities such as EURO NCAP and the New Car Assess-
ment Program for Southeast Asia (ASEAN NCAP) are present for automotive Radar standardization.
However, a global standardization for regulations is still unavailable commercially. Additionally, the
scarcity of real-time Radar data is another challenge to carry out further research in this field.
Solution: Country-specific Radar datasets are available for public use, which resolves this issue to
some extent.

6.2 Innovations and Future Trends
The aim of research in automotive Radar has changed from hardware to millimeter-wave systems and

RF signal processing methods. So, recent research has focused on digital modulation techniques, Cognitive
Radar, Radar imaging, integrated sensing and communication, machine learning, and Quantum Radar. The
research and evolution in this sector are outlined here in a brief [15]:

1. AI-driven Radar and Cognitive Radar-Target classification is required for risk assessment, sensing the
resources, and finally, automated control. For target recognition and classification, a machine learning
algorithm is usually adopted. In this aspect, a large, real or synthetic Radar dataset is required to
be available for further work. Artificial Intelligence and Machine learning algorithms can be further
utilized for localization, interference reduction, waveform design, and other specialized technologies.
Like, Neural network such as CNN can be applied for the processing of non-clustered target detections
[129]. In [130], a Deep Learning and Image Processing-based Height Estimator is applied to create a real
time system that uses image data to obtain heights of buildings in the paths of unmanned aerial vehicles.
Here, Google Street view images are used, which can be replaced with Radar images. An automated
multi-path annotation method converts a conventional large Radar dataset into multi-path labeled data,
on which deep learning-based signal processing is applied to challenges present in such scenarios [131].
A Cognitive Radar [132] can sense the environment, reason, and learn with the help of supervised
techniques, and finally adapt its parameters to meet the changes in the scenario.

2. Radar imaging and 4D Radar—Imaging Radar is an innovative application, beneficial for measuring
target RCS. Here, the echoes from the target are converted into digital form, sent to the data recorder
for processing, and finally shown as an image. Range-azimuth imaging can be obtained by application
of Super-Resolution Angular Spectra Estimation Network [133]. Another such technique is the 4D
Radar [134,135] used to measure elevation and azimuth angles, range, and Doppler of the target, while
providing high resolution and wider field-of-view. In the case of 4-dimensional imaging Radar, a
waveform for MIMO-PMCW is better suited than the MIMO-FMCW model [136]. Coherent Radar
networks can be applied to create a Radar image with better SNR and azimuth resolution and to obtain
vectorial velocities of targets [137].
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3. Integrated sensing and communication (ISAC)—In case of ISAC, the Radar and communication
systems can coexist by either sharing the frequency spectrum, or by sharing the same hardware, or by
using waveforms from the communication system for Radar functioning [138]. For understanding ISAC,
in-depth knowledge of communication is also required. Like in [139], the structure of cell-free massive
MIMO has been described for wireless communication networks and green communication methods.

4. Radar simulation and synthetic data for training—To compensate for the scarcity of real-time Radar
data, synthetic data is artificially produced. This is very beneficial for the training process of the ML
algorithms used for target tracking and classification.

5. Quantum Radar and metamaterial-based Radars—Recent innovations involve Quantum radar [140],
which generates quantum entangled signals related to a reference signal present at the receiver. This
Radar works better than conventional ones in low signal echoes and high noise, and is quite resilient to
deception and electronic jamming.

6.3 Utility of Autonomous Driving
The main application of automotive Radar is to prevent accidents by using warning signals and

automated safety functions, and thus achieve the Vision Zero objectives of zero deaths in traffic accidents.
The main utilities of autonomous driving can be listed as

1. Safer Roads—As stated in the introduction, reducing road accidents is one of the most important moti-
vations for autonomous vehicles. Automotive Radar sensors can perceive the environment better than
human drivers; thus, driving errors like drunk driving and sleepy driving will be significantly reduced.

2. Improved traffic management and fuel efficiency—Automated vehicles will lead to better traffic man-
agement and reduced accident rates. Additionally, as vehicles are designed to enhance efficiency in
acceleration and braking, fuel efficiency is expected to improve, resulting in reduced carbon emissions.
Thus, helping the environment as a whole.

3. Free time for drivers—In levels 3, 4, and 5 of automation, most of the driving tasks will be done by
automation, so drivers will have more time to spend on themselves. Accidents caused by drowsy drivers
are a widespread incident, with automation, and drivers can rest on long rides.

4. Improved way of living—Even disabled persons and older citizens would be able to experience driving
instead of relying on others.

