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ABSTRACT: Background: Accurate classification of normal blood cells is a critical foundation for automated
hematological analysis, including the detection of pathological conditions like leukemia. While convolutional neural
networks (CNNs) excel in local feature extraction, their ability to capture global contextual relationships in complex
cellular morphologies is limited. This study introduces a hybrid CNN-Transformer framework to enhance normal
blood cell classification, laying the groundwork for future leukemia diagnostics. Methods: The proposed architecture
integrates pre-trained CNNs (ResNet50, EfficientNetB3, InceptionV3, CustomCNN) with Vision Transformer (ViT)
layers to combine local and global feature modeling. Four hybrid models were evaluated on the publicly available
Blood Cell Images dataset from Kaggle, comprising 17,092 annotated normal blood cell images across eight classes.
The models were trained using transfer learning, fine-tuning, and computational optimizations, including cross-model
parameter sharing to reduce redundancy by reusing weights across CNN backbones and attention-guided layer pruning
to eliminate low-contribution layers based on attention scores, improving efficiency without sacrificing accuracy.
Results: The InceptionV3-ViT model achieved a weighted accuracy of 97.66% (accounting for class imbalance by
weighting each class’s contribution), a macro F1-score of 0.98, and a ROC-AUC of 0.998. The framework excelled in
distinguishing morphologically similar cell types demonstrating robustness and reliable calibration (ECE of 0.019).
The framework addresses generalization challenges, including class imbalance and morphological similarities, ensuring
robust performance across diverse cell types. Conclusion: The hybrid CNN-Transformer framework significantly
improves normal blood cell classification by capturing multi-scale features and long-range dependencies. Its high
accuracy, efficiency, and generalization position it as a strong baseline for automated hematological analysis, with
potential for extension to leukemia subtype classification through future validation on pathological samples.
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1 Introduction
Blood cell analysis is a cornerstone of clinical diagnostics, enabling the identification of various

hematological conditions through the morphological characterization of blood cells. Accurate classifi-
cation of normal blood cells—such as neutrophils, lymphocytes, monocytes, eosinophils, erythroblasts,
and platelets—is essential for establishing a baseline to understand healthy cell morphology and detect
pathological deviations in conditions such as leukemia, anemia, or other blood disorders [1,2]. Automated
classification systems utilizing machine learning and deep learning techniques have emerged as powerful
tools in digital pathology, providing improved efficiency and consistency compared to traditional manual
evaluations [3,4].

Leukemia, a group of blood cancers characterized by the uncontrolled proliferation of immature
white blood cells, highlights the importance of robust blood cell classification systems [5]. While leukemia
detection relies on identifying abnormal cells, understanding the morphology of normal blood cells is a
critical prerequisite for developing diagnostic tools capable of detecting such conditions. Routine blood
tests, including complete blood count (CBC) tests, provide initial insights into blood cell characteristics, but
advanced computational methods are needed to enhance diagnostic accuracy [2]. While genetic mutations
play a central role in the development of leukemia, a range of environmental and lifestyle factors have also
been implicated in its development.

Exposure to environmental factors such as radiation, certain chemicals, and chemotherapy drugs, as
well as lifestyle factors like parental smoking and alcohol consumption, is associated with an increased
risk of leukemia, particularly in children, through mechanisms such as DNA damage and epigenetic
alterations, though direct causation has not been conclusively established [6]. These risk factors underscore
the need for precise identification of normal blood cell morphologies to detect early deviations indicative
of leukemia. Leukemia is prevalent across age groups, being most common in individuals over 60, yet it
remains a leading cancer in children and young people under 20 [7]. According to the US National Cancer
Institute’s Surveillance, Epidemiology, and End Results (SEER) database, approximately 62,770 new leukemia
cases are projected for 2024, accounting for 3.1% of all new cancer diagnoses, with an estimated 23,670
deaths representing 3.9% of all cancer fatalities [8]. These statistics highlight the urgency of developing
robust automated hematological analysis tools, which leverages advanced feature extraction to accurately
classify normal blood cells, providing a critical baseline for identifying pathological changes associated
with leukemia.

