
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.067239

ARTICLE

General Improvement of Image Interpolation-Based Data Hiding Methods
Using Multiple-Based Number Conversion

Da-Chun Wu* and Bing-Han Sie

Department of Computer and Communication Engineering, National Kaohsiung University of Science and Technology,
Kaohsiung, 824005, Taiwan
*Corresponding Author: Da-Chun Wu. Email: dcwu@nkust.edu.tw
Received: 28 April 2025; Accepted: 13 June 2025; Published: 31 July 2025

ABSTRACT: Data hiding methods involve embedding secret messages into cover objects to enable covert commu-
nication in a way that is difficult to detect. In data hiding methods based on image interpolation, the image size is
reduced and then enlarged through interpolation, followed by the embedding of secret data into the newly generated
pixels. A general improving approach for embedding secret messages is proposed. The approach may be regarded a
general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding
methods. This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,
removing the limitations of many existing methods, where the range is restricted to powers of two to facilitate the
direct embedding of bit-based messages. This improvement is accomplished through the application of multiple-based
number conversion to the secret message data. The method converts the message bits into a multiple-based number
and uses an algorithm to embed each digit of this number into an individual pixel, thereby enhancing the message
embedding efficiency, as proved by a theorem derived in this study. The proposed improvement method has been tested
through experiments on three well-known image interpolation-based data hiding methods. The results show that the
proposed method can enhance the three data embedding rates by approximately 14%, 13%, and 10%, respectively, create
stego-images with good quality, and resist RS steganalysis attacks. These experimental results indicate that the use of the
multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret
messages increases the number of message bits embedded in the images. For many image interpolation-based data
hiding methods, which use power-of-two pixel-value ranges for message embedding, other than the three tested ones,
the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities.

KEYWORDS: Data hiding; image interpolation; interpolation-based hiding methods; steganography; multiple-based
number conversion

1 Introduction
Data hiding [1–5] can be employed to embed secret messages into cover images in an imperceptible

manner, thereby achieving the objective of covert communication through the resulting stego-images. Data
hiding methods yield stego-images with three key characteristics of the hidden message: imperceptibility,
high capacity, and security. Some examples of data hiding methods using images as secret carriers are least
significant bit (LSB) substitution [6], difference expansion [7,8], histogram shifting [9,10], prediction-error
expansion [11,12], pixel-value differencing (PVD) [13], and image interpolation [14,15].

The LSB substitution method proposed by Wang et al. [6] takes advantage of the human eye’s inability to
perceive slight changes in pixel values by substituting the less significant bits of pixel values to hide data. The

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.067239
https://www.techscience.com/doi/10.32604/cmes.2025.067239
mailto:dcwu@nkust.edu.tw


536 Comput Model Eng Sci. 2025;144(1)

LSB substitution method can also be combined with other data hiding techniques to achieve high embedding
capacities while preserving the qualities of stego-images. An example is Solak [16] who combined the LSB
substitution method with enhanced modified signed digit (EMSD) algorithms. Tian [7] proposed a difference
expansion method which expands the difference value between every two adjacent pixels’ values by shifting
left the bits of the difference value and embeds a message bit into the shifted value. Ni et al. [9] proposed
a histogram shifting method which makes slight adjustments of ±1 to the pixel values within the range of
each pair of zero and peak points in the image histogram, and embeds message bits into those pixel values
which are identical to the peak-point value. Thodi and Rodríguez [11] proposed a prediction-error expansion
method that merges the expansion embedding technique with a predictor-based decorrelation technique,
achieving a higher embedding capacity than the difference expansion method.

Wu and Tsai [13] proposed the first PVD-based data hiding method, which embeds secret messages by
adjusting the differences between the values of each pixel pair in an image. The entire range [0, 255] of all
possible absolute values of the pixel pairs’ grayscale differences is divided into multiple smaller quantization
ranges. The width of each quantization range is a power of two to facilitate the embedding of the bit-based
information, yielding high data embedding rates. This method utilizes the difference in visual perception
between smooth and rough areas, and embed more bits of the secret message in pixel pairs with larger pixel-
value differences.

As a generalization of Wu and Tsai [13], Wu and Shih [17] supported the use of non-power-of-
two quantization range widths by applying a multiple-based number conversion mechanism [18] which
transforms the message bits collectively into a large multiple-based number and embeds each digit of the
number into a pixel pair to achieve higher message embedding rates, significantly enhancing the flexibility
and generalization of the original PVD data hiding method [13].

Image interpolation techniques [19,20] are commonly used for adjusting image sizes. These techniques
compute the values of newly generated pixels resulting from the interpolation process based on the original
pixel values in the input image. Jung and Yoo [14] proposed a data hiding method based on one such
technique, called neighbor mean interpolation (NMI). The method at first scales the input image down
to 1/4 of its original size and then scales it up using the proposed NMI technique to form a cover image,
calculating the newly generated pixel values during scaling up as the averages of the pixel values of the existing
neighboring pixels. Secret messages are hidden in the newly generated pixel values in each 3 × 3 block with
the number of bits embedded in each pixel value being determined by the difference between the value of
a pre-selected reference pixel (which is the upper-left corner pixel in the block) and the newly generated
pixel value.

A method proposed by Chang et al. [21], based on the work of Jung and Yoo [14], employs a technique
termed enhanced neighbor mean interpolation (ENMI) to improve image quality. The reference pixel is
selected in the same as done in Jung and Yoo [14]. Also, a histogram modification method is applied to
increase the embedding capacity. Malik et al. [22] proposed an improved NMI technique by assigning
larger weights to closer neighboring pixels when estimating each newly created pixel value during the image
interpolation process. The technique increases the embedding capacity compared to [21] and delivers better
image quality than both [14,21].

Lee and Huang [15] proposed a data hiding method based on a technique referred to as interpolation by
neighboring pixels (INP). The technique selects the corner pixel with the maximum value within each 3 × 3
image block in the cover image as the reference pixel, and message bits are embedded in each newly generated
pixel value according to the value of the difference value computed in the same way as done in the NMI-based
data hiding method [14] described above, thereby improving the yielded message embedding capacity. Tang
et al. [23] enhanced the INP technique proposed by Lee and Huang [15] by selecting the maximum of the



Comput Model Eng Sci. 2025;144(1) 537

absolute differences between the corner pixels’ values and the newly generated pixel values. This maximum
value is then used as the aforementioned difference value to determine the number of message bits to embed
into the newly generated pixel values. The resulting method improves both embedding capacity and image
quality compared to [15].

Recently, Mohammad et al. [24] proposed a new adaptive interpolation-based data hiding technique
to improve the NMI-based image interpolation-based data hiding method [14], using an interpolation
technique that assigns weights to the pixel values of all the four corners of each 3 × 3 block when calculating
the three newly generated pixels’ values. Also, to prevent overflows to occur while embedding the message
bits, more sophisticated formulas are used to compute the aforementioned reference values that are used
to determine the number of message bits to embed into the newly generated pixel values. Furthermore,
the maximum number of bits to embed is limited by a preset value, which allows for adjusting the trade-
off between the quality of the stego-image and the data hiding capacity. For convenience, the interpolation
technique used by this method is referred to as new interpolation expansion and abbreviated as NIE.

In more recent years, interpolated-based data hiding methods have received increasing attention in
the research community. Some studies have focused on refining various aspects of the embedding process
in interpolation-based data hiding methods. For example, Hassan and Gutub [25] proposed the use of
multiple interpolation techniques during the image scaling-up phase to achieve high embedding capacity
while maintaining acceptable image quality. Lu et al. [26] introduced a so-called multiple center folding
strategy for encoding secret messages, which effectively reduces the distortion incurred in the stego-image.
To enhance embedding capacity or image quality, several studies have integrated interpolation-based data
hiding techniques with other information hiding approaches. For instance, Mandal et al. [27] combined
the difference expansion technique to improve embedding capacity, while Fan et al. [28] incorporated the
prediction-error expansion technique to reduce image distortion.

The objective of this study is to propose a general method for improving image interpolation-based
data hiding techniques. The proposed approach aims to enhance embedding capacity by removing the
powers-of-two restriction on the range of pixel values available for secret message embedding. Furthermore,
a multiple-based number conversion technique [17,18,29] is incorporated to embed the secret messages
effectively. The method increases the number of message bits embedded in the newly generated pixels,
thereby increasing the message embedding capacity with the quality of the result stego-image degraded very
slightly. Specifically, the proposed method is applied to enhance various image interpolation-based data
hiding methods mentioned above, namely the well-known NMI-, INP-, and NIE-based data hiding methods,
proposed by Jung and Yoo [14], Lee and Huang [15], and Mohammad et al. [24], respectively, to demonstrate
its effectiveness.

The remainder of this paper is organized as follows. In Section 2, the related techniques discussed in this
study are introduced. In Section 3, the proposed method utilizing the multiple-based number conversion
technique for enhancing the three aforementioned image interpolation-based data hiding methods (i.e.,
the NMI-, INP-, and NIE-based data hiding methods) is presented in detail. Experiments implementing
the proposed method for improving the three methods just mentioned have been conducted, and a
comprehensive analysis of the experimental results is presented in Section 4. Finally, the conclusions of this
study, along with suggestions for future works, are presented in Section 5 of this paper.

2 A Review of Related Techniques
In this section, techniques relevant to the present study are reviewed in detail. Specifically, a thorough

review of the NMI-based data hiding method based on image interpolation, as proposed by Jung and Yoo [14]
as well as an in-depth presentation of the multiple-based number conversion technique [18] used to improve



538 Comput Model Eng Sci. 2025;144(1)

the effectiveness of message embedding in image interpolation-based data hiding methods are included. In
addition, the INP-based data hiding method proposed by Lee and Huang [15] and the NIE-based data hiding
method proposed by Mohammad et al. [24] are presented in Appendices A and B, respectively, to shorten
the main text and enhance the readability of this article.

2.1 A Review of the NMI-Based Data Hiding Method
The NMI-based data hiding method proposed by Jung and Yoo [14] was the first to perform message

embedding based on the use of image interpolation results. The concept of typical image interpolation-based
message embedding can be observed in the operations of the NMI-based data hiding method, which can be
described from three aspects: image interpolation, message embedding, and message extraction.

2.1.1 The Image Interpolation Process
In general, a data hiding technique based on image interpolation first scales down the input image I

of size W × H to create the original image Io, as referred to in [14], with both its width and height being
halved, as shown in Fig. 1. Subsequently, the original image Io is scaled up to double its dimensions using
an interpolation technique that is specifically designed for each distinct data hiding method. This scaled-up
image Ic serves as the cover image, within which message data are embedded to yield a stego-image, as shown
in Fig. 1.

Figure 1: Illustration of the secret message embedding process of an image interpolation-based data hiding method

More specifically, during the image scaling-up process via interpolation, at first, the pixels of the original
image Io are used to create overlapping 2 × 2 blocks in such a way that the column pixels in each block
overlap with those of horizontally-neighboring blocks, and the row pixels overlap with those of vertically-
neighboring blocks. For example, as shown by Fig. 2a, for a given 2× 2 block B (drawn with red line segments
as its boundary), its right column’s two pixels overlap with the left column’s two pixels of the horizontally
adjacent right-side 2 × 2 block Bhr (drawn with green line segments as its boundary). That is, it can be said
simply that Bhr is the overlapping horizontally-adjacent right-side block of B. Similarly, B has an overlapping
vertically-adjacent bottom-side 2 × 2 block Bvb (drawn with green line segments as its boundary as shown
in Fig. 2b), which has two pixels shared with B. Therefore, B has the two adjacent blocks Bhr and Bvb, as shown
in Fig. 2c.

Note that in the previous discussion, B is assumed to be the block of the upper-left corner of an image.
For the general case where B is a non-boundary 2 × 2 block instead of at the upper-left corner, then as
shown in Fig. 2d, it has additionally both an overlapping horizontally-adjacent left-side 2 × 2 block Bhl and
an overlapping vertically-adjacent top-side 2 × 2 block Bvt. In short, B has the four adjacent blocks Bhr, Bhl,
Bvb, and Bvt.



Comput Model Eng Sci. 2025;144(1) 539

Figure 2: Illustration of a typical image interpolation-based data hiding method. (a–d) examples of overlapping 2 × 2
blocks obtained from the input image. (e) The steps of the interpolation and data embedding process

Subsequently, the interpolation process is carried out for each 2 × 2 block B in a sequential manner,
proceeding in a zig-zag fashion from left to right and from top to bottom, by enlarging the original image
block B into a corresponding 3× 3 overlapping block B′ in the cover image, as illustrated in Fig. 2e. The values
of all the four pixels of B are copied directly to the four corners of B′ which are referred to as pivot pixels
in [15]. The remaining pixels within B′ termed non-pivot pixels, are newly generated pixels whose values are
calculated using a specific interpolation technique provided by each data hiding method.

Specifically, let the values of the pivot pixels at the four corners of B′ in the scaled-up cover image be
denoted as p′(0, 0), p′(0, 2), p′(2, 0), and p′(2, 2), which correspond to the values of the four corner pixels of
B of the original image, namely p(0, 0), p(0, 1), p(1, 0), and p(1, 1), respectively. That is

p′ (0, 0) = p (0, 0), p′ (0, 2) = p (0, 1),
p′ (2, 0) = p (1, 0), p′ (2, 2) = p (1, 1) . (1)

Also, the values of the three newly generated non-pivot pixels in the 3 × 3 cover image block B′, denoted
as p′(0, 1), p′(1, 0), and p′(1, 1), are computed in terms of the values of the pivot pixels p′(0, 0), p′(0, 2),
p′(2, 0), and p′(2, 2) using interpolation specified by each distinct hiding method as mentioned previously.
Specifically, in the NMI-based data hiding method [14], the values of the non-pivot pixels are computed as

p′ (0, 1) = ⌊(p′ (0, 0) + p′ (0, 2))/2⌋,
p′ (1, 0) = ⌊(p′ (0, 0) + p′ (2, 0))/2⌋,
p′ (1, 1) = ⌊(p′ (0, 0) + p′ (0, 1) + p′ (1, 0))/3⌋ . (2)



540 Comput Model Eng Sci. 2025;144(1)

As shown in the center of Fig. 2e, there are still two blank pixels, one to the right and the other at the
bottom, of the 3 × 3 block B′ with values that have not been processed yet. In fact, when the two 2 × 2 blocks,
Bhr and Bvb, to the right and below the current block B, respectively, are processed, the values of these two
blank pixels will be computed, as can be figured out according to the above-mentioned process for computing
the values of the non-pivot pixels.

2.1.2 The Message Embedding Process
When a typical interpolation-based data hiding method is applied, the non-pivot pixels in each block B′

of the cover image are used to embed the input secret message. In this process, at first, the value of the pivot
pixel p′(0, 0) in B′ is kept unchanged. That is, the pixel value p′′(0, 0) of the resulting stego-image block is set
to be the upper-left pixel value p′(0, 0) in the cover-image block B′:

p′′ (0, 0) = p′ (0, 0) .

