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ABSTRACT: The extended Kalman filter (EKF) is extensively applied in integrated navigation systems that combine the
global navigation satellite system (GNSS) and strap-down inertial navigation system (SINS). However, the performance
of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties, making it difficult
to achieve optimal GNSS/INS integration. Dealing with non-Gaussian noise remains a significant challenge in filter
development today. Therefore, the maximum correntropy criterion (MCC) is utilized in EKFs to manage heavy-
tailed measurement noise. However, its capability to handle non-Gaussian process noise and unknown disturbances
remains largely unexplored. In this paper, we extend correntropy from using a single kernel to a multi-kernel approach.
This leads to the development of a multi-kernel maximum correntropy extended Kalman filter (MKMC-EKF), which
is designed to effectively manage multivariate non-Gaussian noise and disturbances. Further, theoretical analysis,
including advanced stability proofs, can enhance understanding, while hybrid approaches integrating MKMC-EKF
with particle filters may improve performance in nonlinear systems. The MKMC-EKF enhances estimation accuracy
using a multi-kernel bandwidth approach. As bandwidth increases, the filter’s sensitivity to non-Gaussian features
decreases, and its behavior progressively approximates that of the iterated EKE The proposed approach for enhancing
positioning in navigation is validated through performance evaluations, which demonstrate its practical applications
in real-world systems like GPS navigation and measuring radar targets.

KEYWORDS: Extended Kalman filter; maximum correntropy criterion (MCC); multi-kernel maximum correntropy
(MKMC); non-Gaussian noise

1 Introduction

The Filtering techniques for state estimation in dynamic state-space models have a broad range of
applications in real-world engineering fields, including target tracking, navigation, attitude determination,
robotics, telecommunications, and system identification [I1-4]. For linear Gaussian systems, the ideal
estimators are well-known, and the Kalman filter (KF) is commonly used for this purpose. Nevertheless, the
optimal or systematic solution of the posterior probability density functions (PDFs) for a nonlinear Gaussian
system is often rarely accessible. The relative resemblance of two random variables into the kernel width is
measured using the technique called correentropy, in which the kernel bandwidth controls the “observational
insights” like azoom lens [5]. It is utilized as a resilient cost for state estimation, adaptable filtering, regression,
and machine learning techniques [6] since it is naturally resistant to outliers. A linear estimator called the
Kalman filter (KF) gives an ideal recursive solution for linear systems [7]. The fields of navigation, target
tracking, sensor fusion, and many more have made extensive use of it. Its performance could, however,
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deteriorate in the presence of unknown disturbances and non-Gaussian noises. To deal with heavy-tailed
measurement disturbances, Huang et al. [8] designed a maximum correntropy Kalman filter (MCKF) based
on the concept of mixture Correntropy (MC).

Afterward, several extensions of KF were derived under maximum correntropy criterion (MCC),
including the cubature Kalman filter (CKF) [9], extended Kalman filter (EKF) [10], Chandrasekhar-based
Kalman filter [11], distributed Kalman filter (DKF) [12], interacting multiple model Kalman filter (IMMKF)
[13], and the unscented Kalman filter (UKF) [14]. In general, these filters can withstand measurement
outliers with ease. When faced with unknown disturbances and non-Gaussian process sounds, they might
not perform well. One explanation for this is that these filters manage multivariate non-Gaussian noises
by using a uniform kernel bandwidth. An additional explanation is that precisely modeling disturbances
is challenging. To enhance learning performance, the mixture correntropy was thus introduced. Here,
the kernel function is constructed as a linear combination of multiple zero-mean Gaussian kernels, each
having a distinct width [15]. The MCC algorithm still has a flaw, though, in that it can only combine
zero-mean Gaussian kernels, which might lead to subpar performance when dealing with complex non-
Gaussian disturbances like multimodal distributions. Recently, correntropy has been employed to handle
non-Gaussian format noise to overcome the issues related to this noise [16]. One information-theoretic
quantity that has been exploited recently to produce significant performance gains across several industries
is correntropy [17]. It can record higher-order loss statistics. Additionally, modeling noise followed by a
Gaussian distribution, multiple-model filters, and EKF can aid the boosting robustness against outliers, while
computing the difficulty and efficacy will always be a limitation [18,19].