5. Providing newer job opportunities—Job opportunities will be made in automobile, electronics, and
software engineering, among others. With the mass production of automated cars, their price will
eventually decrease and become more affordable for the general public.

7 Benchmark Datasets and Standards for Automotive Radar

7.1 Radar Datasets
Recent innovations in automotive Radar for target detection, tracking, and classification are being

achieved by using ML algorithms. For the training data of the ML algorithms, a large Radar dataset is
required, which contains an authentic and detailed description of the surrounding environment. Several
Radar datasets are available publicly, and the important datasets are described concisely in this work. These
datasets are presented in a comparative table in the following Table 12.

The nuScenes dataset [141] is the most well-known one that provides a large-scale Radar point cloud
dataset obtained from 3-dimensional Radars [142]. This multimodal dataset offers 360-degree coverage of
the entire surroundings, encompassing data from nighttime and rainy weather conditions, as well as features
of objects and a detailed description of scenes. Stochastic geometry is used for modeling large automotive
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Radar networks in crowded urban scenarios, where interfering radar and clutter are assumed to be instances
of a spatial stochastic point process [143].

Table 12: A comparative presentation of the different Radar datasets

Radar
dataset

Availability of
database

Type of data Volume Task Experiment
scenario

Limitations

NuScenes
[141]

2019 Radar 3D point
cloud dataset

from 5 Radars.

1.3 M frames. Target detection
and tracking.

Public roads during
night and rainy

conditions.

Variety of
weather

conditions are
not included.

K-Radar
[144]

2022 4D Radar
Tensors.

35 K frames. Target detection
and tracking.

Various weather
conditions including

lightning.

The Radar
field-of-view is

107 degrees.
RadarScenes

[145]
2020 Radar 3D point

cloud dataset
from 4 Radars.

118 M points. Target detection,
tracking,

classification, and
instance

segmentation.

Urban roads. Bounding box
annotations are
not provided.

Oxford
Radar

Robotcar
[146]

2020 Range-azimuth
heatmap from
rotating Radar.

240 K frames. Target
localization.

Adverse weather,
lightning.

Moving vehicles
are only

considered as
targets.

Astyx [147] 2020 Radar 5D point
cloud dataset.

546 frames and
1000 points per

frame.

Simultaneous
localization and
mapping of the

target.

Urban roads. Not tested in
changing weather

conditions.

View-of-
Delft
[148]

2022 Radar 4D point
cloud dataset.

8.6 K frames. Target detection
and tracking.

Sunny weather,
dense traffic.

Only clear
weather is

considered.
Boreas [149] 2022 Range and

azimuth angle
heatmap.

7.1 K frames. Object detection
in 3-dimension

and localization.

Sunny weather. Sparse Radar
data is provided.

Carrada
[150]

2021 Range and angle
maps, range and
Doppler maps,

and range-angle-
Doppler

maps.

7.1 k annotated
frames.

Detection and
tracking of target

and semantic
segmentation.

Urban roads. Object
classification is

not done.

RADIATE
[151]

2021 Radar images of
range and

azimuth angle.

200 K labeled
road objects

with 8
categories.

Target detection,
tracking, and

understanding of
road scenes in

adverse weather.

Urban and suburban
roads under various
weather conditions

like night, fog, snow,
and rain.

Movement of
target is not used

as recognition
tool.

The KAIST-Radar (K-Radar) [144] dataset is a 3-dimensional target detection dataset using the 4-
dimensional Radar tensor, which describes a wide variety of scenarios. The 4-dimensional Radar tensor
(DRT) consists of range, elevation, azimuth, Doppler, and power measurements, which help to preserve
3-dimensional spatial information for a proper 3-dimensional impression of targets.

Another dataset, the RadarScenes [145], is mainly available for models that have point-wise interpre-
tations. This dataset is helpful for the development of ML algorithms used for mobile targets on the road,
labeling them into 11 categories, including car, truck, train, bus, pedestrian, animal, and others.

The Oxford Radar Robotcar dataset [146] contains range and azimuth heatmap data used for target
localization and fusion models of Lidar-Radar. This dataset comprises approximately 240,000 scans from a
Navtech Radar, covering various weather conditions, lightning situations, and traffic scenarios.
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In the Astyx dataset [147], the radar provides a 5-D point cloud data comprising range, elevation,
azimuth, relative radial velocity, and a feedback magnitude. The feedback magnitude defines the reflection
strength of the target detected by the Radar.