Next, the numbers of bits that can be embedded in the three newly generated non-pivot pixels,
respectively, are decided. First, a reference pixel P is identified for use in the message embedding process. The
value of P is called the reference pixel value and denoted as R. For example, in the NMI-based method, P is
chosen as the upper-left corner pixel in B′ with value p′(0, 0), i.e., R is set to be

R = p′ (0, 0) . (3)

After determining the reference pixel value R, three absolute difference values δi, where i = 1, 2, 3, are
calculated. For example, in the NMI-based method, the calculations are listed as follows:

δ1 = ∣R − p′ (0, 1) ∣,
δ2 = ∣R − p′ (1, 0) ∣,
δ3 = ∣R − p′ (1, 1) ∣. (4)

where p′(0, 1), p′(1, 0), and p′(1, 1) are the newly generated non-pivot pixel values described in Eq. (2) above.
Subsequently, the number of bits embeddable in each of the non-pivot pixels with values p′(0, 1), p′(1,

0), and p′(1, 1), denoted as ni (i = 1, 2, 3), are determined. For example, in the NMI-based method, they can
be expressed as

ni = ⌊log2 δi⌋, (5)

where ⌊⋅ ⌋ denotes the floor function.
Finally, the message bit embedding is proceeded by taking ni bits (i = 1, 2, 3) from the secret message

in sequence, converting it into a decimal value vi, and the resulting values v1, v2, and v3 are added to the
non-pivot pixel values p′(0, 1), p′(1, 0), and p′(1, 1), respectively, resulting in the new pixel values p′′(0, 1), p′′(1,
0), and p′′(1, 1) in the corresponding block in the stego-image. That is, the pixel values p′′(0, 1), p′′(1, 0), and
p′′(1, 1) are set respectively to be

p′′ (0, 1) = p′ (0, 1) + ν1 ,
p′′ (1, 0) = p′ (1, 0) + ν2,
p′′ (1, 1) = p′ (1, 1) + ν3. (6)



Comput Model Eng Sci. 2025;144(1) 541

After embedding all message bits into the blocks of the cover image, a stego-image containing the hidden
message is generated, as illustrated in Fig. 2e as well.

2.1.3 The Message Extraction Process
During the message extraction process performed by a typical interpolation-based method, the pixel

values of the original cover image are required. These values are directly calculated from the stego-image
without the need to actually recover the cover image. Conceptually, this can be seen as recovering the cover
image initially for use in the message extraction process, as illustrated in Fig. 3. The details are explained
further below.

Figure 3: Illustration of the secret message extraction process of an image interpolation-based data hiding method

Initially, the values of the pivot pixels in the conceptually recovered cover image Ic are copied from
those of the pivot pixels in the stego-image S, while the values of the non-pivot pixels in Ic are reconstructed
by referencing the pivot pixels and using the same interpolation technique applied during the message
embedding process. Specifically, in the NMI-based data hiding method [14], the technique described
in Eq. (2) is applied and the pixel values p′(0, 1), p′(1, 0), and p′(1, 1) of Ic can be computed from the pixel
values of S as

p′ (0, 1) = ⌊(p′′ (0, 0) + p′′ (0, 2))/2⌋,
p′ (1, 0) = ⌊(p′′ (0, 0) + p′′ (2, 0))/2⌋,
p′ (1, 1) = ⌊(p′′ (0, 0) + p′ (0, 1) + p′ (1, 0))/3⌋ . (7)

Subsequently, both S and the Ic are segmented into overlapping 3 × 3 blocks using the same approach as
done in message embedding, as depicted in Fig. 4. The number ni of bits with i = 1, 2, 3, which were embedded
in each of the three newly generated pixels in each block of the cover image can be retrieved separately
according to the same calculation steps as done in the message embedding process.



542 Comput Model Eng Sci. 2025;144(1)

Figure 4: Illustration of the data extraction process for blocks in typical image interpolation-based data hiding methods

Next, the pixel values p′(0, 1), p′(1, 0), and p′(1, 1) of each cover image block B′ are subtracted respectively
from the corresponding pixel values p′′(0, 1), p′′(1, 0), and p′′(1, 1) of the corresponding stego-image block
B′′ to obtain three pixel-value differences v1, v2, and v3:

ν1 = p′′ (0, 1) − p′ (0, 1),
ν2 = p′′ (1, 0) − p′ (1, 0),
ν3 = p′′ (1, 1) − p′ (1, 1) . (8)

Subsequently, each pixel-value difference vi (i = 1, 2, 3) is converted into a binary number N. If N has
fewer than the required ni bits computed according to the Eqs. (3)–(5), it is padded with leading zeros.

By the way, the two blank pixels at the right and bottom sides of the 3× 3 stego-image block B′′ shown on
the left of Fig. 4 are not treated at this stage, just like the case in the message embedding process. The secret
messages embedded in these two pixels are extracted later in the next stage when processing the adjacent 3
× 3 blocks of B′′ on the right and bottom sides.

2.2 Multiple-Based Number Conversion Technique
Wu and Tsai [18] proposed a new method of data hiding based on the concept of multiple-based number

conversion. An n-digit multiple-based number is represented as

dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0),

where each digit di in the number has a corresponding base bi > 1 for i = 0, 1, . . . , n − 1. The value of di falls
within the range from 0 to bi − 1. Its decimal value may be computed by the following equation:



Comput Model Eng Sci. 2025;144(1) 543

dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0)

= dn−1 × (bn−2 × bn−3 × . . . × b0) + dn−2 × (bn−3 × bn−4 × . . . × b0) + . . . + d1 × b0 + d0

= (((dn−1 × bn−2 + dn−2) × bn−3 + dn−3) × . . . + d1) × b0 + d0. (9)

The operation of multiple-based number conversion has the following two properties which were
reported in [18].

Property 1.
An integer I can be represented as a multiple-based number dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0)

through successive integer divisions of I by the bases b0, b1, . . . , bn−1, where each di is the remainder of the
respective division.

Property 2.
If the selected bases bn−1, bn−2, . . . , b0 satisfy the equation b ≤ ⌊log2(∏

n−1
i=0 bi)⌋, then the n-digit

multiple-based number dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0) can be used to represent the value of any b-bit
binary number.

Based on the above properties, for example, if it is desired to convert the decimal number m0 = 56410
into a multiple-based number N with base values b0 = 9, b1 = 5, and b2 = 13, then N can be represented as
d2(b2)d1(b1)d0(b0) where the values of d0, d1, and d2 can be computed step by step in the following way and as
illustrated in Fig. 5.
(1) Perform the integer division of m0 = 564 by the base b0 = 9, resulting in a quotient of m1 = 62 and a

remainder of 6. Therefore, d0 is taken to be the digit value 6 with base 9, i.e., d0(b0) = 69.
(2) Divide the quotient m1 = 62 by the second base b1 = 5, yielding a new quotient of m2 = 12 and a

remainder of 2. Consequently, the digit value d1(b1) of the multiple-based number is 25.
(3) Divide the quotient m2 = 12 by the third base b2 = 13, resulting in a quotient of m3 = 0 and a remainder

of 12 so that digit value d2(b2) of the multiple-based number is 1213.
(4) Combine the above intermediate results into a multiple-based number d2(b2)d1(b1)d0(b0) 12132569 as the

final result.

Figure 5: Illustration of applying the proposed multiple-based number conversion process to convert decimal number
56410 into a multiple-based number 12132569

In practice, to convert the multiple-based number dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0) into its decimal
equivalent, one can simply add the decimal values represented by each digit di(bi) for i = 0, 1, . . . , n − 1.



544 Comput Model Eng Sci. 2025;144(1)

Specifically, the value represented by the digit di(bi) is computed as the value of the coefficient di multiplied
by∏i−1

j=0 b j, and the value represented by the digit di−1(bi−1) is computed as the coefficient di−1 multiplied by
∏i−2

j=0 b j, and so on. Therefore, if the digit di(bi) is processed sequentially for i = 0, 1, . . . , n − 1, the multiplier
needed for calculating di(bi), denoted as∏i−1

j=0 b j, can be obtained by directly multiplying the product∏i−2
j=0 b j

computed for the previous digit di−1(bi−1) by the base bi−1. This helps avoid redundant computations.
Accordingly, to convert a multiple-based number into its decimal equivalent m, first set the initial value

m0 of m to be 0 and the initial value a0 of the multiplier a to be 1. Then, process di(bi) sequentially for i = 0, 1,
. . . , n − 1 and add di × ai one by one to decimal equivalent m. That is, the accumulation of the decimal values
represented by di(bi) can be expressed as

mi+1 = mi + (di × ai) . (10)

After summing up di(bi), the multiplier ai is then multiplied by bi, yielding the next multiplier needed
for calculating di+1(bi+1), i.e., the next a can be expressed as

ai+1 = ai × bi . (11)

This process of computations using Eqs. (10) and (11) are repeated for each di(bi) in the multiple-based
number until all the digit values have been summed up to obtain finally the desired decimal equivalent m.

For example, to convert the multiple-based number N = 12132569 to be a decimal number, first set the
initial value m0 of m to be 0 and the initial value a0 of the multiplier a to be 1. Then, extract the rightmost
digit of N, which is 69 and calculate the next values of m and a to be m1 = 6, a1 = 9, according to Eqs. (10)
and (11), respectively. Next, extract the second digit of N, namely 25, and calculate the new values of m and a
to be m2 = 6 + 2 × 9 = 24, a2 = 9 × 5 = 45. Finally, extract the third digit of N, which is 1213 and calculate the
final value of m to be m3 = 24 + 12 × 45 = 564. At this point, the conversion of 12132569 is completed with the
decimal value 56410 as the desired result.

3 Proposed General Improvement of Various Image Interpolation-Based Data Hiding Methods Using
Multiple-Based Number Conversion

The proposed method, which is designed to generally improve various existing image interpolation-
based data hiding techniques, including the processes of message embedding and extraction, is illustrated
in Figs. 6 and 7, respectively. In other words, these two figures together represent an interpolation-based
data-hiding system enhanced by the proposed method.

In this section, the principle of generally improving the image interpolation-based data hiding method
by use of the multiple-based number conversion technique as proposed in this study is presented at
first. Then, a detailed description of how this improvement technique is applied in message embedding
and extraction to enhance the effectiveness of the NMI-based data hiding method [14] is presented. The
improvement technique has also been applied to the INP-based and NIE-based data hiding methods [15,24]
in this study, and the comprehensive details are provided in Appendices C and D, again to maintain the
conciseness and readability of the main text.



Comput Model Eng Sci. 2025;144(1) 545

Figure 6: Illustration of the embedding process in an interpolation-based data-hiding system improved by the
proposed method

Figure 7: Illustration of the extraction process in an interpolation-based data-hiding system improved by the proposed
method

3.1 Use of Proposed Multiple-Based Number Conversion to Generally Enhance Data Hiding Capacity
The NMI-, INP-, and NIE-based data hiding methods [14,15,24] all use the created 3 × 3 overlapping

blocks of the cover image to embed message data into the values of three newly generated non-pivot pixels,
namely p′(0, 1), p′(1, 0), and p′(1, 1), within each image block, as shown in Fig. 2. These three methods compute
the numbers of message bits that can be embedded into the newly generated pixels in different ways as
described previously and summarized in the following.

(1) The NMI-based data hiding method [14] uses the absolute difference δ between the reference pixel
value p′(0, 0) in each block and each of the three newly generated non-pivot pixels’ values p′(0, 1), p′(1,
0), and p′(1, 1) to compute the number of bits that can be embedded into the corresponding pixel value
as ⌊log2δ⌋.

(2) The INP-based data hiding method [15] uses the maximum value R of the four corner pixels’ values,
namely p′(0, 0), p′(0, 2), p′(2, 0), and p′(2, 2), in each block as the reference pixel value, finds the



546 Comput Model Eng Sci. 2025;144(1)

absolute difference δ between this reference pixel value and each of the three newly generated non-
pivot pixels’ values p′(0, 1), p′(1, 0), p′(1, 1) to calculate the number of bits that can be embedded into
the corresponding pixel value as ⌊log2δ⌋.

(3) The NIE-based data hiding method [24] defines p′(0, 0) as the reference pixel value R, calculates the
smallest of the three values ∣R − p′∣, 255 − p′, and 2U (where 1 ≤ U ≤ 8) for each newly generated pixel
with value p′ as the pixel-value difference δ, and then computes the number of bits that can be embedded
into p′ as ⌊log2δ⌋.

As a summary, the three aforementioned image interpolation-based data hiding methods [12,13,21]
perform the following steps of operations for message-bit embedding in each non-pivot pixel in each created
3 × 3 block B of the cover image.

Procedure A: A summary of the data embedding process in the conventional image interpolation-based
data hiding methods
Steps:
(1) Let the value of each non-pivot pixel in B, into which message bits are to be embedded, be denoted as p′.
(2) Determine the reference pixel P in the following way for the three methods:

(a) for [14], set P to be the upper-left corner pixel;
(b) for [15], set P to be the pixel with the maximum of the values of the four corner pixels; and
(c) for [24], set P to be the upper-left corner pixel of B.

(3) Let the value of the reference pixel P be R.
(4) Define the pixel-value difference δ in the following way for the three methods:

(a) for [14], set δ to be ∣R − p′∣;
(b) for [15], set δ to be ∣R − p′∣;
(c) for [24], set δ to be the smallest of ∣R − p′∣, 255 − p′, and 2U where U is a preset value between 1
and 8.

(5) If δ ≥ 2, then set the number of bits that can be embedded into p′ as ⌊log2δ⌋ and proceed to the next
step for message embedding; otherwise, skip p′ without embedding and proceed to Step (8).

(6) Convert ⌊log2δ⌋ bits of the message into a decimal value v whose possible range is [0, 2⌊log2 δ⌋ − 1].
(7) Embed v into the value p′ to obtain a new value p′′ = p′ + v as the result of message embedding into

the currently-processed non-pivot pixel.
(8) End the processing of the pixel value p′ in block B.

It is noted that to ensure consistent uses of notations for describing the three methods in the above
summary, the schemes for determining the pixel-value difference and the number of bits that can be
embedded in the NIE-based data hiding method, as proposed in [24] and described previously, are adjusted
as described in Steps (4c) and (5) above, but the results obtained after the adjustment are identical to the
original ones.

Now, when δ is a power of two, then 2⌊log2 δ⌋ equals δ and the possible range [0, 2⌊log2 δ⌋ − 1] becomes [0,
δ − 1] so that after Step (7) above is carried out, the new pixel value p′′ will fall within the range [p′, p′ + δ −
1], allowing the number of embedded bits to reach the maximum.

However, the value of δ is not always a power of two in real applications; in such a case, the possible
range of p′′ after embedding the bit value v becomes the subrange [p′, p′ + 2⌊log2 δ⌋ − 1], meaning that the
subrange [p′ + 2⌊log2 δ⌋, p′ + δ − 1] of [p′, p′ + δ − 1] is wasted, resulting in fewer bits being embedded and,
consequently, a lower message embedding capacity.

In this study, the technique of multiple-based number conversion is proposed to remove this shortage,
improving the data embedding capacity of interpolation-based data hiding like the three methods mentioned



Comput Model Eng Sci. 2025;144(1) 547

above [14,15,24]. Specifically, during the message embedding process dealing with a pixel with value p′
in the cover image, let the absolute differences between p′ and its corresponding reference pixel value be
denoted as δ. Instead of taking the number of embedded bits into p′ as ⌊log2δ⌋ as done by the conventional
methods to embed the bit value v into p′ to become a new value p′′ = p′ + v as described in Steps (5)–(7)
of Procedure A above, the proposed improvement method adopts the multiple-based number conversion
presented previously to treat each absolute difference value δ as the created base value b of a digit d in a
multiple-based number, with d being a remainder in successive integer divisions of the decimal value of the
message by the created bases. Finally, the digit d is embedded into p′ as p′′ = p′ + d. That is, the proposed
improvement method carries out the following outline of message embedding (the detailed algorithms will
be presented in the later sections).

Procedure B: A Summary of the data embedding process of the proposed improvement method for
enhancing the conventional image interpolation-based data hiding methods
Steps:
(1)–(4) The same as those in Procedure A above.
(5) If δ ≥ 2, then take pixel-value difference δ as a base value b and proceed to the next step for

message embedding; otherwise, skip p′ without embedding and proceed to Step (8).
(6) Perform integer division of the current decimal value m of the processed message by b to create a

remainder d whose possible range is [0, δ − 1].
(7) Embed d into the value p′ to obtain a new value p′′ = p′ + d as the result of message embedding

into the currently-processed non-pivot pixel.
(8) End the processing of the pixel value p′ in block B.