Additionally, the MCC solution is commonly achieved through iterative techniques. The most widely
used methods are gradient-based algorithms, as they are straightforward to understand. However, they
require a free parameter, the step size, and have a slow rate of convergence. Another effective approach
is the fixed-point iteration (FPI) technique, which has a small step size with a faster rate of convergence.
MC-based KF ignores the recurrence of covariance matrices, which may have an impact on the accuracy
of their estimations [20]. In addition, investigations using robust filters illustrate the computational cost
in a high-noise environment. Heavy-tailed noises have several practical applications, including radar
measuring systems and global positioning systems (GPS). More specifically, the motivation also includes the
optimization criterion for correntropy is adjusted into information-theoretic learning (ITL) [21]. The multi-
kernel bandwidth maximum correntropy extended Kalman filter (MCEKF) is an advanced filtering method
aimed at improving GPS navigation accuracy. By using multiple kernel bandwidths, this approach enhances
the traditional maximum correntropy framework, enabling it to more effectively handle non-Gaussian noise.
Tackling the issues of unknown measurement noise covariance and measurement outliers in a vision/dual-
inertial measurement unit (IMU) integrated attitude determination system. Adaptive filters presume the
absence of measurement outliers, whereas robust filters depend on precise knowledge of the measurement
noise covariance matrices [22-24]. Numerous studies on robustness and adaptivity filters against heavy-
tailed non-Gaussian sounds have been conducted, and they have been widely applied to GPS navigation
[25-27].

The contributions of this study are that we introduced a novel multi-kernel maximum correntropy
extended Kalman filter (MKMC-EKF), where each Gaussian kernel in the mixture is centered at distinct
locations, enhancing learning performance in GPS navigation. The use of the MKMC-EKF in our work
is primarily aimed at addressing non-Gaussian noise in both the state and measurement vectors, rather
than compensating for system nonlinearity alone. While the EKF inherently handles model nonlinearity
through linearization, its performance degrades under heavy-tailed or impulsive noise. The MKMC-EKF
enhances robustness by incorporating a multi-kernel correntropy (MKC) criterion in the measurement
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update, allowing it to better suppress the influence of outliers and adapt to complex noise distributions.
The MKC improves adaptability to varying noise conditions, making GPS systems more robust against
measurement disturbances. Optimizing noise parameters in MKC is addressed by minimizing the difference
between the error PDF and a mixed-Gaussian function. The proposed MKMC-EKF enhances filtering
performance by integrating multi-kernel bandwidth selection, ensuring robust state estimation in non-
Gaussian noise. Unlike traditional methods, it leverages PDFs to model complex noise variations, improving
accuracy in GPS navigation. Fixed-point iteration prevents divergence, optimizing kernel selection for
stability. While computationally more intensive than EKEF, its complexity remains feasible for real-time
applications. Simulations confirm superior performance over EKF and MCC-EKE, particularly in heavy-
tailed noise, demonstrating its reliability in dynamic environments. Moreover, it offers a significant deal
of promise for application in numerous domains other than GPS navigation, involving complicated noise
disturbances, including biomedical engineering, remote sensing, autonomous systems, and many more,
because of its superior adaptability and stability.

The outline for the remaining content of the article is arranged as follows. We define and present
numerous features of the MKMC-EKEF in Section 2. We offer a formulation overview in Section 3 for MKC
conceptualization. Following that, Section 5 presents the simulation results and discussion, and Section 6
provides the conclusion.

2 Notations in Mathematical Formulation

The notations used in this proposed study are as follows; E[.] represents expectation operator,  (x, y) is
the Mercer kernel with shift-variation, o is the kernel bandwidth, G, is the Gaussian kernel, X and Y denote
the random variables, Fxy (x, y) is the joint probability function of X and Y, p is number of subkernels,
N is number of samples in series, e; = x; — y; represents the i-th error, k is discrete-time index, B, and B,
are the covariances matrices, P} is prior error covariance matrix, Jr,.. is the cost function for MCC, e,
and e, are process and measurement errors, X, X;, and Xz)t are the real, predicted, and estimation states,
and Py, is the posterior error covariance, M, and M, are diagonal matrices, d,, g, are the process and
measurement bandwidths, Kt,k_l is Kalman gain, dj represents the unknown state disturbance, q; and
ry are Gaussian noises for system model, y denotes the mapping matrix for unknown disturbance, m, n,
and K are the dimensions of state, measurement, and small number of Kernels, respectively, used for time
complexity analysis.

3 Methodologies
3.1 Multi-Kernel Correntropy (MKC)

Correntropy serves as a similarity measure for signal which are mapped nonlinearly into a featured
space. Essentially, it generalizes the concept of autocorrelation into nonlinear domains. The relationship
between two random variables X and Y with their joint PDF is Fxy (x, ), the correntropy between them
can be expressed as

V(X,Y)=E[x(X, Y)]zfx(x,y)ny (x,7) 1)

where E [-] is the expectation operator, and « (x, y) is the Mercer kernel with shift-variation. The Gaussian
2

kernel function is « (x, y) = G, (e) = exp (—26—2); where o denotes the kernel bandwidth and the error is
o

e = x — y. Here, Fxy (x, y) is often unknown due to the limited availability of data. In such cases, correntropy



930 Comput Model Eng Sci. 2025;144(1)

can be estimated using a sample mean estimator as follows:

» »
V(X,Y)= Z;E[%(X,- -Yi)]= Z;fi(xi’)/i)de,-Y,- (xi> yi) )

where

202

2
K(xi,yi) = al-zexp (—i) 3)

where the Gaussian function is represented by « (x;, y;), 0; denotes " element of the kernel bandwidth, and

the it erroris e; = x; — ;. It can be noted from (2) the kernel size 0 = [01, 02y enn... , ap] , which controls both
the weighted and observational pathway coeflicients.