The main feature of the View-of-Delft (VoD) [148] automotive dataset is the (3 + 1D) Radar data, which
includes range, elevation, and azimuth angles with Doppler, along with data from 3-dimensional Lidar and
a stereo camera. The dataset has about 123,100+ 3-dimensional bounding box annotations of stagnant and
moving objects. It also provides details of the semantic map and localization data of vehicles collected from
urban road scenarios.

The Borreas [149] dataset for autonomous driving was accumulated by driving on a specific route map
for one year. In this set, over 350 km of driving data are provided, including data collected under harsh
weather conditions such as rain and snow. The sensors used here include a 360-degree Navtech Radar, a
Lidar, and a camera. This dataset is utilized for object detection in 3D, metric localization, and odometry.

The Camera and Automotive Radar (Carrada) dataset [150] consists of synchronized Radar and camera
data with range-angle-Doppler mapping. This is used as a basis for semantic segmentation with range-DOA
or range-Doppler Radar presentations for target detection.

Radar Dataset In Adverse Weather (RADIATE) dataset [151] is used for target detection, tracking, and
understanding of different road scenarios under various weather conditions like sunny, overcast, nighttime,
rain, fog and snow. The unique feature of RADIATE is that eight road objects are labeled here, which include
van, bus, truck, car, motorbike, cycle, group of pedestrians, and single pedestrian.

7.2 Standards and Evaluation Metrics
The standards and evaluation metrics are required for the performance evaluation of automotive Radar

and comply with regulations. Two of the important standards defined are IEEE Standards Association P3116
[152], and European Telecommunications Standards Institute (ETSI) EN 302 264 [153]. The IEEE standard
is used for the evaluation of performance metrics and testing techniques for applications of ADAS and the
Automated Driving System (ADS). This standard defines the static parameter metrics, e.g., range, DOA, and
velocity resolution, and the Field-of-View, and the dynamic parameter metrics like automotive Radar’s ability
to resolve different targets in separate trajectories. The ETSI standard is applicable for short-range Radar
with the operating frequency of 77 to 81 GHz. This contains technical specifications, tests for integrated
transceivers, and separate transmit and receive systems.

The static evaluation metrics of automotive Radar include range, DOA, and Doppler resolution, Field-
of-View, maximum and minimum detectable range, maximum and minimum detectable velocity, and RCS.

The dynamic evaluation metrics of automotive Radar include the probability of detection of targets, the
ability to detect targets present in separate trajectories, detection in various adverse weather conditions, and
the probability of false alarm rate.

8 Lessons Learned
This paper provides an overview of conventional automotive radar signal processing algorithms,

highlighting their advantages and limitations for applicability to vehicular radar scenarios, and offers insights
into new approaches for performance improvements. In particular, range-Doppler processing, target location
and direction detection, tracking, and classification methods are discussed, specifically for high-resolution
automotive Radars.

• Overview of Automotive Radar: A brief evolution of Automotive Radar and its application in the ADAS
of autonomous vehicles and economic development is provided. A signal processing methodology is
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described, including the mathematical model for range and velocity measurement, to give information
on the basic working principle of automotive Radar. A brief review of the different waveforms used
in automotive Radar, along with their respective mathematical equations, is presented. A comparative
analysis of these waveforms is presented in a tabular format to help determine the specific waveform for
different functions. This article also examines common waveform interference problems from different
types of radars, which are assumed to be the source of interference, and radars assumed to be the victims.

• Target detection and DOA estimation: The target detection signal processing architecture is briefly
described. Various DOA evaluation algorithms, along with their numerical models, are studied, includ-
ing Bartlett beamforming, MVDR beamforming, MUSIC, and ESPRIT. This article presents an extensive
study of various relevant algorithms used by researchers for angle estimation. Analytical comparisons
of all these algorithms are presented in tabular form, highlighting their merits and demerits. DOA
estimation of a target is a primary requirement, and this section provides in-depth knowledge on this.

• Target tracking: After target detection, filtering and tracking techniques for obtaining target motion
dynamics are required to stay informed about the target’s position. Target tracking involves a motion
model for the target, filtering for target state estimation and data association, and track management. The
filtering techniques mainly include the KF, the EKF, the UKF, and the Bayesian filter. Tracking targets is
essential to avoid a collision, as in the ACC scenario. This paper provides an overview of various relevant
algorithms that researchers use for tracking processes. Analytical comparisons of all these algorithms
are presented in tabular form, highlighting their merits and demerits.

• Target recognition and classification: It is necessary to classify Radar signals into different categories
based on their similarity to other signals. The algorithms used for this purpose include KNN and
SVM, among others. This article provides detailed information on various relevant algorithms used by
researchers for target classification, helping to better understand the process. Analytical comparisons of
all these algorithms are presented in tabular form, highlighting their merits and demerits.