By using Procedure B above, after Step (7) is accomplished, the new pixel value p′′ will fall within
the range [p′, p′ + δ − 1]. The above-mentioned wasted subrange [p′ + 2⌊log2 δ⌋, p′ + δ − 1] of pixel values
incurred by Procedure A can now be fully utilized by the proposed improvement method, as proved by the
following theorem.
Theorem 1: The number mp of bits embedded by the proposed improvement method into a cover image I is
larger than or equal to the number mc of bits embedded by a conventional image interpolation-based data hiding
method like [14,15,24], i.e.,

mp ≥ mc .

Proof: Assume that the cover image I contains n non-pivot pixels denoted as P0, P1, . . . , Pn−1 available for
secret embedding, where the pixel-value difference defined by the previously-described overview of the data
embedding process of conventional image interpolation-based data hiding methods for Pi is δi for i = 0, 1, . . . ,
n− 1, where δi represents typically the absolute difference between the value of pixel Pi and its corresponding
reference pixel value.

In a conventional image interpolation-based data hiding method T like [14,15,24], the total number mc
of bits embedded in I, as can be seen from Steps (6) and (7) of Procedure A, can be expressed as

mc = ∑
n−1
i=0 ⌊log2 δi⌋ . (12)



548 Comput Model Eng Sci. 2025;144(1)

In the improvement method that enhances the conventional method T using the proposed multi-based
number conversion technique, the total number of embedded bits mp in I can be expressed as

mp = ⌊log2(
n−1
∏
i=0

δi)⌋, (13)

according to aforementioned Property 2 of multi-based number conversion, and can be rewritten as

mp = ⌊
n−1
∑
i=0

log2 δi⌋ . (14)

according to a property of the log function: log(A × B) = log(A) + log(B).
Since the inequality

⌊x + y⌋ ≥ ⌊x⌋ + ⌊y⌋, (15)

is a well-known property of the floor function [30], which, when applied iteratively for n times, implies the
following inequality:

⌊
n−1
∑
i=0

log2 δi⌋ ≥
n−1
∑
i=0
⌊log2 δi⌋, (16)

leading to the following result according to Eqs. (12) and (13):

mp ≥ mc . (17)

This completes the proof of the theorem. ◻
Fig. 8 is an illustration of Theorem 1 for comparing the number of embedded bits in a conventional

image interpolation-based data hiding method with the results achievable by the proposed improvement
method using different numbers (n) of embeddable non-pivot pixels with randomly generated pixel-value
difference values (δ) distributed within the range of 2 to 10.
Lemma 1: If the selected bases bn−1, bn−2, . . . , b0 satisfy the equation

n−1
∏
i=0

bi ≥ 2b ,

then the n-digit multiple-based number dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0) can be used to represent the value
of any b-bit binary number.
Proof: According to Property 2 described previously, the n-digit multiple-based number

dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0),

can be used to represent the value of any b-bit binary number when the following inequality is true:

⌊log2(
n−1
∏
i=0

bi)⌋ ≥ b. (18)



Comput Model Eng Sci. 2025;144(1) 549

But it is easy to see that the following inequality is true:

log2(
n−1
∏
i=0

bi) ≥ ⌊log2(
n−1
∏
i=0

bi)⌋. (19)

By combining Eqs. (18) and (19), the following inequality can be obtained:

log2(
n−1
∏
i=0

bi) ≥ b, (20)

which implies that the following inequality holds:

n−1
∏
i=0

bi ≥ 2b , (21)

according to a property of the log function: if log(A) ≥ B, then A ≥ 2B. This completes the proof of the lemma.
◻

Figure 8: An illustration comparing the number of embedded bits shows that the conventional image interpolation-
based data hiding methods achieve∑n−1

i=0 ⌊log2 δi⌋ bits while the proposed method achieves ⌊∑n−1
i=0 log2 δi⌋ for different

numbers of non-pivot pixels (n) used for message-bit embedding with randomly generated differences (δ) distributed
within the range of 2 to 10

During the hidden data extraction process, the base values b0, b1, . . . , bn−1 of the multiple-based
number system are recalculated based on the absolute pixel value differences δi between the n pixels
in the aforementioned conceptually recovered cover image available for message extraction and their
corresponding reference pixel values, where i = 0, 1, . . . , n − 1. Subsequently, the pixel-value differences
between the embedded message pixels in the stego image and the corresponding pixels in the cover image
are computed for each block, and these differences are used as the digit values d0, d1, . . . , dn−1 of the extracted
multiple-based number represented as

dn−1(bn−1)dn−2(bn−2) . . . d2(b2)d1(b1)d0(b0),



550 Comput Model Eng Sci. 2025;144(1)

which is finally converted into a binary number as the retrieved secret message in the form of a binary
bit string.

3.2 Improvement of the NMI-Based Data Hiding Method by Multiple-Based Number Conversion
In this section, the proposed enhancement of the NMI-based data hiding method using multiple-based

number conversion is presented in detail, followed by the detailed descriptions of the message embedding
process and the extraction processes of the improved NMI-based data hiding method.

3.2.1 Message Embedding
The message embedding process of the improved NMI-based data hiding method begins with generat-

ing a cover image using the interpolation scheme of the original NMI-based data hiding method. Then, the
secret message to be embedded is converted into a large integer, followed by successive integer divisions with
the base values being the absolute difference values between the value p′(0, 0) of the reference pixel and the
values of the newly generated non-pivot pixels in each block of the cover image, yielding a multiple-based
number. Finally, the digit values in the resulting multiple-based number are embedded respectively into the
non-pivot pixels associated with the corresponding base values.
(a) The Message Embedding Algorithm (Algorithm 1)

Algorithm 1: The message embedding process of the improved NMI-based data hiding method enhanced
by the use of the multiple-based number conversion technique
Input: An input image I with dimensions W × H and a secret message M of b bits.
Output: A stego-image S.
Steps:
Stage I: Image interpolation
Step 1. Conduct the following steps on the input image I.

//Performing image interpolation according to the original NMI-based data hiding method//
1.1. Resize the input image I to be of a size of W/2 ×H/2, call the result the original image, and denote

it by Io.
1.2. scale up Io to a size of W × H using the original NMI technique, call the result the cover image,

and denote it by Ic.
1.3. divide Ic into n overlapping 3 × 3 image blocks as depicted in Fig. 2a–d, and index them from left

to right and from top to bottom as B1, B2, . . . , Bn.
1.4. Denote the pixel values within the r-th block Br as p′r(i, j), where i = 0, 1, 2, j = 0, 1, 2, and r = 1, 2,

... , n.
Stage II: Message embedding while conducting multiple-based number creation
Step 2. Convert the secret message M into a large integer m.
Step 3. Define a large integer a as the product of sequentially-created bases and set its initial value to be 1;

define k as an index and set its initial value to be 0.
Step 4. Perform Steps 4.1 through 4.4 for r = 1, 2, . . . , n.

//Processing the r-th block Br in the cover image Ic//
4.1. Denote p′r(0, 1), p′r(1, 0), and p′r(1, 1) as p′r,1, p′r,2, and p′r,3, respectively.

(Continued)



Comput Model Eng Sci. 2025;144(1) 551

Algorithm 1 (continued)
4.2. Let Rr denote the reference pixel value for the non-pivot pixel values p′r(0, 1), p′r(1, 0), and p′r(1, 1)

in the r-th block Br, and set Rr = p′r(0, 0).
4.3. Perform Steps 4.3.1 through 4.3.9 for i = 1, 2, 3.

//Processing the three non-pivot pixels in Br//
4.3.1. Let δr,i denote the absolute difference value between Rr and the pixel value p′r,i in Br, i.e.,

compute δr,i as δr,i = ∣Rr − p′r,i∣.
4.3.2. If δr,i < 2, skip to Step 4.3.9; otherwise, proceed to the next step.

//δr,i is used as a base of the desired multiple-based number and should be neither 0 nor 1//
4.3.3. Let bk denote a base value and set bk = δr,i.

//bk with value δr,i corresponds to digit dk in the desired multiple-based number//
4.3.4. Compute the digit value dk corresponding to base bk as dk =m mod bk,

where mod denotes the remainder operator of the integer division of m by bk.
//m is the large integer of the input message//

4.3.5. Embed dk into p′r,i, resulting in a new pixel value denoted as p′′r,i, computed as
p′′r,i = p′r,i + dk.

4.3.6. Perform integer division of the large integer m by the base bk, i.e., set m =m div bk,
where div denotes the quotient operator in integer division.

//Computing the remaining message part m//
4.3.7. Update the product value a of sequentially-created bases and the index k as follows:

a = a × bk and k = k + 1.
//Preparing the new values of a and k for the next iteration of message embedding//

4.3.8. If a ≥ 2b, then end the message embedding process and proceed to Step 5; otherwise, proceed
to the next step.

//The condition a ≥ 2b comes from aforementioned Lemma 1 of multiple-based number conversion with b
being the number of bits in the input message M//

4.3.9. If i ≠ 3, set i = i + 1 and go to Step 4.3 for the next iteration; otherwise, proceed to Step 4.4.
4.4. If r ≠ n, set r = r + 1 and go to Step 4 for the next iteration; otherwise, proceed to Step 5.

Step 5. End the message embedding process with the resulting image Ic as the stego-image S.
//All embedded digit values form the multiple-based number

dk−1(bk−1)dk−2(bk−2) . . . d1(b1)d0(b0)//

(b) An Example of Applying Algorithm 1 for Message Embedding
An example of applying Algorithm 1 for embedding a given message into a cover image Ic obtained in

Stage I of the above algorithm is illustrated in Fig. 9 with the computations of the intermediate results being
described in the following. The image Ic is divided into two overlapping 3 × 3 blocks for data embedding in
Step 1.3 of the algorithm. Assume that the message to be embedded is a binary string

M = 011000110100110112,

of the length b = 17. This bit string is first converted into a large integer m = 50,843 as done by Step 2 of the
algorithm. Also, a is set to be 1 in Step 3.



552 Comput Model Eng Sci. 2025;144(1)

Figure 9: Illustration of an example of applying Algorithm 1 to embed a binary message string into a two-block cover
image. (a) The embedding process for the first block. (b) The embedding process for the second block

(i) Embedding Message Bits into the First Block
Initially, the base values corresponding to the pixel values designated for message embedding in the

first block of the cover image Ic shown at the left of Fig. 9a are identified by Steps 4.1, 4.2, and 4.3.1–4.3.3.
Specifically, with the non-pivot pixel values p′1(0, 1), p′1(1, 0), and p′1(1, 1) which are 208, 165, and 178,
respectively, and the reference pixel value R1 = p′1(0, 0) which is 162, the absolute difference values between R1
and the values of the non-pivot pixels are calculated to be δ1,1 = ∣162 − 208∣ = 46, δ1,2 = ∣162 − 165∣ = 3, and δ1,3
= ∣162 − 178∣ = 16. Since all the three difference values are greater than or equal to 2, they are appropriate, as
required by Step 4.3.2, to be used as base values b0 = 46, b1 = 3, and b2 = 16 for embedding the corresponding
digits of the multiple-based number.

Then, as carried out by the operations described in Steps 4.3.4 and 4.3.6, the large integer m (used to
generate digits to be embedded) is divided sequentially by the corresponding base values b0, b1, and b2 using
successive integer divisions. The serial remainders obtained from these divisions are used as the digit values



Comput Model Eng Sci. 2025;144(1) 553

d0, d1, and d2 of the desired multiple-based number. Finally, these digit values are embedded into p′1(0, 1),
p′1(1, 0), and p′1(1, 1), respectively, as described by Step 4.3.5. More details of this message embedding process
are presented in the following.

1. By d0 =m mod b0, the first digit d0 in the multiple-based number is computed to be 50,843 mod 46 = 13
which is embedded into p′1(0, 1) by adding d0 to p′1(0, 1) to obtain the new pixel value p′′1(0, 1) = 208 +
13 = 221.

2. The value of m is updated to be m div b0 = 50,843 div 46 = 1,105, the product value a of the sequentially-
created bases is updated to be a × b0 = 1 × 46 = 46, and the result 46 is checked to be smaller than 2b =
217 = 131,072, as done in Steps 4.3.6–4.3.8, meaning that more message bit embedding may be continued.

3. By d1 =m mod b1, the second digit d1 is computed to be 1,105 mod 3 = 1 which is embedded into p′1(1, 0)
by adding d1 to p′1(1, 0) to obtain the new pixel value p′′1(1, 0) = 165 + 1 = 166.

4. The value of m is updated to be m div b1 = 1,105 div 3 = 368, and that of a to be a × b1 = 46 × 3 = 138 with
138 < 217 = 131,072 being checked, meaning that more message-bit embedding may be continued.

5. By d2 =m mod b2, the third digit d2 is computed to be 368 mod 16 = 0 which is then embedded into p′1(1,
1) by adding d2 to p′1(1, 1) to obtain the new pixel value p′′1(1, 1) = 178 + 0 = 178.

6. The value of m is updated to be m div b2 = 368 div 16 = 23, and that of a to be a × b2 = 138 × 16 = 2,208 <
217 = 131,072, meaning that more embedding may be continued by processing the second block as shown
in Fig. 9b.

At the end of embedding in the first block, the embedded digits are d0(b0), d1(b1), and d2(b2), namely 1346,
13, and 016, respectively, with the values of m and a being 23 and 2,208.
(ii) Embedding Message Bits in the Second Block

The embedding process is then performed similarly on the second block of the cover image Ic as
illustrated in Fig. 9b. The non-pivot pixel values used for embedding in this block are p′2(0, 1), p′2(1, 0), and
p′2(1, 1), which are 254, 237, and 248, respectively, while the reference pixel value R2 is p′2(0, 0) = 254. The
absolute differences are calculated to be δ2,1 = ∣254 − 254∣ = 0, δ2,2 = ∣254 − 237∣ = 17, and δ2,3 = ∣254 − 248∣ =
6. Only the second and third differences are greater than or equal to 2, and so are used as the fourth and fifth
base values b3 = 17 and b4 = 6. Two digits d3, and d4 obtained as the remainders resulting from dividing m by
b3 and b4 successively are then embedded into p′2(1, 0), and p′2(1, 1), respectively. The details are described in
the following, as a continuation of those of processing the first block.

7. By d3 =m mod b3, the fourth digit d3 is computed to be 23 mod 17 = 6, which is embedded into p′2(1, 0)
by adding d3 to p′2(1, 0) to obtain the new pixel value p′′2(1, 0) = 237 + 6 = 243.

8. The value of m is updated to be m div b3 = 23 div 17 = 1, and that of a to be a × b3 = 2,208 × 17 = 37,536 <
217 = 131,072, meaning that more message bit embedding may be continued.

9. By d4 = m mod b4, the fifth digit d4 is computed to be 1 mod 6 = 1, which is then embedded into p′2(1, 1)
by adding d4 to p′2(1, 1) to obtain the new pixel value p′′2(1, 1) = 248 + 1 = 249.

10. The value of m is updated to be m div b4 = 1 div 6 = 0, and that of a to be a × b4 = 37,536 × 6 = 225,216
≥ 217 = 131,072, indicating that the 17-bit secret message has been fully embedded and the algorithm is
stopped according to Step 4.3.8.

As a result, the digits embedded in the second block are d3(b3) and d4(b4), namely 617 and 16. Consequently,
the entire secret message embedded into the two blocks forms the multiple-based number 16617016131346.