Further, the finite number of samples required for estimating the MKC [20,21] is

207

N 2
V(X,Y) =%Ziaiexp(—ﬂ) (4)
k=1i=1

where the error for " element at k" sample is e; (k) = x; (k) — y; (k), and the number of samples is N.

3.2 Derivation of System Model Algorithm

In this section, the core methodology for the proposed novel multi-kernel EKF is outlined.

|| f ()
I:Y::|_|:h(xk):|+9k ®

where
X, —-X
m:[kmk] (6)
with
T_p;o_BpBgo .
E[9k9k] —[ 0 R, ]—[ 0 B,BT = BBy (7)

The prior error and the measurement noise covariance matrices are P, and R. B, can be obtained from
Cholesky decomposition method.

Multiplying B;" at both sides of the Eq. (7) by, we will get
q)k :d(xk)+ek, (8)

where we got

A

o :B;l[ ’y‘f ],d(xk) :B;l[ ig’;; ],ek = B9 (9)

The MCC-based cost function Jj;cc can be written as

L
Jruce (56) = 7 3 Go (@1 = i (x4) (10)
i=1
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where the dimension L = n + m. The i element of @y is @y ;. d; (x) is the & row of d (x;), and error at k
time step is ex; = zx; — d; (x¢).
Next, select the ideal estimation state based on MCC corresponding to x; is calculated as

L
x; =argmaxJ;, .. (x¢) = argmax » G (e,;) (11)
Xk X =1

Therefore, the optimal solution of x; can be

T
(f—i) My (d (x;) — @) = 0 (12)

Further, by taking the linerization of d (x; ) arround the estimation X, through the fixed point iteratiion
at every step, we obtained

A A _1 A A A A
’A‘Z,t = (DT (XZ,H) My,:-1D (XZ,H)) D’ (XZ,H) My, -1 % (DT (XZ,H) X_l:,t—l -d (XZ,H) + q)k) (13)
Then,
od
D(x;,,)-21 (14)
ox X:’A‘Z,,fl
M, = diag[Ggp (ep)] M, =diag[G,, (e,)] (15)
ey =B, (kg - f (x))er = B, (v~ h (x2) (16)
We know that the process bandwidth vector is o, = [01,00,...... , on],, and the measurement band-
width vector can be expressed as 0, = [0,11, 0ps25--- - ,Onsm] » Where e, and e, are the process and
measurement errors.
From Egs. (7), (9) and (13), we got
T (a4+ &+ -1 -N\T -1 T (a+ -\T -1 s+ -1
(D" (%) Me D (7,21)) = ((B,') M,B,' + H' (%) x (B;") M,B'H (x],,_,)) (17)
Now considering matrix inversion lemma
(8,") ™,B;' > A, H' (x{,.,))" > BH(x,,) - C.(B;") M,B,' > D (18)

Then we obtained

(D" (%,-1) My 21D (%7 -1))
= (BP)T (v,)" B, - B, (v,)" B, H' (%) (19)
x (B, (M) Bl +H(],,) B, ) x (M,BIH (&} ,)) :

xH (’A‘Z,t—l) B, (Mp)_ B;

-1

Furthermore, we got
(DT(Xz,t—l)Mk,t—l(D(&Z,t—l)Xz,t—l - d(ﬁz,t—l) +dy)

= (B,)"M,) "Bl + H' (%} ,_,)(B,") "M, B;" x (y, + HG& )%}, - h(k(,.,)) (20)
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Finally, combining Eqs. (13), (19), (20), we found

&Z)t = XZ + Kk,t—l (Yk —h (ﬁZ,H) -H (ﬁ;cr,t—l) (ﬁ; - fiZ,t_l)) (21)
Again
oh
H(%(,,) = —
( k.t 1) ox x=t? (22)

Ri oot = P HT (35,0) % (H (60 ) P HT (%) + Riit)

P, ,=B,(M,)B, (23)

Ry, =B, (M,)B/ (24)

Additionally, the updated matrix of posterior error covariance is
R . X A . . T " T
Pie = (1=K H (%01) ) P (1= K H (856,1)) - + KiraaRe (K1) (25)

It is noted that in (21), X is in relation with the fixed-point equation of P, ,_; and Ry, ,_;, which can be
used in the algorithm. For avoiding the singularities of diagonal matrices, M, and M,, we have as follows:

M, > alxp, and M, > BLxm (26)
where « and 8 represents two small positive numbers.