• Research challenges and future scope: Some of the major challenges for automotive Radar cases
include interference mitigation, high resolution, parameter estimation in multipath scenarios, and target
classification with Machine Learning. A brief knowledge of the various future scopes, like AI Radar, and
integrated Radar and communication, is required to understand how the world is progressing in the
automotive applications of Radar

• Benchmark datasets for automotive Radar: New research on automotive Radar is done mainly with the
help of ML algorithms. For training these algorithms, a large amount of training data is required. An
overview of the publicly available Radar datasets, highlighting their types of data and the tasks they
can accomplish, is beneficial. Additionally, the standards and metrics for evaluating the parameters of
automotive Radars are presented for further research.

9 Conclusions
As the vehicle industry moves towards full automation, various challenges will arise, and innovative

solutions will be researched. Improved signal processing techniques will be introduced to utilize automotive
Radar efficiently. As per the Automotive Radar Market Size, Share, Analysis Report, this industry is predicted
to reach US Dollars 22.83 billion by 2032. There is a vast global demand for ADAS technologies, and the
dominant sensor for this is the automotive Radar. Hence, this extensive picture of Radar signal processing
is of utmost importance. Automotive radar signal processing techniques, along with a comparative analysis
of various waveforms, are summarized here to enhance understanding of the working principles. I have a
detailed review of the target detection and various DOA estimation algorithms for you, which is a necessary
piece of research on this topic. Along with conventional MUSIC and ESPRIT algorithms, innovative ones
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such as E-MUSIC, group-sparsity-based, DML-based, and digital beamforming techniques are reviewed,
highlighting their benefits and a few complexities. After target positioning, real-time tracking of the target is
necessary, for which various algorithms have been discussed here, along with comparison tables highlighting
their respective advantages and disadvantages. The tracking filters, such as KF, EKF, and Bayesian filters, as
well as improved versions, like SRCKF and track-before-detect methods, are studied. Also, the entire tracking
method, with data associated with measuring tracks and track management, is discussed. Classification of
targets is required in real road scenarios to avoid clutter and false targets. It has been observed that target
recognition and classification using machine learning (ML) algorithms are becoming increasingly important
research topics. Algorithms for this technology have been thoroughly discussed, along with their importance
and limitations. For the training purpose of these ML algorithms, a large amount of training data is required
to understand the Radar environment. Some databases are openly available for conducting new research. A
survey of the radar datasets is presented here, which shows the type of data and the tasks they can accomplish.
Standards and parameter metrics of automotive radar are also provided here. The challenges faced in the
automotive Radar signal processing field have also been described here to aid in further work to overcome
them. A comprehensive picture of the signal processing technique typically used for automotive Radar is
provided here to help better understand and inform future research in this area.
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Abbreviations
ADAS Advanced Driver Assistance System
ACC Adaptive Cruise Control
AEB Automotive Emergency Braking
LRR Long Range Radar
MRR Medium Range Radar
SRR Short Range Radar
FMCW Frequency Modulated Continuous Wave
SNR Signal to Noise Ratio
DOA Direction of Arrival
RCS Radar Cross Section
MUSIC Multiple Signal Classification
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ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique
PMCW Phase Modulated Continuous Wave
PRF Pulse Repetition Frequency
MIMO Multiple Input Multiple Output
TDM/FDM Time Division Multiplexing/Frequency Division Multiplexing
DDM Dopple Division Multiplexing
PSD Power Spectral Density
CFAR Constant False Alarm Rate
GOCA-CFAR Greatest of Cell Averaging Constant False Alarm Rate
SOCA-CFAR Smallest of Cell Averaging Constant False Alarm Rate
OS-CFAR Order Static Constant False Alarm Rate
MVDR Minimum Variance Distortionless Response
CS Compressive Sensing
SVM Support Vector Machine
CTR Constant Turn Rate
CTRA Constant Turn Rate and Acceleration
KF Kalman filter
EKF Extended Kalman filter
UKF Unscented Kalman filter PDF Probability Density Function
CKF/SRCKF Cubature Kalman Filter/Square root Cubature Kalman Filter
JPDAF Joint Probabilistic Data Association Filter
DRP Doppler Range Processing
PD Probability of Detection
SDR Signal to Disturbance Ratio
RMSE Root Mean Square Error
KNN K-Nearest Neighbor
LSTM Long Short Term Memory
CNN Convolutional Neural Network
PCA Principal Component Analysis
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