3.2.2 Message Extraction
The message extraction process of the proposed improved NMI-based data hiding method begins

with conceptually recovering the cover image from the input stego-image using the NMI technique. The



554 Comput Model Eng Sci. 2025;144(1)

conceptually-recovered cover image is identical to that produced during the embedding process. The stego-
image and cover image are then synchronously divided into overlapping 3 × 3 blocks for message extraction.
Subsequently, by the proposed improvement method, the base values corresponding to the digit values of
the multiple-based number to be found in each block are derived from the recovered cover image. The digit
values corresponding to these base values are then extracted using the pixel values of the stego-image and
their corresponding pixel values in the cover image. The base values and the digit values are combined to
form the desired multiple-based number, which is finally converted into a bit string of the same length as
the embedded secret message, thereby completing the extraction of the secret information. The detailed
extraction procedure of the improved NMI-based data hiding method is presented in the following.
(a) The Message Extraction Algorithm (Algorithm 2)

Algorithm 2: The message extraction process of the improved NMI data hiding method enhanced by the
use of the multiple-based number conversion technique
Input: A stego-image S with dimensions W × H, and the bit length b of the secret message M embedded
in S.
Output: A b-bit secret message M.
Steps:
Stage I: image interpolation
Step 1. Conduct the following steps on the stego-image S.

//Performing image interpolation using the original NMI technique//
1.1. Recover conceptually the cover image Ic of size W × H from the input stego-image S using the

NMI technique.
1.2. Divide Ic into n overlapping 3 × 3 image blocks as depicted in Fig. 2, and index them from left to

right and from top to bottom as B1, B2, . . . , Bn.
1.3. Denote the pixel values within the r-th block Br as p′r(i, j), where i = 0, 1, 2, j = 0, 1, 2, and r = 1, 2, . . . , n.
1.4. Divide S into n overlapping 3 × 3 image blocks as depicted in Fig. 2, and index them from left to

right and from top to bottom as S1, S2, . . . , Sn.
1.5. Denote the pixel values within the r-th block Sr as p′′r(i, j), where i = 0, 1, 2, j = 0, 1, 2, and r = 1, 2, . . . , n.
Stage II: message extraction
Step 2. Define a large integer m for accumulating the decimal values to be extracted, and set its initial

value to be 0.
Step 3. Define a large integer a for use as a product of sequentially-created bases, and set its initial value to

be 1; define k as an index, and set its initial value to be 0.
Step 4. Perform Steps 4.1 through 4.4 for r = 1, 2, . . . , n.

//Processing the r-th block Sr in stego-image S//
4.1. Denote p′′r(0, 1), p′′r(1, 0), and p′′r(1, 1) in Sr as p′′r,1, p′′r,2, and p′′r,3, respectively, and p′r(0, 1), p′r(1, 0),

and p′r(1, 1) in Br as p′r,1, p′r,2, p′r,3, respectively.
(Continued)



Comput Model Eng Sci. 2025;144(1) 555

Algorithm 2 (continued)
4.2. Let Rr denote the reference pixel value for the non-pivot pixel values p′r(0, 1), p′r(1, 0), and p′r(1, 1)

in the r-th block Br, and set
Rr = p′r(0, 0).

4.3. Perform Steps 4.3.1 through 4.3.8 for i = 1, 2, 3.
//Processing the three non-pivot pixels in Sr and Br//

4.3.1. Let δr,i denote the absolute difference value between Rr and the pixel value p′r,i in Br, i.e.,
compute δr,i as

δr,i = ∣Rr − p′r,i∣.
4.3.2. If δr,i < 2, skip to Step 4.3.8; otherwise, proceed to the next step.

//δr,i is to be used as a base of the desired multiple-based number and should be neither 0 nor 1//
4.3.3. Let bk denote a base value and set

bk = δr,i.
//bk is the base corresponding to the digit dk in the desired multiple-based number//

4.3.4. Extract the digit dk corresponding to the base bk from p′′r,i by computing dk as
dk = p′′r,i − p′r,i.

4.3.5. Add the decimal value corresponding to dk to m, i.e., set
m =m + (dk × a).

//m is the large integer of the extracted message//
4.3.6. Update the value a of the product of sequentially-created bases and the index k by setting

a = a × bk and k = k + 1.
//Preparing the new values of a and k for the next iteration//

4.3.7. If a ≥ 2b, then end the message extraction process and proceed to Step 5; otherwise, proceed to the
next step.

//The condition a ≥ 2b comes from aforementioned Lemma 1 of multiple-based
number conversion with b being the number of bits in the input message M//

4.3.8. If i ≠ 3, set i = i + 1 and go to Step 4.3 for the next iteration; otherwise, proceed to Step 4.4.
4.4. If r ≠ n, set r = r + 1 and go to Step 4 for the next iteration; otherwise, proceed to Step 5.
Stage III: Ending with handling of the case of an output message with leading zeros
Step 5. Convert the large integer m into a binary number in the form of a bit string G with b′ bits.

//All extracted digit values form the multiple-based number
dk−1(bk−1)dk−2(bk−2) . . . d1(b1)d0(b0) with the final value m//

Step 6. If b′ < b, then set b′′ = b − b′ and pad b′′ zeros at the beginning of G.
//Dealing with the case that the secret message is a bit string with leading zeros//

Step 7. End the message extraction process with the resulting bit string G as the desired b-bit secret
message M.

(b) An Example of Applying Algorithm 2 for Message Extraction
An example of applying Algorithm 2 for message extraction from a stego-image that is yielded by

Algorithm 1 as illustrated in Fig. 9 is shown in Fig. 10 with the computations of the intermediate results being
described in the following. The process begins with conceptually recovering the cover image Ic from the
stego-image S using the original NMI technique, as carried out by Step 1.1 of Algorithm 2. Both S and Ic are
divided into two 3 × 3 blocks for data extraction by Steps 1.2 and 1.4. Also, m is set to be 0 in Step 2 and a is
set to be 1 in Step 3. More details of the message extraction process are described in the following.



556 Comput Model Eng Sci. 2025;144(1)

Figure 10: Illustration of an example of applying Algorithm 2 to extract a binary message string from a two-block
stego-image. (a) The extraction process for the first block. (b) The extraction process for the second block

(i) Extraction of the Message Bits from the First Block
Initially, the base values are recovered from the non-pivot pixel values in the first block of the

conceptually-recovered cover image Ic by Steps 4.1, 4.2 and 4.3.1–4.3.3, as illustrated at the right of Fig. 10a.
Specifically, with the non-pivot pixel values p′1(0, 1), p′1(1, 0), and p′1(1, 1) being 208, 165, and 178, respectively
and the reference pixel value R1 = p′1(0, 0) being 162, the absolute differences between R1 and the non-pivot
pixels’ values are calculated to be δ1,1 = ∣162 − 208∣ = 46, δ1,2 = ∣162 − 165∣ = 3, and δ1,3 = ∣162 − 178∣ = 16. Since
all these three differences are greater than or equal to 2, they are appropriate, as required by Step 4.3.2, to be
used as the base values b0 = 46, b1 = 3, b2 = 16 for extracting the corresponding digits of the multiple-based
number to be found out.

Then, as carried out by the operations of Step 4.3.4, the differences between the stego-image pixel values
p′′1(0, 1), p′′1(1, 0), and p′′1(1, 1) as well as the corresponding cover image pixel values p′1(0, 1), p′1(1, 0),
and p′′1(1, 1) are computed to extract the digits d0, d1, and d2 of the multiple-based number. The detailed
extraction steps are described as follows.

1. By d0 = p′′1 (0, 1) − p′1(0, 1), the first digit d0 in the multiple-based number is computed to be p′′1(0, 1) −
p′1(0, 1) = 221 − 208 = 13.

2. The value of m is updated to be m + (d0 × a) = 0 + (13 × 1) = 13, and the product value a of sequentially-
created bases to be a × b0 = 1 × 46 = 46 which is checked to be smaller than the value 2b = 217 = 131,072,
as done in Steps 4.3.5–4.3.7, meaning that more message bit extraction may be continued.



Comput Model Eng Sci. 2025;144(1) 557

3. By d1 = p′′1(1, 0) − p1
′(1, 0), the second digit d1 is computed to be 166 – 165 = 1.

4. The value of m is updated to be m + (d1 × a) = 13 + (1 × 46) = 59, and that of a to be a × b1 = 46 × 3 = 138
< 217 = 131,072, meaning that more extraction may be continued.

5. By d2 = p′′1(1, 1) − p1
′(1, 1), the third digit d2 is computed to be 178 − 178 = 0.

6. The value of m is updated to be m + (d2 × a) = 59 + (0 × 138) = 59, and that of a to be a × b2 = 138 × 16 =
2,208 = 2,208 < 217 = 131,072, meaning that more extraction may be continued by processing the second
block as shown in Fig. 10.

At the end of the process of extraction from the first block, the extracted digits are d0(b0), d1(b1), and
d2(b2), namely 1346, 13, and 016, with the values of m and a being 59 and 2,208.
(ii) Extraction of the Message Bits from the Second Block

The extraction process is then performed similarly on the second block of the stego-image S as illustrated
in Fig. 10b. Additional base values of the multiple-based number are recovered from non-pivot pixel values
in the second block of the recovered cover image Ic by Steps 4.1, 4.2 and 4.3.1–4.3.3, as shown at the right
of Fig. 10b. Specifically, with the non-pivot pixel values p′2(0, 1), p′2(1, 0), and p′2(1, 1) which are 254, 237,
and 248, respectively, and the reference pixel value R2 = p′2(0, 0) which is 254, the absolute difference values
between the latter values and the former ones are calculated to be δ2,1 = ∣254 − 254∣ = 0, δ2,2 = ∣254 − 237∣ = 17,
and δ2,3 = ∣254 – 248∣ = 6. Only the second and third difference values are greater than or equal to 2, and so
they are used as the fourth and fifth base values b3 = 17 and b4 = 6 for extracting the corresponding digits of
the desired multiple-based number. Accordingly, the difference values between the stego-image pixel values
p′′2(1, 0), and p′′2(1, 1) and the corresponding cover image pixel values p′2(1, 0), and p′2(1, 1) are computed
to extract respectively the digits d3, and d4 of the multiple-based number. The details are described in the
following, as a continuation of those of processing the first block described previously.

7. By d3 = p′′2(1, 0) − p′2(1, 0), the fourth digit d3 is computed to be 243 − 237 = 6.
8. The value of m is updated to be m + (d3 × a) = 59 + (6 × 2,208) = 13,307, and that of a to be a × b3 =

2,208 × 17 = 37,536 < 217 = 131,072, meaning that more extraction may be continued.
9. By d4 = p′′2(1, 1) − p′2(1, 1), the fifth digit d4 is computed to be 249 − 248 = 1.
10. The value of m is updated to be m + (d4 × a) = 13,307 + (1 × 37,536) = 50,843, and that of a to be a × b4

= 37,536 × 6 = 225,216 ≥ 217 = 131,072, indicating that the 17-bit secret message has been fully extracted
and the algorithm is stopped according to Step 4.3.7.

As a result, the digits extracted from the second block are d3(b3) and d4(b4), namely 617 and 16.
Consequently, the entire secret message extracted from the two blocks forms the multiple-based number
16617016131346. The value of m = 50,843 is finally converted to be a bit string G = 11000110100110112 with 16 bits.
After padding one zero bit at the beginning of G by Step 6 of the algorithm, the entire 17-bit binary secret
message 011000110100110112 is obtained.

4 Excremental Results and Discussions
The experimental environment used in this study consisted of an Intel i7-10700 CPU, 16 GB of memory,

and Microsoft Visual Studio 2019, with the implementation conducted using the C# programming language.
For large integer processing, the BigInteger class from the System.Numerics namespace was employed. Six
512 × 512 grayscale images—Baboon, Jet, Peppers, Boat, Tree, and House—were used as input images, as
shown in Fig. 11. A randomly generated binary string was consistently used for secret message embedding in
all the experiments conducted in this study.



558 Comput Model Eng Sci. 2025;144(1)

(a) (b) (c)

(d) (e) (f)

Figure 11: Tested input images. (a) Baboon. (b) Jet. (c) Peppers. (d) Boat. (e) Tree. (f) House

4.1 Comparisons with the Original NMI-, INP-, and NIE-Based Data Hiding Methods and the Methods
Utilizing the Proposed Improvement
At first, by using each of the three original NMI-, INP-, and NIE-based data hiding methods [14,15,24] as

well as their improved versions generated by applying the improvement technique based on multiple-based
number conversion as proposed in this study, each previously-mentioned tested image is embedded with
the maximum possible number of bits coming from the randomly generated binary string. The results are
shown in Table 1, from which it can be seen that the proposed method yields better message embedding rates
than the original NMI-, INP-, and NIE-based data hiding methods. Here, the embedding rate of an image is
defined as

embedding rate = number o f embedded bits
number o f pixel s in the image

. (22)

Table 1: Embedding rates of the original NMI-, INP-, and NIE-based data hiding methods and the methods utilizing
the proposed improvement technique proposed in this study

NMI INP NIE (for U = 4)

Input
image

Original
[14]

Proposed improvement Original
[15]

Proposed improvement Original
[24]

Proposed improvement

Embed.
rate (bpp)

Embed.
rate

(bpp)

Increased
ratio

Embed.
rate

(bpp)

Embed.
rate

(bpp)

Increased
ratio

Embed.
rate

(bpp)

Embed.
rate

(bpp)

Increased
ratio

Baboon 1.5754 1.8004 14.29% 2.3824 2.6810 12.53% 1.8616 2.0266 8.86%
Jet 0.6806 0.778 14.33% 1.3021 1.4874 14.23% 0.9036 1.0017 10.86%

Peppers 0.6826 0.7868 15.28% 1.3849 1.5960 15.24% 0.9741 1.1028 13.20%
Boat 0.9233 1.0625 15.08% 1.6137 1.8433 14.23% 1.2771 1.4302 11.99%
Tree 0.9781 1.1224 14.75% 1.7100 1.9442 13.70% 1.2630 1.4027 11.06%

House 0.9333 1.0708 14.73% 1.5595 1.7682 13.38% 1.2090 1.3388 10.73%
Average 0.9622 1.1035 14.69% 1.6588 1.8867 13.74% 1.2481 1.3838 10.87%

Note: Embed.: abbreviation of embedding.



Comput Model Eng Sci. 2025;144(1) 559

Specifically, for NMI-based data hiding, the proposed improvement technique increases the embedding
rate of the original method by an average of 14.69%. For INP- and NIE-based data hiding, the proposed
improvement technique achieves average increases of 13.74% and 10.87%, respectively. In summary, the
improvement technique proposed in this study yields embedding rates that are, on average, 10% to 14% higher
than those of the three original methods.

Furthermore, two metrics, PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index
measure) [31], were used to evaluate the quality of the resulting stego-images. Here, SSIM is a widely used
metric with values ranging from 0 to 1, where a higher score indicates greater structural similarity between
images. The stego-images created by the proposed improvement technique are inferior in this aspect to
those yielded by the three conventional NMI-, INP-, and NIE-based data hiding methods as can be seen
from Figs. 12 and 13. However, as can be seen from Fig. 14, the stego-images of the Baboon created by the
proposed improvement technique look almost of no visual difference from those yielded by the conventional
methods. This phenomenon can also be seen from the quality of the stego-images of the Jet, as shown
in Fig. 15. That is, the degradations of the stego-images yielded by the proposed improvement technique
are limited.