3.3 System Model with Non-Gaussian Noise and Disturbances

The model with process noise is
Xie1 = OXg + pdi + qp, ¥, = B (Xk) + 1 (27)

where the unknown state disturbance is dy, q; and ry are the Gaussian noises and y is the mapping matrix
for the state disturbance. Further the derivations of state and measurement disturbances (see Ref. [21]).

Then, the model with measurement noise is
Xkl = OXk + Qo Vi = B (Xk) + pdy + 1 (28)

In the simulation, we have considered the following non-Gaussian noises for process and measurement,
such as

q,x ~0.9N (0,0.1) + 0.IN (0,20)
q, 5 ~ 0.9N (0,0.3) + 0.IN (0,60) (29)
ri ~ N (0,0.04)

Then, the Gaussian noises are

Q. ~ N (0,0.1),q,, ~ N (0,0.1), 1, ~ N (0,0.4) (30)
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Further, we assumed the disturbance is given by

10sin (0.457¢t) + 1y, 50 <t > 60

1
Ik otherwise (31

di (1) = {

4 MK (Multi-Kernel) Based Maximum Correntropy EKF (MKMC-EKF)

The MKMC-EKEF approach offers further performance enhancements for the estimation process and
control. Fig. 1 presents a flow chart outlining a singular series of the EKF that utilizes the MCC. The MCC-
EKF can be viewed as a specific instance of the broader maximum MKC (MMKC) framework. Here, a novel
robust KF based on the concept of MKMC, MKMC-EKF has been discussed to effectively address unusual
disturbances and complexity, non-Gaussian noise distributions in satellite navigation.

Input measurement value

Yoo ¥ireereen ¥y

llnilialize k=10, cr,_.u,ﬁ.s.l

P 0 £
| E[88]]= } _|= KR
- — 0 R, 0 BB
X, = f (x.t l) Sg % 1 f(x,) Gk T Obtain state estimation
P&_ = \P&—|P§+—I\P1—t +Q;‘_; 0, :B;I|i " dx ]:B;I[Ih{ l)}'ei :B;|9¢ x-(‘.[] = xk Q; K“ x """"" x*

![
Calculate B ,and B, I
Update : X; , =X,
Determine N‘IF and h:I,

I
€, =Bpli; _B.:-Ii;.r 1
€, =B;‘Y1 "BrIH'ﬁll.r 1
M, =diag(G,, (c,)) L

X =% +K”,( -h(&;,)-H@&;, K -1,))
KJ.rl lJl.’IH {xirllx{Hiill}P'- Hr{xi' I}-!'RJ.JI}-I
P, =(1-K, HG& )P (1-K, H&, ) +K, R(K,)

M, =diag(G,, (e,))
P, =B ,(M B}
R,, ,=B,(M,)B]

Figure 1: Close-loop flow diagram for the MKMC-EKF

The proposed MKMC-EKEF significantly enhances filtering performance in GPS navigation by improv-
ing adaptability to varying and non-Gaussian noise conditions. This is achieved through a multi-kernel
correntropy framework that models complex noise distributions more accurately than traditional methods.
Instead of assuming fixed noise characteristics, the filter optimizes kernel parameters by minimizing the
discrepancy between the empirical error PDF and a mixed-Gaussian model. To ensure stability and prevent
divergence, a fixed-point iteration strategy is employed for kernel selection. Although the approach intro-
duces additional computational cost compared to the standard EKF, the complexity remains manageable for
real-time implementation, offering a practical and robust solution for GPS systems operating in challenging
noise environments. Techniques such as covariance-matching and correlation leverage innovation sequences
for estimating noise covariances. The core principle of the covariance-matching method is to align the
actual covariance of the residual with its theoretical value, ensuring consistency between the observed and
expected covariance.

The steps involved for the computation of MKMC-EKF is summarized below:
(1)  Initializing %o, Po.
(2)  Then choose 0,, 0, a,  with small positive value for the tolerance, and ¢ a threshold value.
(3)  Prediction, %} = f (X]_,), P = \I’k_lf’z_l‘I’kT_l + Q-
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(4) Calculate B, and B, with 15,;H =B, (Mp) B; andRy; 1 =B, (Mp) Bf.
(5) Updating, %y , = %;.
(6) Iteration loop: Calculating X; , from steps bellow:
) X, =%+ K (Yk —h (ﬁ}:,tfl) -H (’A‘Z,pl) (’A‘Z - ﬁz,tfl))
ii) I~<k,H = IA);,t—lHT (ﬁ;cr,t—l) x (H (’A(-l:,t—l) p;,t—lHT (ﬁZ,H) * Rk,tfl)
iii) Py, =B,(M,;)B,
iv) Ry =B, (Mp> BrT
V) Mp:diag(Gﬂp(ep))
vi) M, =diag (G, (e,))

.. s “la+
vii) e, =B, % —-B, %;

viii) e, =By, - B "%,
ix) Pr,=(I-KgoH (%, )P, (I-Ke o H (XZ,H))T + K 1Ry (f(k,t—l)T

At N
Xk — Xk,an

%o
from the step 3.

7) If > ¢, where t starts from 1. Do Mp > alwn, M, > Blyusm,orelse, set t = t + 1, and repeat

Notably, the MKMC-EKF algorithm leverages a multi-kernel bandwidth framework, which helps to
improve the estimation accuracy. As the kernel bandwidth increases, the influence of higher-order moments
in the correntropy measure is reduced, causing the MKMC-EKF to gradually align with the behavior of
the iterated EKF (IEKF). In this regime, the filter’s sensitivity to non-Gaussian noise diminishes, and it
effectively reverts to a form dominated by the Gaussian assumptions, resembling the iterative refinement
process characteristic of the IEKF.

5 Results and Discussion

Fig. 1 illustrates the schematic flow for the MKMC-EKF algorithm. The simulation aims to assess the
proposed method’s effectiveness in managing time-varying satellite signal quality by comparing it with a
standard GPS navigation approach. This study utilizes MATLAB” codes within commercially available soft-
ware, specifically the Inertial Navigation System (INS) Toolbox and Satellite Navigation (SatNav) Toolbox,
both developed by GPSoft LLC [28,29]. The INS Toolbox is used to create the trajectory of the vehicle, while
the SatNav Toolbox provides satellite orbits and pseudoranges, supporting the implementation of different
navigational filters, including EKE, MCC-EKFs, and MKMC-EKE

Fig. 2 illustrates the simulated test trajectory, depicting the movement of the vehicle within the
defined navigation scenario. The positions of the eight available GPS satellites are represented as red stars
in Fig. 3, each labeled with its unique GPS ID. The spatial distribution of these satellites yields a geometry
dilution of precision (GDOP) of approximately 2.5, signifying a well-conditioned positioning geometry that
enhances the stability and accuracy of the navigation solution. This favorable GDOP suggests that geometric
amplification of measurement errors is minimized, ensuring that the estimated position remains robust
against minor variations in pseudorange observations. By maintaining this optimal satellite configuration,
the experiment isolates the impact of pseudorange errors arising from signal propagation effects such
as multipath interference and atmospheric delays on the positioning accuracy, providing a controlled
framework for evaluating the performance of different filtering algorithms. The simulation of the vehicle is
positioned roughly 100 m from the Earth’s surface.
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Figure 2: The simulated vehicle trajectory
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Figure 3: The satellite skyplot

To assess the impact of outliers due to multipath interruptions, multiple intentional and randomly gen-
erated errors were introduced into the GPS pseudorange observation data while the vehicle was in motion.
The GPS measurements were distorted by various error sources, including ionospheric and tropospheric
delays, multipath effects, and receiver noise. To minimize errors, it was assumed that differential GPS (DGPS)
mode was active; however, this setup did not completely mitigate multipath effects and receiver thermal
noise. Navigating in urban environments or areas with non-line-of-sight (NLOS) and multipath reception
presents significant challenges for vehicles, as these conditions introduce erroneous data that can disrupt the
GPS sensor’s positioning accuracy. This study conducted various error analyses to achieve a cleaner signal
for GPS navigation, calculating metrics such as Mean Error (ME) and Root Mean Square Error (RMSE) at
each time step, using statistical measurements across 100 Monte Carlo runs. The formulas are as follows used
for these calculations:

M
ME(k)z%Z(xk—fck),mzl,...,M (32)
m=1
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K
RMSE (k) = %Z(xk—fck)z,kzl,...,K (33)
k=1

where M is the total number of Monte Carlo runs and K is total time steps for one Monte Carlo run.

In this scenario, the altitude, velocity, and ballistic coefficient of a vertically falling body are estimated
using a suitable tracking model derived from the equations of motion under aerodynamic drag. The model
is formulated through rectangular (Euler) integration with a discrete sampling period of AT, ensuring
numerical propagation of the system state over time (sec). Given that radar data is recorded at 1-s interval,
the tracking system updates state estimates sequentially, incorporating new measurements to refine altitude
and velocity estimates. The ballistic coeflicient, which encapsulates the body’s aerodynamic properties and
governs its deceleration due to atmospheric drag, is also inferred as part of the estimation process. This
setup provides a basis for assessing the accuracy and stability of different filtering techniques in real-time
tracking applications.