Figure 12: The PSNR values of images yielded by the three original data hiding methods and the methods utilizing the
proposed improvement technique

Figure 13: The SSIM values of images yielded by the three original data hiding methods and the methods utilizing the
proposed improvement technique



560 Comput Model Eng Sci. 2025;144(1)

(a)

(b) (c) (d) (e) (f) (g)

Figure 14: The stego-images generated by embedding secret messages into the image shown in Fig. 11a of the Baboon
using the original NMI-, INP-, and NIE-based data hiding methods [14,15,24], as well as the methods resulting from
using the improvement technique proposed in this study. (a) Original Image. (b) The images yielded by the original
NMI-based data hiding method. (c) The images yielded by the original INP-based data hiding method. (d) The images
yielded by the original NIE-based data hiding method (for U = 4). (e) The images yielded by the improved NMI-based
data hiding method. (f) The images yielded by the improved INP-based data hiding method. (g) The images yielded by
the improved NIE-based data hiding method (for U = 4)

(a)

(b) (c) (d) (e) (f) (g)

Figure 15: The stego-images generated by embedding secret messages into the image shown in Fig. 11b of the Jet using
the original NMI-, INP-, and NIE-based data hiding methods [14,15,24], as well as the methods resulting from using the
improvement technique proposed in this study. (a) Original Image. (b) The images yielded by the original NMI-based
data hiding method. (c) The images yielded by the original INP-based data hiding method. (d) The images yielded
by the original NIE-based data hiding method (for U = 4). (e) The images yielded by the improved NMI-based data
hiding method. (f) The images yielded by the improved INP-based data hiding method. (g) The images yielded by the
improved NIE-based data hiding method (for U = 4)

4.2 Comparison of the Embedding Rates between the Original NIE-Based Methods and the Methods
Utilizing the Proposed Improvement, under Different U Values

Additionally, the comparisons of the embedding rates yielded by the original NIE-based data hiding
method under different U values with those yielded the method that incorporates the proposed improvement
technique for two selected images, Fig. 11a,b, are shown in Fig. 16. It can be seen from the figure that as U
increases, both the original NIE-based data hiding method and the proposed improvement method yield
increasing embedding rates. However, the proposed improvement method consistently achieves higher rates



Comput Model Eng Sci. 2025;144(1) 561

than the original method. This phenomenon further demonstrates the superiority of the proposed method
in embedding-rate performance.

Figure 16: Comparison of the embedding rates between the original NIE-based methods and the methods resulting
from using the improvement technique proposed in this study for two images, the Baboon in Fig. 11a and the Jet
in Fig. 11b, under different U values

4.3 Security Evaluation by RS Steganalysis
The RS steganalysis method, a dual-statistics approach introduced by Fridrich et al. [32], was utilized to

assess the security of the stego-images generated by the proposed method in this study. Figs. 17a–c and 18a–c
present the RS diagrams created from the stego-images shown in Figs. 14e–g and 15e–g, respectively. These
stego-images were generated by embedding secret messages into the images shown in Fig. 11a (Baboon)
and Fig. 11b (Jet), respectively. The embedding process was performed using the improved NMI-, INP-, and
NIE-based data hiding methods presented previously.

Figure 17: The RS diagrams yielded by RS steganalysis for the images in Fig. 14e–g of the Baboon. (a) Diagram generated
from Fig. 14e yielded by the improved NMI-based data hiding method. (b) Diagram generated from Fig. 14f yielded by
the improved INP-based data hiding method. (c) Diagram generated from Fig. 14g yielded by the improved NIE-based
data hiding method



562 Comput Model Eng Sci. 2025;144(1)

Figure 18: The RS diagrams yielded by RS steganalysis for the images in Fig. 15e–g of the Jet. (a) Diagram generated
from Fig. 15e yielded by the improved NMI-based data hiding method. (b) Diagram generated from Fig. 15f yielded by
the improved INP-based data hiding method. (c) Diagram generated from Fig. 15g yielded by the improved NIE-based
data hiding method

In these RS diagrams, the horizontal x-axis represents the percentage of image pixels containing
embedded secret messages, while the vertical y-axis shows the proportions of regular and singular pixel
groups associated with the masks M = [0 1 1 0] and−M = [0−1−1 0]. Specifically, each pixel group is defined as
G = (x1, x2, x3, x4), where x1 through x4 are four adjacent pixels for analysis. To evaluate the smoothness of G,
a discriminant function is used: f (G) = ∣x1 − x2∣ + ∣x2 − x3∣ + ∣x3 − x4∣, which measures the local variation at G.
The masks M and−M modify respectively the pixel values of G to be G′ = (x1, x2 + 1, x3 + 1, x4) and G′ = (x1, x2
− 1, x3 − 1, x4). Accordingly, the pixel group G is treated as regular (denoted as R) if the smoothness function
value increases after applying the mask, i.e., if f (G′) > f (G); as singular (denoted as S) if the smoothness
function value decreases, i.e., if f (G′) < f (G); and as unusable (denoted as U) if the smoothness function value
remains unchanged, i.e., if f (G′) = f (G). If the RS steganalysis method identifies the existence of hidden data,
the curves RM of the regular pixel groups with mask M and the curves R−M of the regular pixel groups with
mask −M will show noticeable separation, and so will the curves SM of the singular pixel groups with mask
M and the curves S−Mof the singular pixel groups with mask −M. Conversely, if no hidden information is
detected, RM and R−M will be aligned closely, and a similar pattern will be observed from SM and S−M .

Accordingly, the analysis in Figs. 17 and 18 shows that in all tested cases, the curves RM and R−M almost
completely overlap, and so do SM and S−M , meaning that the RS steganalysis method does not detect any
embedded secret messages in the stego-images produced by the proposed improvement method. These
observations prove the security of the proposed method against RS steganalysis, reinforcing its effectiveness
in embedding secret information without raising suspicion.

4.4 Limitation of the Proposed Method
Despite its advantages, the proposed method has several limitations that should be acknowledged.

First, the integration of multiple-based number conversion introduces additional computational complex-
ity to both the embedding and extraction processes when compared to simpler bit-based approaches.
This increased complexity results in greater processing overhead, as converting messages to and from a
multiple-based number system demands more processing time and memory. Such requirements could be
disadvantageous in applications where time efficiency or limited system resources are critical. Moreover, the
method is inherently tailored to interpolation-based data hiding techniques and is not directly applicable to
other widely used methods such as those operating in the transform domain, including DCT or DWT-based
approaches. A third common limitation is that when the absolute difference value δ is small (i.e., when δ <
2) as is often observed in smooth images, the proposed method, like other conventional interpolation-based
methods, does not embed secret data into the involved non-pivot pixel, resulting in less embedding capacity.
However, if alternative techniques (e.g., the LSB substitution method) have been used in some conventional
methods to increase embedding capacity even when δ < 2, then the proposed method can also employ the



Comput Model Eng Sci. 2025;144(1) 563

same techniques under the same circumstances. Lastly, the proposed method may not be appropriate for
serious real-time environments or on resource-constrained platforms such as mobile or embedded systems.

4.5 Discussions
In the NMI-, INP-, and NIE-based data hiding methods [14,15,24] that have been enhanced using this

improvement approach in this study, secret messages are embedded into the non-pivot pixels of the cover
image, and a reference pixel value is defined for use in the message embedding process to compute an absolute
difference value, denoted as δ. Based on the use of δ, most image interpolation-based data hiding techniques,
including the three aforementioned methods, embed ⌊log2δ⌋ bits of the input secret message into each non-
pivot pixel, thereby generating a stego-image containing the hidden message.

In contrast, the enhancement of each of the three aforementioned methods by the proposed improve-
ment method is achieved by embedding ⌊∑n−1

i=0 log2 δi⌋ bits secret messages in the cover image, where n
is the number of the non-pivot pixels used for message-bit embedding and δi is the absolute difference
between the value of a non-pixel pixel and the corresponding reference pixel value, overcoming the shortage
of embedding only ∑n−1

i=0 ⌊log2 δi⌋ bits into the cover image, as observed in many existing methods. That is,
the general improvement method proposed in this study increases the embedding capacity of the n non-pivot
pixels, each with the absolute difference value δi , by the amount of (⌊∑n−1

i=0 log2 δi⌋ −∑n−1
i=0 ⌊log2 δi⌋) bits.

This improvement is realized through multiple-based number conversion of the secret message, rather than
conventional binary conversion typically used in the three aforementioned methods, and the information
embedded into each non-pivot pixel value is a digit of the multiple-based number obtained from conversion
of the input message bits instead of the decimal value of the ⌊log2δ⌋ bits of the input bit-string message.

The proposed method as well as the three interpolation-based data hiding methods examined in detail in
this study do not specify how the message length b is transmitted, because this aspect was usually considered
outside the core focus of the problem. Usually the value b is needed for message extraction, and a common
approach is to convert b into a fixed-length binary string (e.g., 32 bits), and embed it into the image using a
standard embedding method (e.g., the LSB substitution method) before the secret message is embedded.

Furthermore, it is mentioned that the message embedding capacities of image interpolation-based data
hiding methods that embed ⌊log2δ⌋ bits into each non-pivot pixel in the cover image based on the use of the
absolute difference value δ other than the three methods mentioned above (such as those in [21,23,33–35])
may also be enhanced by the proposed improvement method. The emphasis is that the proposed method
can enhance the message embedding capacity of n non-pivot pixels from ∑n−1

i=0 ⌊log2 δi⌋ bits to the higher
amount of ⌊∑n−1

i=0 log2 δi⌋ bits, as proved by Theorem 1 derived in this study.
Finally, about the computational complexity mentioned above, specifically the execute times of message

embedding yielded by the original NMI-, INP-, and NIE-based data hiding methods [14,15,24] as well as
the methods utilizing the proposed improvement technique for two selected images, Fig. 11a,c, are shown
in Fig. 19. In general, the time complexity of the execution time vs. the embedded message size n of the
proposed improvement technique can be analyzed to be O(n2), which arises from the need to perform O(n)
sequential divisions on the large integer value represented by the entire secret message with each division
requiring O(n) computation time. In contrast, a conventional bit-based embedding method requires direct
sequential fetches of the necessary bits from the secret message with the total complexity of O(n).



564 Comput Model Eng Sci. 2025;144(1)

Figure 19: The graphs of execution times of message embedding yielded by the original NMI-, INP-, and NIE-based
[14,15,24] data hiding methods as well as the methods utilizing the proposed improvement technique in this study for
two images, the Baboon in Fig. 11a and the Peppers in Fig. 11c. (a) The execution-time graph of the original data hiding
methods. (b) The execution-time graph of the methods utilizing the proposed improvement technique

5 Conclusions and Future Works

A general approach has been proposed to enhance the message embedding capacity of various image
interpolation-based data hiding methods. Specifically, three well-known data hiding methods—namely, the
NMI-, INP-, and NIE-based methods—have been enhanced using this improvement approach in this study.
In these three methods, secret messages are embedded into non-pivot pixels using a reference pixel to
compute an absolute difference value, denoted as δi . Each non-pivot pixel can then carry ⌊log2 δi⌋ bits,
resulting in a total embedding capacity of∑n−1

i=0 ⌊log2 δi⌋ bits across the cover image, where n is the number
of the non-pivot pixels used for embedding. In contrast, the proposed improvement method enhances the
embedding capacity by allowing ⌊∑n−1

i=0 log2 δi⌋ bits to be embedded in the above-mentioned non-pivot
pixels. This enhancement is achieved through multiple-based number conversion of the message, enabling



Comput Model Eng Sci. 2025;144(1) 565

each digit of the converted value to be embedded into individual pixels, instead of embedding binary
segments of the message with ⌊log2 δi⌋ bits.

Experiments have been conducted to evaluate the effectiveness of the proposed enhancement method.
The resulting embedding rates increased by approximately 14%, 13%, and 10% when compared respectively
with those yielded by the NMI-, INP-, and NIE-based data hiding methods. Furthermore, experimental
results indicate that the stego-image quality yielded by the proposed method does not degrade significantly,
both visually and in terms of PSNR and SSIM metrics. Additionally, RS steganalysis has also been performed
to demonstrate the security of the proposed method. Finally, the proposed improvement method is also
expected to enhance the data embedding capabilities of many other image interpolation-based data hiding
techniques that use power-of-two pixel-value ranges, beyond the three tested in this study. For future works,
it is suggested as potential directions to evaluate the robustness of the proposed method against modern deep
learning-based or frequency-domain attacks, and to apply the multiple-based number conversion technique
to a wider set of methods or image types.

Acknowledgement: The authors would like to thank the Department of Computer and Communication Engineering,
National Kaohsiung University of Science and Technology, Taiwan, for providing the necessary facilities and resources
to conduct this research.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Da-Chun Wu
and Bing-Han Sie; methodology, Da-Chun Wu; software, Bing-Han Sie; validation, Da-Chun Wu and Bing-Han Sie;
formal analysis, Da-Chun Wu; investigation, Da-Chun Wu and Bing-Han Sie; data curation, Bing-Han Sie; writing—
original draft preparation, Da-Chun Wu and Bing-Han Sie; writing—review, editing, and supervision, Da-Chun Wu.
All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that supports the findings of this study are available from the
corresponding author upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Appendix A A Review of the INP-Based Data Hiding Method

The INP-based data hiding method proposed by Lee and Huang [15] extends the NMI-based approach
[14] with the aim of improving message embedding capacity. Just like the NMI-based method, the INP-based
method at first scales down the input image I with dimensions W × H to be an original image Io. of size
(W/2) × (H/2). Then, a cover image Ic of size W × H is scaled up for further use in the data hiding process.

Following a similar approach to the NMI [14] method, the pixel values at the four corners—p′(0, 0),
p′(0, 2), p′(2, 0), and p′(2, 2)—of each 3 × 3 block in the cover image Ic are assigned the corresponding values
from the 2 × 2 block in the original image Io, specifically p(0, 0), p(0, 1), p(1, 0), and p(1, 1), respectively.

p′ (0, 0) = p (0, 0), p′ (0, 2) = p (0, 1),
p′ (2, 0) = p (1, 0), p′ (2, 2) = p (1, 1) .

Subsequently, the values of the newly generated pixels p′(0, 1), p′(1, 0), and p′(1, 1) within each 3× 3 block
of the cover image Ic are determined using an interpolation method distinct from that of the NMI approach,



566 Comput Model Eng Sci. 2025;144(1)

as described below:

p′ (0, 1) = ⌊3/4 × p′ (0, 0) + 1/4 × p′ (0, 2)⌋,
p′ (1, 0) = ⌊3/4 × p′ (0, 0) + 1/4 × p′ (2, 0)⌋,
p′ (1, 1) = ⌊(p′ (0, 1) + p′ (1, 0))/2⌋ .

(A1)

Compared with the equations of Eq. (2) of the interpolation results yielded by the NMI, those in Eq. (A1)
shows that the INP significantly increases the weighting of the value p(0, 0) of the upper-left corner pixel in
the original image block when computing the values of the non-pivot pixels, p′(0, 1), p′(1, 0), and p′(1, 1).

In the INP-based data hiding method, the non-pivot pixels within each 3 × 3 block of the cover image
are utilized to embed the secret message as in the NMI-based method. Unlike the NMI-based method, in the
INP-based method, the corner pixel in each 3 × 3 block with the maximum value among those of the four
corner pixels, p′(0, 0), p′(0, 2), p′(2, 0), and p′(2, 2), in each 3 × 3 block is selected to be the reference pixel P,
meaning that the reference pixel value R of P is set to be

R =max {p′ (0, 0), p′ (0, 2), p′ (2, 0), p′ (2, 2)} . (A2)

Once the reference pixel value R is determined, the subsequent data embedding and extraction
procedures in the INP-based data hiding method follow a process similar to that of the NMI-based approach.
Therefore, detailed explanations are omitted here.

Appendix B A Review of the NIE-Based Data Hiding Method
The NIE-based data hiding method, proposed by Mohammad et al. [24], is one of the more recent

improvements on the NMI-based data hiding method [14], offering enhanced secret message embedding
capacity. Unlike the NMI-based method, the NIE-based method at first scales down the input image I with
dimensions W × H to be an image of size (W/2 + 1) × (H/2 + 1), referred to as the original image Io. Then,
an image Ii of size (W + 1) × (H + 1) is generated from Io using an interpolation technique. All the pixels in
the rightmost column and bottommost row of Ii are discarded to obtain an image Ic called the cover image
with dimensions W × H for further use in the data hiding process.