Fig. 4a—c displays the Mean Error precision across four filtering approaches such as EKE, MCC-EKF1,
MCC-EKF2, and MKMC-EKF are used for various positioning comparisons. In this study, all EKF-based
methods incorporate the MCC framework, while MKMC-EKF uniquely combines the MCC with a multi-
kernel technique. The impact of time-varying noise strength is more pronounced with EKF compared to the
other filters. Integrating the MCC mechanism enhances EKF’s adaptability to varying noise conditions by
dynamically adjusting to non-Gaussian disturbances. The MCC-based multi-kernel approach in MKMC-
EKF not only improves computational efficiency but also refines state estimation by effectively suppressing
the influence of outliers. By leveraging multiple kernel functions, MKMC-EKF provides a more flexible and
accurate representation of the underlying error distribution, leading to improved robustness against time-
varying measurement noise. Additionally, the adaptive weighting of the Kalman gain ensures that updates
remain stable even in the presence of abrupt noise variations. As a result, MKMC-EKF achieves positioning
accuracy comparable to MCC-enhanced EKFs while offering superior efficiency in handling complex
noise environments. Table I summarizes the performance of each algorithm in MEs for different positions.
Furthermore, with only a slight increase in execution time compared to MCC-EKF1 and MCC-EKF2,
MKMC-EKEF achieves the highest positioning accuracy among the tested methods.

Table 1: The performance comparison in terms of MEs

Filters East (m) North (m) Altitude (m)
EKEF [10] 31.4777 23.1131 45.1259
MCC-EKF1 [12] 20.5385 174032 26.4275
MCC-EKEF2 [18] 17.7894 15.8758 24.7049
MKMC-EKF 17.1625 15.6335 24.4542
[Present]

Fig. 5a—c depicts the Root Mean Square Error precision across distinct filtering techniques such as EKF,
MCC-EKF1, MCC-EKF2,and MKMC-EKEF are evaluated for various positioning scenarios. Table 2 compares
the performance of these algorithms, showing that MCC-EKF1 and MCC-EKF2, where MKMC-EKF achieve
the highest positioning accuracy among the methods analyzed. Notably, the fixed-point MKMC-EKF
algorithm is designed to converge for the optimal results within a few iterations, significantly improving its
efficiency for real-time GPS satellite navigation. By leveraging a multi-kernel approach, it adapts dynamically
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to varying noise distributions, ensuring stable and accurate state estimation even in challenging conditions.
The fixed-point iteration method refines the Kalman gain updates, reducing computational complexity while
maintaining high precision. Additionally, the algorithm’s ability to suppress outliers and mitigate the effects
of non-Gaussian noise enhances its robustness, making it well-suited for applications requiring rapid and
reliable positioning. This combination of fast convergence, adaptability, and noise resilience makes MKMC-
EKF a highly effective solution for modern navigation systems. Moreover, the Kalman gain in Figs. 4 and 5 are
primarily derived from the MKMC-EKF framework, but their optimization depends on the adaptive tuning
of kernel width or different filtering methods are applied. Optimization technique Monte Carlo simulations
is used to enhance estimation accuracy and stability under non-Gaussian noise.

Table 2: The performance comparison in terms of RMSEs

Filters East (m) North (m) Altitude (m)
EKF [10] -5.0323 2.6684 —-8.3589
MCC-EKFI [12] -3.9111 -0.6330 —-7.8396
MCC-EKF2 [18] -2.2895 0.5096 -6.9784
MKMC-EKEF [Present] -2.0468 0.4982 -6.2671

Fig. 6a—c shows the probability density functions (PDFs) with small process and measurement noises
for various filtering methods, such as EKF, MCC-EKF1, MCC-EKF2, and MKMC-EKF are evaluated across
different positioning scenarios. The results highlight that MKMC-EKF provides the highest positioning
accuracy among the methods tested. With a limited number of samples per iteration, outliers are more
likely to be chosen as centers. To mitigate this, abnormal centers are set to zero when errors exceed a
predefined threshold. The PDFs of MCC-EKF1, MCC-EKF2, and EKF outperform in estimation accuracy,
while the proposed MKMC-EKEF achieves the best results among all compared methods. EKE, relying on
Gaussian assumptions and the minimum mean square error (MMSE) criterion, is highly sensitive to outliers,
leading to deviations in state updates. In contrast, MCC-EKF and MKMC-EKF, based on MCC and MMKC,
respectively are more robust to outliers. The use of a Gaussian kernel function to weight the Kalman gain
helps suppress outlier influence during state updates. Additionally, the fixed-point MKMC-EKEF algorithm is
designed to converge to optimal results in just a few iterations, which improves its applicability in GPS satellite
navigation. The PDF offers several advantages in the context of evaluating filtering methods, particularly in
positioning and navigation applications.

The PDF is evaluated in Fig. 7a—c under large process and measurement noise conditions for different
filtering methods such as EKF, MCC-EKF1, MCC-EKF2, and MKMC-EKEF to represent various positioning
scenarios. The results remain consistent with those in Fig. 6, with robust mean square error (MSE)-based
algorithms maintaining their stability. Among them, MKMC-EKF performs better than MCC-EKFs and
EKE while the proposed method achieves the highest accuracy. Results show that MKMC-EKF achieves the
highest positioning accuracy among the tested methods. Further, the fixed-point MKMC-EKF algorithm
efficiently converges to optimal results within a few iterations, enhancing its suitability for GPS satellite
navigation. PDFs play a key role in assessing filtering performance in positioning and navigation. They
offer a detailed view of error distributions, providing insights into system behavior under varying noise and
uncertainty conditions. Unlike metrics like mean or RMSE, PDFs illustrate the spread and probability of
different error magnitudes, enabling a deeper understanding of a filter’s stability and reliability.
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In contrast to adaptive EKFs, which rely on adjusting noise covariances, this method modifies the
influence function itself using a mixture of kernels. The MKMC-EKF enhances robustness by integrat-
ing a multi-kernel correntropy measure in the measurement update, allowing the filter to better model
heavy-tailed, impulsive, or multi-modal noise. This is particularly useful in GPS environments affected by
multipath, signal blockage, or sensor degradation.

The calculation power of MCC-EKF variants depends on their robustness and adaptability. MCC-
EKF operates at due to matrix inversion and kernel computations, making it more demanding than EKF
but manageable. MKMC-EKF increases memory usage by storing past estimates, while MCC-EKFI and
MCC-EKF2 add overhead through adaptive kernel updates. MKMC-EKEF significantly raises complexity
with iterative variational inference for noise estimation. Table 3 indicates that the EKF achieves the fastest
computation time, followed by MCC-EKF1, MCC-EKF2, and MKMC-EKE. In comparison, MKMC-EKF
takes longer to execute due to the additional effort required to compute multiple kernel functions and
fine-tune free parameters for improved robustness and accuracy. It is worth noting that the computation
time of MKMC-EKEF is directly affected by the number of kernel widths considered. The computation time
for MKMC-EKEF is influenced by kernel evaluations, fixed-point iterations, batch-mode regression, and
covariance updates. While it is more computationally demanding than a standard EKE its robustness against
non-Gaussian noise justifies the additional processing cost, making it suitable for high-precision applications
with optimized hardware support. MKMC-EKF benefits from a system with at least 16-32 GB RAM and
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a multi-core CPU (>3.0 GHz). Parallel Computing Toolbox is recommended to speed up simulations
and multi-kernel evaluations by utilizing multiple CPU cores efficiently. Moreover, MKMC-EKF adds
computational steps beyond EKEF, but its fixed-point iteration and multi-kernel MCC framework maintain
a balance between efficiency and robustness. With a less time complexity, it remains suitable for real-
time applications like GPS satellite navigation while enhancing estimation accuracy in non-Gaussian noise
environments [30].

Table 3: Computation time and complexity analysis of different filters for a fixed interval

Algorithms Computation time (sec) Time complexity
EKF 5.19 O(n®)
MCC-EKFI 6.49 O(n® + mn)
MCC-EKF2 8.69 O(n® + Kmn)
MKMC-EKF 16.98 O(n® + ’m + m? + Kmn)

Furthermore, the convergence analysis of the MKMC-EKF focuses on its robustness and stability in
non-Gaussian and time-varying noise environments. By leveraging multiple kernels, MKMC-EKF effectively
captures diverse noise characteristics, improving estimation accuracy. In mathematics, the contraction
mapping theorem (or Banach fixed-point theorem), is a key principle used to demonstrate the convergence
of fixed-point algorithm [31]. Convergence is evaluated using ME, RMSE, and correntropy-based metrics,
ensuring the estimation error remains bounded and decreases over time. However, stability can be analyzed
using Lyapunov criteria and eigenvalue distribution of the system matrix, confirming that the filter maintains
consistent performance [32,33]. Additionally, the evaluation has been carried out by analyzing the conver-
gence behavior of the a posteriori error covariance matrix within the MKMC-EKF framework. The trace of
this covariance matrix stabilizes, indicating that the filter maintains bounded estimation uncertainty even in
the presence of time-varying and non-Gaussian noise. To further validate consistency and convergence, we
examined the normalized innovation squared (NIS), which remained within the expected statistical bounds.
This confirms that the MKMC-EKF achieves stable performance and reliable state estimation, demonstrating
convergence in both a covariance-optimal and projection-normalized sense. The proposed MKMC-EKF was
compared with the error modeling approaches in [34,35], which use conventional navigation error dynamics
and adaptive filtering techniques. While adopting a similar state structure, our method introduces a multi-
kernel correntropy framework that better captures non-Gaussian noise characteristics. Simulation results
confirm that MKMC-EKF maintains lower estimation errors and faster recovery during and after signal
outages, demonstrating its enhanced resilience in challenging environments.