Just like the NMI [14] and INP [15] techniques, the pixel values p′(0, 0), p′(0, 2), p′(2, 0), and p′(2, 2) of
the four corners of each 3 × 3 block in the cover image Ic are respectively assigned the values p(0, 0), p(0, 1),
p(1, 0), and p(1, 1) of the four corners of the corresponding 2 × 2 block in the original image Io:

p′ (0, 0) = p (0, 0), p′ (0, 2) = p (0, 1),
p′ (2, 0) = p (1, 0), p′ (2, 2) = p (1, 1) .

Next, the newly generated pixels’ values p′(0, 1), p′(1, 0), and p′(1, 1) in each 3 × 3 block of the cover
image Ic are computed according to an interpolation technique different from the NMI and INP as follows:

p′ (0, 1) = ⌊(p′ (0, 0) + p′ (0, 2))/3 + (p′ (2, 0) + p′ (2, 2))/6⌋,
p′ (1, 1) = ⌊(p′ (0, 0) + p′ (0, 2) + p′ (2, 0) + p′ (2, 2))/4⌋,

p′ (1, 0) = ⌊(p′ (0, 0) + p′ (2, 0))/3 + (p′ (0, 2) + p′ (2, 2))/6⌋ .
(A3)

Compared with Eq. (2) of the NMI technique and those in Eq. (A1) of the INP technique, Eq. (A3) shows
that weights are assigned by the NIE technique to the pixel values of all the four corners in each 3 × 3 block
when calculating the three newly generated pixels’ values p′(0, 1), p′(1, 0), and p′(1, 1).



Comput Model Eng Sci. 2025;144(1) 567

When embedding a secret message, the number of bits embeddable in each of p′(0,1), p′(1, 0), and p′(1,1)
is calculated separately by two steps. first, to prevent overflows to occur while embedding the message bits,
the following three difference values δi with i = 1, 2, 3 are calculated:

δ1 =min{∣p′ (0, 0) − p′ (0, 1) ∣, (255 − p′ (0, 1)} ,
δ2 =min{∣p′ (0, 0) − p′ (1, 0) ∣, (255 − p′ (1, 0)} ,
δ3 =min{∣p′ (0, 0) − p′ (1, 1) ∣, (255 − p′ (1, 1)} .

(A4)

where min(.) denotes the function of selecting the minimum value. It is worth mentioning that over-
flows do not occur and need not be prevented in the NMI- and INP-based data hiding methods during
message embedding.

Also, the number ni with i = 1, 2, 3 of bits embeddable in the newly generated pixels’ values p′(0, 1), p′(1,
0), and p′(1, 1), respectively, are computed as

ni = min {⌊log2 δi⌋, U} , (A5)

where U is a preset maximum number of bits for message embedding, constrained by 1 ≤ U ≤ 8, to limit
the embedding amount and maintain image quality. The subsequent data embedding steps and the data
extraction process of the NIE-based data hiding method are similar to the typical image interpolation-based
data hiding methods and will not be elaborated further here.

Note that the scheme described above for calculating the number n of message bits that can be embedded
in each newly generated pixel with value p′ is equivalent to the following steps: first, select a pixel-value
difference δ, defined as the smallest of the three values ∣R − p′∣, 255 − p′, and 2U , where R is the reference pixel
value p′(0, 0), and U is constrained by 1 ≤ U ≤ 8; then, set the desired number n as n = ⌊log2δ⌋.

Appendix C Improving the INP-Based Data Hiding Method by Multiple-Based Number Conversion

In this section, the enhancement of the INP-based data hiding method through multiple-based number
conversion is proposed, and the detailed descriptions of the message embedding and extraction processes of
the improved INP method are subsequently introduced.

Appendix C.1 Message Embedding

The message embedding process of the improved INP-based data hiding method begins with generating
a cover image using the INP scheme. Next, the secret message to be embedded is converted into a large
integer. Then, for each 3 × 3 block of the cover image, the corner pixel with the maximum value among those
of the four corners of the block (referred to as the pivot pixels) is found out for use as a reference pixel, and
the absolute difference values between the value of the reference pixel and those of the newly generated non-
pivot pixels in the block are taken as bases. Subsequently, successive integer divisions of the large integer by
the bases are conducted, with the remainders being used as the digits of a multiple-based number. Finally,
these digit values are embedded into the newly generated non-pivot pixels associated with the corresponding
base values.

The embedding algorithm of the improved INP-based data hiding method is presented below, which is
a simplified version of the embedding algorithm of the improved NMI-based data hiding method described
previously by Algorithm 1, followed by a step-by-step presentation of an application example of the algorithm.



568 Comput Model Eng Sci. 2025;144(1)

(a) Message Embedding Algorithm (Algorithm A1)

Algorithm A1: The message embedding process of the improved INP-based data hiding method enhanced
by the use of the multiple-based number conversion technique
Input: An input image I with dimensions W × H and a secret message M of b bits.
Output: Stego-image S.
Steps:
All the same as those in Algorithm 1 except the following two steps.
Step 1.2. Generate a cover image Ic of size W × H from Io using the original INP technique.
Step 4.2. Let Rr denote the reference pixel value for the pixel values in the r-th block Br, and set

Rr =max{p′r(0, 0), p′r(0, 2), p′r(2, 0), p′r(2, 2)}.

(b) An Example of Applying Algorithm A1 for Message Embedding
An example of applying Algorithm A1 for embedding a given message into a cover image Ic obtained in

Stage I of the algorithm, is illustrated in Fig. A1, with the corresponding intermediate results also displayed.
The image Ic is divided into two overlapping 3 × 3 blocks for data embedding in Step 1.3 of the algorithm.
Assume the message to be embedded is a binary string M = 10001010010011001010012 of the length b = 22.
This bit string is first converted into a large integer m = 226589710 as done by Step 2 of the algorithm. Also,
a is set to be 1 in Step 3.

Figure A1: (Continued)



Comput Model Eng Sci. 2025;144(1) 569

Figure A1: Illustration of an example of applying Algorithm A1 to embed a binary message string into a two-block
cover image. (a) The embedding process for the first block. (b) The embedding process for the second block

(i) Embedding Message Bits into the First Block
In the beginning, the base values are computed from the pixel values of the cover image Ic as shown on

the left side of Fig. A1a. Specifically, with the non-pivot pixel values p′1(0, 1), p′1(1, 0), and p′1(1, 1) which are
154, 158, and 156, respectively, and the reference pixel value R1 =max{152, 161, 176, 171} = 176, between R1 and
the values of the non-pivot pixels are calculated to be δ1,1 = ∣176 − 154∣ = 22, δ1,2 = ∣176 − 158∣ = 18, and δ1,3 =
∣176− 156∣ = 20, all of which are larger than 2, they are appropriate, as required by Step 4.3.2, to be used as base
values b0 = 22, b1 = 18, and b2 = 20 for embedding the corresponding digits of the multiple-based number.

Next, as described in Steps 4.3.4 and 4.3.6, the large integer m (used to generate digits to be embedded)
is divided sequentially by the corresponding base values b0, b1, and b2 using successive integer divisions.
The serial remainders obtained from these divisions are used as the digit values d0, d1, and d2 of the
desired multiple-based number. Finally, these digit values are embedded into p′1(0, 1), p′1(1, 0), and p′1(1, 1),
respectively, as described by Step 4.3.5. More details of this message embedding process is presented in the
following.

1. According to d0 = m mod b0, the first digit d0 in the multiple-based number is calculated as 2,265,897
mod 22 = 7 which is embedded into p′1(0, 1) by adding d0 to p′1(0, 1) to obtain the new pixel value p′′1(0,
1) = 154 + 7 = 161.

2. The value of m is updated to be m div b0 = 2,265,897 div 22 = 102,995, the product value a of the
sequentially-created bases is updated to be a × b0 = 1 × 22 = 22, and the result 22 is checked to be smaller
than 2b = 222 = 4,1943,04, as done in Steps 4.3.6–4.3.8, meaning that more message bit embedding may
be continued.

3. According to d1 = m mod b1, the second digit d1 = 102,995 mod 18 = 17, and embedded into p′1(1, 0) by
adding d1 to p′1(1, 0), yielding the new pixel value p′′1(1, 0) = 158 + 17 = 175.

4. The value of m is updated to be m div b1 = 102,995 div 18 = 5,721, and that of a to be a × b1 = 22 × 18 = 396
with 396 < 222 = 4,194,304 being checked, meaning that more message-bit embedding may be continued.

5. According to d2 = m mod b2, the third digit d2 = 5,721 mod 20 = 1 which is then embedded into p′1(1, 1)
by adding d2 to p′1(1, 1) to obtain the new pixel value p′′1(1, 1) = 156 + 1 = 157.



570 Comput Model Eng Sci. 2025;144(1)

6. The value of m is updated to be m div b2 = 5,721 div 20 = 286, and that of a to be a × b2 = 396 × 20 = 7,920
< 222 = 4,194,304, meaning that more embedding may be continued by processing the second block as
shown in Fig. A1b.

At the end of embedding in the first block, the embedded digits are d0(b0), d1(b1), and d2(b2), namely 722,
1718, and 120, respectively, with the values of m and a being 28610 and 7,920.

(ii) Embedding Message Bits in the Second Block

The embedding process is then performed similarly on the second block of the cover image Ic as
illustrated in Fig. A1b. The non-pivot pixel values used for embedding in this block are p′2(0, 1), p′2(1, 0), and
p′2(1, 1), which are 161, 163, and 162, respectively, while the reference pixel value R2 =max{161, 162, 171, 168}
= 171. The absolute differences are calculated to be δ2,1 = ∣171 − 161∣ = 10, δ2,2 = ∣171 − 163∣ = 8, and δ2,3 = ∣171 −
162∣ = 9, all of which are larger than 2, they are appropriate, as required by Step 4.3.2, to be used as base values
b3 = 10, b4 = 8, and b5 = 9. Three digits d3, d4, and d5 obtained as the remainders resulting from dividing m
by b3, b4, and b4 successively are then embedded into p′2(0, 1), p′2(1, 0), and p′2(1, 1), respectively. The details
are described in the following, as a continuation of those of processing the first block.

7. According to d3 =m mod b3, the fourth digit d3 is computed to be 286 mod 10 = 6, which is embedded
into p′2(0, 1) by adding d3 to p′2(0, 1) to obtain the new pixel value p′′2(0, 1) = 161 + 6 = 167.

8. The value of m is updated to be m div b3 = 286 div 10 = 28, and that of a to be a × b3 = 7,920 × 10 =
79,200 < 222 = 4,194,304, meaning that more message bit embedding may be continued.

9. According to d4 =m mod b4, the fifth digit d4 is computed to be 28 mod 8 = 4, which is embedded into
p′2(1, 0) by adding d4 to p′2(1, 0) to obtain the new pixel value p′′2(1, 0) = 163 + 4 = 167.

10. The value of m is updated to be m div b4 = 28 div 8 = 3, and that of a to be a × b4 = 79,200 × 8 = 633,600
< 222 = 4,194,304, meaning that more message bit embedding may be continued.

11. According to d5 =m mod b5, the sixth digit d5 is computed to be 3 mod 9 = 3, which is then embedded
into p′2(1, 1) by adding d5 to p′2(1, 1) to obtain the new pixel value p′′2(1, 1) = 162 + 3 = 165.

12. The value of m is updated to be m div b5 = 3 div 9 = 0, and that of a to be a× b5 = 633,600× 9 = 5,702,400
≥ 222 = 4,194,304, indicating that the 22-bit secret message has been fully embedded and the algorithm
is stopped according to Step 4.3.8.

As a result, the digits embedded in the second block are d3(b3), d4(b4), and d5(b5), namely 610, 48, and 39.
Consequently, the entire secret message embedded into the two blocks forms the multiple-based number
39486101201718722.

Appendix C.2 Message Extraction

The extraction algorithm of the improved INP-based data hiding method is presented below, which
is a simplified version of the extraction algorithm of the improved NMI-based data hiding method
(Algorithm 2).



Comput Model Eng Sci. 2025;144(1) 571

(a) Message Extraction Algorithm (Algorithm A2)

Algorithm A2: The message extraction process of the improved INP-based data hiding method enhanced
by use of the multiple-based number conversion technique
Input: A stego-image S with dimensions W × H, and the bit length b of the secret message M embedded
in S.
Output: A b-bit secret message M.
Steps:
All the same as those in Algorithm 2 except the following two steps.
Step 1.1 Recover conceptually the cover image Ic of size W × H from S using the INP technique.
Step 4.2. Let Rr denote the reference pixel value for the pixel values in the r-th block Br, and set

Rr =max{p′r(0, 0), p′r(0, 2), p′r(2, 0), p′r(2, 2)}.

(b) An Example of Applying Algorithm A2 for Message Extraction
An example of applying Algorithm A2 for message extraction from a stego-image S obtained as

illustrated in Fig. A1 is shown in Fig. A2 with computations of the computed intermediate results also shown
in the figure. The process begins with conceptually recovering the cover image Ic from the stego-image S by
applying the INP technique, followed by dividing both S and Ic into two overlapping 3 × 3 blocks for data
extraction by Steps 1.2 and 1.4. Also, m is set to be 0 in Step 2 and a is set to be 1 in Step 3. More details of the
message extraction process are described in the following.

Figure A2: Illustration of an example of applying Algorithm A2 to extract a binary message string from a two-block
stego-image. (a) The extraction process for the first block. (b) The extraction process for the second block



572 Comput Model Eng Sci. 2025;144(1)

(i) Extraction Message Bits from the First Block
The base values are first recovered from the non-pivot pixel values in the first block of the conceptually-

recovered cover image Ic through Steps 4.1, 4.2, and 4.3.1–4.3.3, as illustrated on the right side of Fig. A2a.
Specifically, with the non-pivot pixel values p′1(0, 1), p′1(1, 0), and p′1(1, 1) being 154, 158, and 156, respectively
and the reference pixel value R1 =max{152, 161, 176, 171} being 176, the absolute differences between R1 and
the non-pivot pixels’ values are calculated to be δ1,1 = ∣176 − 154∣ = 22, δ1,2 = ∣176 − 158∣ = 18, and δ1,3 = ∣176
− 156∣ = 20. Since all these three differences are greater than or equal to 2, they are appropriate, as required
by Step 4.3.2, to be used as the base values b0 = 22, b1 = 18, b2 = 20 for extracting the corresponding digits of
the multiple-based number to be found out.

Subsequently, as performed by the operations of Step 4.3.4, the differences between the stego-image
pixel values p′′1(0, 1), p′′1(1, 0), and p′′1(1, 1) and the corresponding cover image pixel values p′1(0, 1), p′1(1,
0), and p′′1(1, 1) are computed to extract the digits d0, d1, and d2 of the multiple-based number. The detailed
extraction steps are described as follows.

1. According to d0 = p′′1 (0, 1) − p′1(0, 1), the first digit d0 in the multiple-based number is computed to be
p′′1(0, 1) − p′1(0, 1) = 161 − 154 = 7.

2. The value of m is updated to be m + (d0 × a) = 0 + (7 × 1) = 7, and the product value a of sequentially-
created bases to be a × b0 = 1 × 22 = 22 which is checked to be smaller than the value 2b = 222 = 4,194,304,
as done in Steps 4.3.5–4.3.7, meaning that more message bit extraction may be continued.