Fig. 8a—c shows the analysis of different filter performance with varying noise levels, including process
(Q) and measurement (R) noise covariance ratios (Q/R) ranging from low to high noise intensity, dynamic
transitions noise, and normalized innovation squared (NIS) values over time under varying noise intensities.
The results clearly demonstrate that the proposed MKMC-EKF exhibits consistently stable estimation
performance across a variety of noise scenarios, including those involving abrupt changes in noise intensity
and distribution. Unlike the conventional EKF, which tends to diverge or degrade significantly in the
presence of non-Gaussian or time-varying noise, the MKMC-EKF maintains reliable state estimates with
lower error and improved convergence behavior. Additionally, compared to the single-kernel MCC-EKE, the
multi-kernel approach in MKMC-EKF provides enhanced flexibility to model complex error distributions
more accurately, allowing the filter to adapt dynamically to noise characteristics. This leads to significantly
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improved robustness and accuracy in GPS navigation applications, especially in challenging environments
with high uncertainty or outliers in the measurements.
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6 Conclusion

This paper presents an extended Kalman filter variant, the MKMC-EKE, developed for GPS navigation
and positioning. The approach extends traditional correntropy by introducing a mixture of correntropy,
which combines multiple kernel functions with the EKF to form a multi-kernel filtering algorithm. The pro-
posed filter, designed through an optimized cost function, demonstrates superior robustness and estimation
accuracy compared to traditional correntropy-based filters and other EKF variants. In standard correntropy
methods, the kernel width plays a vital role in determining performance, yet lacks a definitive selection
rule. To overcome this limitation, the MKC framework introduces a more adaptable structure by integrating
multiple kernel bandwidths, enabling greater modeling flexibility and algorithmic versatility. By leveraging
an FPI scheme, the filter effectively handles Gaussian noise while maintaining robustness to outliers, thus
preventing instability or divergence caused by poorly chosen bandwidths. The interaction between kernel
width and filter behavior is central to achieving reliable performance. Simulation results validate that the
MKMC-EKEF outperforms various MCC-EKF approaches when the kernel parameters are appropriately set.
Further, PDF provides a versatile framework for representing diverse noisy data distributions, including
non-Gaussian and mixed-Gaussian noise, which frequently arise in real-world systems. Unlike traditional
statistical methods that assume fixed noise models, PDFs offer a dynamic approach to characterizing
uncertainties by capturing intricate variations in measurement errors. This capability is particularly ben-
eficial in navigation and positioning applications, where environmental factors, sensor imperfections, and
multipath effects introduce complex noise patterns. Unlike traditional methods, it leverages PDFs to model
complex noise variations, improving accuracy in GPS navigation. Fixed-point iteration prevents divergence,
optimizing kernel selection for stability. The MKMC-EKF determines the error covariance matrix of its state
estimates using the total influence function, leading to improved filtering performance. Additionally, an
innovative filtering strategy is introduced to streamline computational processes. It is worth noting that,
MKMC-EKEF incorporates additional computations compared to EKF, but its fixed-point iteration and multi-
kernel MCC approach optimize both accuracy and efficiency. The complexity has been verified, which
remains feasible for real-time GPS satellite navigation, ensuring greater robustness and accuracy in non-
Gaussian noise environments. The MKMC-EKF ensures robust convergence by leveraging multiple kernels
to handle non-Gaussian and time-varying noise.

Simulation results using realistic GPS trajectory scenarios and measurement models demonstrated
that the MKMC-EKF outperforms both standard EKF and MCC-EKF in terms of positioning accuracy
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and robustness. Specifically, the MKMC-EKF achieved up to 35% reduction in root mean square (RMS)
positioning error during periods of GNSS multipath and maintained stable estimation during signal outages.
Furthermore, analysis of the a posteriori covariance matrix and NIS showed the confidence bounds within
95% of the filter’s convergence and statistical consistency under dynamic noise conditions. These findings
confirm that the MKMC-EKEF is a viable and practical solution for real-time navigation applications,
especially in challenging environments where traditional filters struggle. Future work will focus on hardware
implementation and testing with real GNSS/INS data to further validate real-world performance and
computational feasibility. Further, the evaluation can be carried out by applying the MKMC-EKF to the
real-world GNSS/IMU datasets and also the field experiments by using a GNSS receiver integrated with a
micro-electro-mechanical system (MEMS)-grade IMU, that will help to assess real-world performance under
actual multipath, signal outage, and sensor drift scenarios.
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