3. According to d1 = p′′1(1, 0) − p1
′(1, 0), the second digit d1 is computed to be 175 − 158 = 17.

4. The value of m is updated to be m + (d1 × a) = 7 + (17 × 22) = 381, and that of a to be a × b1 = 22 × 18 =
396 < 222 = 4,194,304, meaning that more extraction may be continued.

5. According to d2 = p′′1(1, 1) − p1
′(1, 1), the third digit d2 is computed to be 157 − 156 = 1.

6. The value of m is updated to be m + (d2 × a) = 381 + (1 × 396) = 777 and that of a to be a × b2 = 396 ×
20 = 7,920 < 222 = 4,194,304, meaning that more extraction may be continued by processing the second
block as shown in Fig. A2b.

At the end of the process of extraction from the first block, the extracted digits are d0(b0), d1(b1), and
d2(b2), namely 722, 1718, and 120, with the values of m and a being 777 and 7,920.

(ii) Extraction of the Message Bits from the Second Block
The extraction process is then applied in a similar manner to the second block of the stego-image S as

illustrated in Fig. A2b. Additional base values of the multiple-based number are recovered from non-pivot
pixel values in the second block of the recovered cover image Ic by Steps 4.1, 4.2, and 4.3.1–4.3.3, as shown at
the right of Fig. A2b. Specifically, with the non-pivot pixel values p′2(0, 1), p′2(1, 0), and p′2(1, 1) which are 161,
163, and 162, respectively, and the reference pixel value R2 =max{161, 162, 171, 168} which is 171, the absolute
difference values between the latter values and the former ones are calculated to be δ2,1 = ∣171 − 161∣ = 10, δ2,2
= ∣171 − 163∣ = 8, and δ2,3 = ∣171 − 162∣ = 9. Since all of which are larger than 2, they are appropriate, as required
by Step 4.3.2, to be used as base values b3 = 10, b4 = 8, and b5 = 9 for extracting the corresponding digits of
the desired multiple-based number. Accordingly, the difference values between the stego-image pixel values
p′′2(0, 1), p′′2(1, 0), and p′′2(1, 1) and the corresponding cover image pixel values p′2(0, 1), p′2(1, 0), and p′2(1,
1) are computed to extract respectively the digits d3, d4, and d5 of the multiple-based number. The details are
described in the following, as a continuation of those of processing the first block described previously.

7. According to d3 = p′′2(0, 1) − p′2(0, 1), the fourth digit d3 is computed to be 167 − 161 = 6.
8. The value of m is updated to be m + (d3 × a) = 777 + (6 × 7,920) = 48,297, and that of a to be a × b3 =

7,920 × 10 = 79,200 < 222 = 4,194,304, meaning that more extraction may be continued.
9. According to d4 = p′′2(1, 0) − p′2(1, 0), the fifth digit d4 is computed to be 167−163 = 4.



Comput Model Eng Sci. 2025;144(1) 573

10. The value of m is updated to be m + (d4 × a) = 48,297 + (4 × 79,200) = 365,097, and that of a to be a ×
b4 = 79,200 × 8 = 633,600 < 222 = 4,194,304, meaning that more extraction may be continued.

11. According to d5 = p′′2(1, 1) − p′2(1, 1), the sixth digit d5 is computed to be 165 − 162 = 3.
12. The value of m is updated to be m + (d5 × a) = 365,097 + (3 × 633,600) = 2,265,897, and that of a to be

a × b5 = 633,600 × 9 = 5,702,400 ≥ 222 = 4,194,304, indicating that the 22-bit secret message has been
fully extracted and the algorithm is stopped according to Step 4.3.7.

As a result, the digits extracted from the second block are d3(b3), d4(b4), and d5(b5), namely 610,
48, and 39. Consequently, the entire secret message extracted from the two blocks forms the multiple-
based number 39486101201718722. Finally, the value of m = 2,265,897 is converted to be a bit string M =
10001010010011001010012 of the length b = 22 as the extracted message.
Appendix D Improving the NIE-Based Data Hiding Method by Multiple-Based Number Conversion

In this section, the proposed enhancement of the NIE-based data hiding method using multiple-based
number conversion is presented, followed by the detailed descriptions of the embedding and extraction
processes of the improved method.

Appendix D.1 Message Embedding
The message embedding process of the improved NIE-based data hiding method starts by generating

a cover image through the interpolation scheme used in the original NIE-based data hiding method. Next,
the secret message to be embedded is converted into a large integer m for subsequent processing. Also, for
each 3 × 3 block Br of the cover image, the upper-left corner of Br is taken to be a reference pixel and serves
as the basis for subsequent calculations, whose value is denoted as Rr. Then, three difference values di1, di2,
and di3 (with i = 1, 2, 3) are set to be di1 = ∣Rr − p′r,i∣, di2 = 255 − p′r,i, di3 = 2U for each of the three pivot
pixels with values denoted by p′r,i, where U is a preset value constrained by 1 ≤ U ≤ 8. The smallest of the
three difference values, min(di1, di2, di3), is calculated as the final difference value δr,i. If δr,i ≥ 2, it is taken
as a base. Subsequently, successive integer divisions of the large integer m by the found bases are conducted
with the remainders taken as the digits of a multiple-based number. Finally, these digit values are embedded
into the newly generated non-pivot pixels associated with the corresponding base values, thus completing
the embedding process.

The message embedding algorithm of the improved NIE-based data hiding method is presented below,
which is a simplified version of the embedding algorithm of the improved NMI-based data hiding method
described by Algorithm 1, followed by a step-by-step presentation of an application example of the algorithm.
(a) Message Embedding Algorithm (Algorithm A3)

Algorithm A3: The message embedding process of the improved NIE-based data hiding method enhanced
by the use of the multiple-based number conversion technique
Input: An input image I with dimensions W × H and a secret message M of b bits, and a preset value
U used as a preset maximum number of bits for message embedding, with U constrained by 1 ≤ U ≤ 8.
Output: Stego-image S.
Steps:
All the same as those in Algorithm 1 except the following three steps.
Step 1.1 Resize the input image I to form an intermediate image of size (W/2 + 1) × (H/2 + 1), referred to

as the original image and denoted as Io.
Step 1.2 Enlarge the original image Io to be of the size (W + 1) × (H + 1) using the original NIE

interpolation technique, and discard all the pixels in the rightmost column and bottommost row of
the resulting image to obtain a cover image Ic with the size of W × H.

(Continued)



574 Comput Model Eng Sci. 2025;144(1)

Algorithm A3 (continued)
Step 4.3.1. Let δr,i denote the difference value attributed to the pixel value p′r,i in Br, and compute

δr,i as δr,i =min{∣Rr − p′r,i∣, 255 − p′r,i i, 2U}.

(b) An Example of Applying Algorithm A3 for Message Embedding
An illustration of Algorithm A3 (for U = 4) being applied to embed a given message into a cover image

Ic obtained in Stage I of the algorithm is illustrated in Fig. A3 with computed intermediate results also shown
in the figure. The image Ic is divided into two overlapping 3 × 3 blocks for data embedding. Assume that the
message to be embedded is a binary string M = 1111010100001100001112 of the length b = 21. This bit string is
firstly converted into a large integer m = 200743110 as done by Step 2 of the algorithm. Also, a is set to be 1 in
Step 3.

Figure A3: Illustration of an example of applying Algorithm A3 to embed a binary message string into a two-block
cover image. (a) The embedding process for the first block. (b) The embedding process for the second block



Comput Model Eng Sci. 2025;144(1) 575

(i) Embedding Message Bits into the First Block
At the start, the base values are computed from the pixel values of the cover image Ic as shown at the

left of Fig. A3a. Specifically, with the non-pivot pixel values p′1(0, 1), p′1(1, 0), and p′1(1, 1) which are 197, 196,
and 200, respectively and the reference pixel value R1 = p′1(0, 0) = 182. The difference values attributed to the
pixel values p′1,1, p′1,2, and p′1,3 are calculated to be δ1,1 =min{∣182 − 197∣, 255 − 197, 16} = 15, δ1,2 =min{∣182
− 196∣, 255 − 196, 16} = 14, and δ1,3 =min{∣182 − 200∣, 255 − 200, 16} = 16, respectively, all of which are larger
than 2, they are appropriate, as required by Step 4.3.2, to be used as base values b0 = 15, b1 = 14, and b2 = 16
for embedding the corresponding digits of the multiple-based number.

Following this, the large integer m, used to generate digits for embedding, is sequentially divided by the
corresponding base values b0, b1, and b2 using the successive integer divisions described in Steps 4.3.4 and
4.3.6.

The serial remainders obtained from these divisions are used as the digit values d0, d1, and d2 of the
desired multiple-based number. Finally, these digit values are embedded into p′1(0, 1), p′1(1, 0), and p′1(1, 1),
respectively, as described by Step 4.3.5. More details of this message embedding process is presented in the
following.

1. By d0 = m mod b0, the first digit d0 in the multiple-based number is computed to be 2,007,431 mod 15 =
11 which is embedded into p′1(0, 1) by adding d0 to p′1(0, 1) to obtain the new pixel value p′′1(0, 1) = 197
+ 11 = 208.

2. The value of m is updated to be m div b0 = 2,007,431 div 15 = 133,828, the product value a of the
sequentially-created bases is updated to be a × b0 = 1 × 15 = 15, and the result 15 is checked to be smaller
than 2b = 221 = 2,097,152, as done in Steps 4.3.6–4.3.8, meaning that more message bit embedding may
be continued.

3. By d1 =m mod b1, the second digit d1 is computed to be 133,828 mod 14 = 2 which is embedded into p′1(1,
0) by adding d1 to p′1(1, 0) to obtain the new pixel value p′′1(1, 0) = 196 + 2 = 198.

4. The value of m is updated to be m div b1 = 133,828 div 14 = 9,559, and that of a to be a × b1 = 15 × 14 = 210
with 210 < 221 = 2,097,152 being checked, meaning that more message-bit embedding may be continued.

5. By d2 = m mod b2, the third digit d2 is computed to be 9,559 mod 16 = 7 which is then embedded into
p′1(1, 1) by adding d2 to p′1(1, 1) to obtain the new pixel value p′′1(1, 1) = 200 + 7 = 207.

6. The value of m is updated to be m div b2 = 9,559 div 16 = 597, and that of a to be a × b2 = 210 × 16 = 3,360
< 221 = 2,097,152, meaning that more embedding may be continued by processing the second block as
shown in Fig. A3b.

At the end of embedding in the first block, the embedded digits are d0(b0), d1(b1), and d2(b2), namely 1115,
214, and 716, respectively, with the values of m and a being 59710 and 3,360.
(ii) Embedding Message Bits in the Second Block

The embedding process is then applied in the same manner to the second block of the cover image Ic
as illustrated in Fig. A3b. The non-pivot pixel values used for embedding in this block are p′2(0, 1), p′2(1, 0),
and p′2(1, 1), which are 209, 213, and 213, respectively, while the reference pixel value R2 = p′2(0, 0) = 202. The
difference values attributed to the pixel values p′2,1, p′2,2, and p′2,3 are calculated to be δ2,1 =min{∣202 − 209∣,
255 − 209, 16} = 7, δ2,2 = min{∣202 − 213∣, 255 − 213, 16} = 11, and δ2,3 = min{∣202 − 213∣, 255 − 213, 16} =
11, respectively, all of which are larger than 2, they are appropriate, as required by Step 4.3.2, to be used as
base values b3 = 7, b4 = 11, and b5 = 11. Three digits d3, d4, and d5 obtained as the remainders resulting from
dividing m by b3, b4, and b4 successively are then embedded into p′2(0, 1), p′2(1, 0), and p′2(1, 1), respectively.
The details are described in the following, as a continuation of those of processing the first block.



576 Comput Model Eng Sci. 2025;144(1)

7. By d3 =m mod b3, the fourth digit d3 is computed to be 597 mod 7 = 2, which is embedded into p′2(0,
1) by adding d3 to p′2(0, 1) to obtain the new pixel value p′′2(0, 1) = 209 + 2 = 211.

8. The value of m is updated to be m div b3 = 597 div 7 = 85, and that of a to be a × b3 = 3,360 × 7 = 23,520
< 221 = 2,097,152, meaning that more message bit embedding may be continued.

9. By d4 = m mod b4, the fifth digit d4 is computed to be 85 mod 11 = 8, which is embedded into p′2(1, 0)
by adding d4 to p′2(1, 0) to obtain the new pixel value p′′2(1, 0) = 213 + 8 = 221.

10. The value of m is updated to be m div b4 = 85 div 11 = 7, and that of a to be a × b4 = 23,520 × 11 = 258,720
< 221 = 2,097,152, meaning that more message bit embedding may be continued.

11. By d5 =m mod b5, the sixth digit d5 is computed to be 7 mod 11 = 7, which is then embedded into p′2(1,
1) by adding d5 to p′2(1, 1) to obtain the new pixel value p′′2(1, 1) = 213 + 7 = 220.

12. The value of m is updated to be m div b5 = 7 div 11 = 0, and that of a to be a × b5 = 258,720 × 11 =
2,845,920 ≥ 221 = 2,097,152, indicating that the 21-bit secret message has been fully embedded and the
algorithm is stopped according to Step 4.3.8.

As a result, the digits embedded in the second block are d3(b3), d4(b4), and d5(b5), namely 27, 811, and 711.
Consequently, the entire secret message embedded into the two blocks forms the multiple-based number
711811277162141115.

Appendix D.2 Message Extraction
The message extraction algorithm of the improved NIE-based data hiding method is presented below,

which is a simplified version of the extraction algorithm of the improved NMI-based data hiding method
(Algorithm 2).
(a) Message Extraction Algorithm (Algorithm A4)

Algorithm A4: The message extraction process of the improved NIE-based data hiding method enhanced
by use of the multiple-based number conversion technique
Input: A stego-image S with size W × H, the bit length b of the secret message M embedded in S, and a
preset value U used as a preset maximum number of bits for message embedding, constrained by 1
≤ U ≤ 8.
Output: A b-bit secret message M.
Steps:
All the same as those in Algorithm 2 except the following two steps.
Step 1.1 Recover conceptually the cover image Ic of size W × H from S using the NIE technique.
Step 4.3.1. Let δr,i denote the difference attributed to the pixel value p′r,i in Br, and compute δr,i as

δr,i =min{∣Rr − p′r,i∣, 255 − p′r,i, 2U}.

(b) An Example of Applying Algorithm A4 for Message extraction
An example of applying Algorithm A4 (for U = 4) for message extraction from a stego-image S is yielded

by Algorithm A3 as illustrated in Fig. A3 is shown in Fig. A4, where the stego-image S is obtained by applying
Algorithm A4 as illustrated in Fig. A4 with the computations of the intermediate results being described in
the following. The process begins by conceptually recovering the cover image Ic from the stego-image S using
the NIE technique, as carried out by Step 1.1 of Algorithm A4. Both S and Ic are divided into two 3 × 3 blocks
for data extraction by Steps 1.2 and 1.4. Also, m is set to be 0 in Step 2 and a is set to be 1 in Step 3. More
details of the message extraction process are described in the following.



Comput Model Eng Sci. 2025;144(1) 577

Figure A4: Illustration of an example of applying Algorithm A4 to extract a binary message string from a two-block
stego-image. (a) The extraction process for the first block. (b) The extraction process for the second block

(i) Extraction Message Bits from the First Block
The base values are initially recovered from the non-pivot pixel values in the first block of the

conceptually-recovered cover image Ic by Steps 4.1, 4.2, and 4.3.1–4.3.3, as illustrated at the right of Fig. A4a.
Specifically, with the non-pivot pixel values p′1(0, 1), p′1(1, 0), and p′1(1, 1) being 197, 196, and 200, respectively
and the reference pixel value R1 = p′1(0, 0) = 182 being 176. The difference values attributed to the pixel values
p′1,1, p′1,2, and p′1,3 are calculated to be δ1,1 =min{∣182 − 197∣, 255 − 197, 16} = 15, δ1,2 =min{∣182 − 196∣, 255
− 196, 16} = 14, and δ1,3 =min{∣182 − 200∣, 255 − 200, 16} = 16, respectively. Since all these three differences
are greater than or equal to 2, they are appropriate, as required by Step 4.3.2, to be used as the base values b0

= 15, b1 = 14, b2 = 16 for extracting the corresponding digits of the multiple-based number to be found out.
As performed by the operations in Step 4.3.4, the differences between the stego-image pixel values p′′1(0,

1), p′′1(1, 0), and p′′1(1, 1) as well as the corresponding cover image pixel values p′1(0, 1), p′1(1, 0), and p′′1(1, 1)
are computed to extract the digits d0, d1, and d2 of the multiple-based number. The detailed extraction steps
are described as follows.

1. By d0 = p′′1 (0, 1) − p′1(0, 1), the first digit d0 in the multiple-based number is computed to be p′′1(0, 1) −
p′1(0, 1) = 208−197 = 11.



578 Comput Model Eng Sci. 2025;144(1)

2. The value of m is updated to be m + (d0 × a) = 0 + (11 × 1) = 11, and the product value a of sequentially-
created bases to be a × b0 = 1 × 15 = 15 which is checked to be smaller than the value 2b = 221 = 2,097,152,
as done in Steps 4.3.5–4.3.7, meaning that more message bit extraction may be continued.

3. By d1 = p′′1(1, 0) − p1
′(1, 0), the second digit d1 is computed to be 198−196 = 2.

4. The value of m is updated to be m + (d1 × a) = 11 + (2 × 15) = 41, and that of a to be a × b1 = 15 × 14 = 210
< 221 = 2,097,152, meaning that more extraction may be continued.

5. By d2 = p′′1(1, 1) − p1
′(1, 1), the third digit d2 is computed to be 207−200 = 7.

6. The value of m is updated to be m + (d2 × a) = 41 + (7 × 210) = 1,511 and that of a to be a × b2 = 210 × 16 =
3,360 < 221 = 2,097,152, meaning that more extraction may be continued by processing the second block
as shown in Fig. A4b.

At the end of the process of extraction from the first block, the extracted digits are d0(b0), d1(b1), and
d2(b2), namely 1115, 214, and 716, with the value of m and a being 1,511 and 3,360.
(ii) Extraction of the Message Bits from the Second Block

The extraction process is then performed similarly on the second block of the stego-image S as illustrated
in Fig. A4b. Additional base values of the multiple-based number are recovered from non-pivot pixel values
in the second block of the recovered cover image Ic by Steps 4.1, 4.2, and 4.3.1–4.3.3, as shown at the right
of Fig. A4b. Specifically, with the non-pivot pixel values p′2(0, 1), p′2(1, 0), and p′2(1, 1) which are 209, 213,
and 213, respectively, and the reference pixel value R2 = p′2(0, 0) = 202. The difference values attributed to the
pixel values p′2,1, p′2,2, and p′2,3 are calculated to be δ2,1 =min{∣202 − 209∣, 255 − 209, 16} = 7, δ2,2 =min{∣202
− 213∣, 255 − 213, 16} = 11, and δ2,3 =min{∣202 − 213∣, 255 − 213, 16} = 11, respectively. Since all of which are
larger than 2, they are appropriate, as required by Step 4.3.2, to be used as base values b3 = 7, b4 = 11, and b5 =
11 for extracting the corresponding digits of the desired multiple-based number. Accordingly, the difference
values between the stego-image pixel values p′′2(0, 1), p′′2(1, 0), and p′′2(1, 1) as well as the corresponding
cover image pixel values p′2(0, 1), p′2(1, 0), and p′2(1, 1) are computed to extract respectively the digits d3, d4,
and d5 of the multiple-based number. The details are described in the following, as a continuation of those
of processing the first block described previously.

7. By d3 = p′′2(0, 1) − p′2(0, 1), the fourth digit d3 is computed to be 211 − 209 = 2.
8. The value of m is updated to be m + (d3 × a) = 1,511 + (2 × 3,360) = 8,231, and that of a to be a × b3 =

3,360 × 7 = 23,520 < 221 = 2,097,152, meaning that more extraction may be continued.
9. By d4 = p′′2(1, 0) − p′2(1, 0), the fifth digit d4 is computed to be 221 − 213 = 8.
10. The value of m is updated to be m + (d4 × a) = 8,231 + (8 × 23,520) = 196,391, and that of a to be a × b4

= 23,520 × 11 = 258,720 < 221 = 2,097,152, meaning that more extraction may be continued.
11. By d5 = p′′2(1, 1) − p′2(1, 1), the sixth digit d5 is computed to be 220 − 213 = 7.
12. The value of m is updated to be m + (d5 × a) = 196,391 + (7 × 258,720) = 2,007,431, and that of a to be a

× b5 = 258,720 × 11 = 2,845,920 ≥ 221 = 2,097,152, indicating that the 21-bit secret message has been fully
extracted and the algorithm is stopped according to Step 4.3.7.

As a result, the digits extracted from the second block are d3(b3), d4(b4), and d5(b5), namely 27, 811, and
711. Consequently, the entire secret message extracted from the two blocks forms the multiple-based number
711811277162141115. The value of m = 2,007,431 is finally converted to be a bit string M = 1111010100001100001112
of the length b = 21 as the extracted message.

References
1. Cox IJ, Miller ML, Bloom JA, Fridrich J, Kalker T. Digital watermarking and steganography. 2nd ed. Burlington,

MA, USA: Morgan Kaufmann; 2008. 593 p. doi:10.1016/B978-0-12-372585-1.X5001-3.

https://doi.org/10.1016/B978-0-12-372585-1.X5001-3


Comput Model Eng Sci. 2025;144(1) 579

2. Li Z, Wu Y, Mazroa AA, Jiang D, Wu J, Zhu X. Image hiding with high robustness based on dynamic region attention
in the wavelet domain. Comput Model Eng Sci. 2024;141(1):847–69. doi:10.32604/cmes.2024.051762.

3. Khadse DB, Swain G. Data hiding and integrity verification based on quotient value differencing and merkle tree.
Arab J Sci Eng. 2023;48(2):1793–805. doi:10.1007/s13369-022-06961-9.

4. Kosuru SNVJD, Pradhan A, Basith KA, Sonar R, Swain G. Digital image steganography with error correction on
extracted data. IEEE Access. 2023;11:80945–57. doi:10.1109/ACCESS.2023.3300918.

5. Zhao P, Zhong Q, Chen J, Wang X, Qin Z, Zhou E. A linked list encryption scheme for image steganography without
embedding. Comput Model Eng Sci. 2024;141(1):331–52. doi:10.32604/cmes.2024.050148.

6. Wang RZ, Lin CF, Lin JC. Image hiding by optimal LSB substitution and genetic algorithm. Pattern Recognit.
2001;34(3):671–83. doi:10.1016/S0031-3203(00)00015-7.

7. Tian J. Reversible watermarking using a difference expansion. IEEE Trans Circuits Syst Video Technol.
2003;13(8):890–6. doi:10.1109/TCSVT.2003.815962.

8. Ding W, Zhang H, Reulke R, Wang Y. Reversible image data hiding based on scalable difference expansion. Pattern
Recognit Lett. 2022;159(4):116–24. doi:10.1016/j.patrec.2022.05.014.

9. Ni Z, Shi YQ, Ansari N, Su W. Reversible data hiding. IEEE Trans Circuits Syst Video Technol. 2006;16(3):354–62.
doi:10.1109/TCSVT.2006.869964.

10. Jia Y, Yin Z, Zhang X, Luo Y. Reversible data hiding based on reducing invalid shifting of pixels in histogram
shifting. Signal Process. 2019;163:238–46. doi:10.1016/j.sigpro.2019.05.020.

11. Thodi DM, Rodríguez JJ. Expansion embedding techniques for reversible watermarking. IEEE Trans Image
Process. 2007;16(3):721–30. doi:10.1109/TIP.2006.891046.

12. Li X, Li X, Hu S, Zhao Y. Steganography-enhanced prediction-error expansion: a novel reversible data hiding
framework. IEEE Trans Circuits Syst Video Technol. 2025;35(3):2701–11. doi:10.1109/TCSVT.2024.3495673.

13. Wu DC, Tsai WH. A steganographic method for images by pixel-value differencing. Pattern Recognit Lett.
2003;24(10):1613–26. doi:10.1016/S0167-8655(02)00402-6.

14. Jung KH, Yoo KY. Data hiding method using image interpolation. Comput Stand Interfaces. 2009;31(2):465–70.
doi:10.1016/j.csi.2008.06.001.

15. Lee CF, Huang YL. An efficient image interpolation increasing payload in reversible data hiding. Expert Syst Appl.
2012;39(8):6712–9. doi:10.1016/j.eswa.2011.12.019.

16. Solak S. High embedding capacity data hiding technique based on EMSD and LSB substitution algorithms. IEEE
Access. 2020;8:166513–24. doi:10.1109/ACCESS.2020.3023197.

17. Wu DC, Shih ZN. Image steganography by pixel-value differencing using general quantization ranges. Comput
Model Eng Sci. 2024;141(1):353–83. doi:10.32604/cmes.2024.050813.

18. Wu DC, Tsai WH. Data hiding images via mult-based number convers lossy compress. IEEE Trans Consum
Electron. 1998;44(4):1406–12. doi:10.1109/30.735844.

19. Li X, Orchard MT. New edge-directed interpolation. IEEE Trans Image Process. 2001;10(10):1521–7. doi:10.1109/83.
951537.

20. Hou H, Andrews H. Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust Speech Signal
Process. 1978;26(6):508–17. doi:10.1109/TASSP.1978.1163154.

21. Chang YT, Huang CT, Lee CF, Wang SJ. Image interpolating based data hiding in conjunction with pixel-shifting
of histogram. J Supercomput. 2013;66(2):1093–110. doi:10.1007/s11227-013-1016-6.

22. Malik A, Sikk G, Verma HK. Image interpolation based high capacity reversible data hiding scheme. Multimed
Tools Appl. 2017;76(22):24107–23. doi:10.1007/s11042-016-4186-4.

23. Tang M, Hu J, Song W. A high capacity image steganography using multi-layer embedding. Optik. 2014;125:3972–6.
doi:10.1016/j.ijleo.2014.01.149.

24. Mohammad AA, Al-Haj A, Farfoura M. An improved capacity data hiding technique based on image interpolation.
Multimed Tools Appl. 2018;78(6):7181–205. doi:10.1007/s11042-018-6465-8.

25. Saeid Hassan FS, Gutub A. Novel embedding secrecy within images utilizing an improved interpolation-based
reversible data hiding scheme. J King Saud Univ-Comput Inf Sci. 2022;34(5):2017–30. doi:10.1016/j.jksuci.2020.07.
008.

https://doi.org/10.32604/cmes.2024.051762
https://doi.org/10.1007/s13369-022-06961-9
https://doi.org/10.1109/ACCESS.2023.3300918
https://doi.org/10.32604/cmes.2024.050148
https://doi.org/10.1016/S0031-3203(00)00015-7
https://doi.org/10.1109/TCSVT.2003.815962
https://doi.org/10.1016/j.patrec.2022.05.014
https://doi.org/10.1109/TCSVT.2006.869964
https://doi.org/10.1016/j.sigpro.2019.05.020
https://doi.org/10.1109/TIP.2006.891046
https://doi.org/10.1109/TCSVT.2024.3495673
https://doi.org/10.1016/S0167-8655(02)00402-6
https://doi.org/10.1016/j.csi.2008.06.001
https://doi.org/10.1016/j.eswa.2011.12.019
https://doi.org/10.1109/ACCESS.2020.3023197
https://doi.org/10.32604/cmes.2024.050813
https://doi.org/10.1109/30.735844
https://doi.org/10.1109/83.951537
https://doi.org/10.1109/83.951537
https://doi.org/10.1109/TASSP.1978.1163154
https://doi.org/10.1007/s11227-013-1016-6
https://doi.org/10.1007/s11042-016-4186-4
https://doi.org/10.1016/j.ijleo.2014.01.149
https://doi.org/10.1007/s11042-018-6465-8
https://doi.org/10.1016/j.jksuci.2020.07.008
https://doi.org/10.1016/j.jksuci.2020.07.008


580 Comput Model Eng Sci. 2025;144(1)

26. Lu TC, Huang SR, Huang SW. Reversible hiding method for interpolation images featuring a multilayer center
folding strategy. Soft Comput. 2021;25(1):161–80. doi:10.1007/s00500-020-05129-7.

27. Mandal PC, Mukherjee I, Chatterji BN. High capacity reversible and secured data hiding in images using
interpolation and difference expansion technique. Multimed Tools Appl. 2021;80(3):3623–44. doi:10.1007/s11042-
020-09341-3.

28. Fan M, Zhong S, Xiong X. Reversible data hiding method for interpolated images based on modulo operation and
prediction-error expansion. IEEE Access. 2023;11(1):27290–302. doi:10.1109/ACCESS.2023.3258461.

29. Wu DC, Shih ZN, Wu JH. Modified multiway pixel-value differencing methods based on general quantization
ranges for image steganography. IEEE Access. 2021;10:8824–39. doi:10.1109/ACCESS.2021.3138895.

30. Rosen KH. Discrete mathematics and its applications. 8th ed. New York, NY, USA: McGraw-Hill; 2019. 1118 p.
31. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural

similarity. IEEE Trans Image Process. 2004;13(4):600–12. doi:10.1109/TIP.2003.819861.
32. Fridrich J, Goljan M, Du R. Reliable detection of LSB steganography in color and grayscale images. In: Proceedings

of the 2001 workshop on Multimedia and security: new challenges; 2001 Oct 5; Ottawa, ON, Canada. doi:10.1145/
1232454.1232466.

33. Mohammad AA. A high quality interpolation-based reversible data hiding technique using dual images. Multimed
Tools Appl. 2023;82(24):36713–37. doi:10.1007/s11042-023-15092-8.

34. Chen YQ, Sun WJ, Li LY, Chang CC, Wang X. An efficient general data hiding scheme based on image interpolation.
J Inf Secur Appl. 2020;54:102584. doi:10.1016/j.jisa.2020.102584.

35. Hu J, Li T. Reversible steganography using extended image interpolation technique. Comput Electr Eng.
2015;46(7):447–55. doi:10.1016/j.compeleceng.2015.04.014.

https://doi.org/10.1007/s00500-020-05129-7
https://doi.org/10.1007/s11042-020-09341-3
https://doi.org/10.1007/s11042-020-09341-3
https://doi.org/10.1109/ACCESS.2023.3258461
https://doi.org/10.1109/ACCESS.2021.3138895
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/1232454.1232466
https://doi.org/10.1145/1232454.1232466
https://doi.org/10.1007/s11042-023-15092-8
https://doi.org/10.1016/j.jisa.2020.102584
https://doi.org/10.1016/j.compeleceng.2015.04.014

	General Improvement of Image Interpolation-Based Data Hiding Methods Using Multiple-Based Number Conversion
	1 Introduction
	2 A Review of Related Techniques
	3 Proposed General Improvement of Various Image Interpolation-Based Data Hiding Methods Using Multiple-Based Number Conversion
	4 Excremental Results and Discussions
	5 Conclusions and Future Works
	Appendix A A Review of the INP-Based Data Hiding Method
	Appendix B A Review of the NIE-Based Data Hiding Method
	Appendix C Improving the INP-Based Data Hiding Method by Multiple-Based Number Conversion
	Appendix D Improving the NIE-Based Data Hiding Method by Multiple-Based Number Conversion
	References