A study comparing childhood acute lymphoblastic leukemia (cALL) trends in Saudi Arabia and the
United States [9] demonstrated distinct epidemiological patterns. While Saudi Arabia maintained a lower
age-adjusted cALL incidence than the US throughout the 2001–2014 period, its case rates grew at a statistically
significant upward trajectory (p < 0.001). Over these 13 years, national incidence climbed from 1.58 (2001) to
2.35 (2014) per 100,000 population, reflecting a median yearly growth rate of 4.58%. Gender-specific trends
revealed sharper increases for males (1.88→ 2.71 per 100,000) compared to females (1.21→ 1.86 per 100,000).
According to a national health survey [10], the increasing incidence of leukemia lesions among Saudi Arabian
citizens poses a significant challenge to the country’s healthcare system. Data from the Saudi disease registry
indicate that in 2017, leukemia ranked as the fifth most common disease across all age groups and both
genders. The prevalence was notably higher in males, at 7.6%, compared to 4.4% in females.
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Convolutional Neural Networks (CNNs) have become a leading approach for blood cell classification
due to their ability to automatically extract and learn relevant features from medical images [11]. Various
CNN architectures, such as AlexNet, DenseNet, ResNet, and VGG16 [12–15], have been explored for their
ability to capture complex patterns in blood cell images. Transfer learning leverages models pre-trained on
large-scale datasets such as ImageNet and adapts them for the specialized task of leukemia classification. For
instance, architectures like Darknet-53 and ShuffleNet [16], ResNet-18 [17], VGG16 [18], InceptionResNetV2
[19], MobileNet v2 [20], and Inception-ResNet [21] have been fine-tuned to extract robust features from
medical images. This approach is particularly advantageous when available datasets are limited, as it enhances
performance by utilizing pre-learned representations.

The study [22] proposes a novel method for automatic white blood cell (WBC) image classification using
a small database. It integrates Quaternion hybrid Meixner-Charlier moments (QHMCMs), derived from
discrete Charlier-Meixner hybrid polynomials, with a convolutional quaternion moment neural network
(CNN-QMs). The approach involves two phases: preprocessing, where QHMCMs are computed with
parameters optimized via the Grey Wolf Optimization algorithm for high accuracy, and classification, where
the processed moments are fed into the CNN-QMs model to differentiate WBC classes effectively.

Hybrid methods that combine CNNs with traditional machine learning techniques, such as AdaBoost,
Support Vector Machines, and XGBoost [23–25], as well as ensemble learning strategies [26–28], have
further improved classification performance by leveraging the complementary strengths of these approaches.
However, conventional deep learning models often struggle with overfitting and limited generalization due
to challenges in processing complex feature maps [29]. Increasing network depth can lead to redundant
computations, excessive memory usage, and vanishing gradients, while pooling operations may result in the
loss of critical contextual information [30–32].

In response to these challenges, attention mechanisms have emerged as a promising solution. Attention
mechanisms in deep learning are designed to mimic the human cognitive ability to focus on the most
informative parts of an input while disregarding less relevant details. By dynamically weighting features based
on their relevance, these mechanisms enable models to capture both global and local contextual information
more effectively. Incorporating attention modules into deep learning frameworks allows networks to concen-
trate on the most critical regions of medical images, thereby enhancing classification accuracy. For example,
recent approaches such as Efficient Channel Attention with Vgg16 [33], DenseNet201 with CBAM [34], Deep
CNN with feature fusion [35], SCKansformer [36], and ViT-CNN [37] have employed a selective cross-
attention mechanism coupled with feature calibration, prioritizing salient features and addressing some of
the inherent limitations of conventional CNN architectures.

Traditional convolutional neural networks (CNNs) excel at extracting local features from images
through fixed-size filters but often struggle to capture global contextual relationships across an entire
image. In response to these challenges, attention mechanisms have emerged as a promising solution.
Unlike CNNs, which apply uniform processing across spatial regions, attention mechanisms dynamically
prioritize the most informative parts of an input, mimicking human cognitive focus. By assigning weights
to features based on their relevance, these mechanisms enable models to capture both global and local
contextual information more effectively. Incorporating attention modules into deep learning frameworks
allows networks to concentrate on critical regions of medical images, thereby enhancing classification
accuracy. For example, recent approaches such as Efficient Channel Attention with Vgg16 [33], DenseNet201
with CBAM [34], Deep CNN with feature fusion [35], SCKansformer [36], and ViT-CNN [37] have employed
a Selective Cross-Attention Mechanism coupled with Feature Calibration, prioritizing salient features and
addressing some of the inherent limitations of conventional CNN architectures.



1168 Comput Model Eng Sci. 2025;144(1)

By taking the advantages of attention module, this study proposes a multi-model attention framework
for normal blood cell classification, integrating EfficientNet, ResNet, InceptionNet, and a CNN-Transformer
module. Hybrid CNN-Transformer framework for classification, offering significant advancements over
existing state-of-the-art methods. Our key contributions are:

• Novel Hybrid Architecture: We propose a multi-model framework that integrates pre-trained CNNs
(ResNet50, EfficientNetB3, InceptionV3, and a CustomCNN) with Vision Transformer (ViT) layers,
uniquely combining local feature extraction with global contextual modeling. Unlike existing CNN-
based methods (e.g., EfficientNetB6, TWO-DCNN) that struggle with long-range dependencies, our
approach leverages ViT’s self-attention mechanisms to capture complex morphological relationships,
achieving a top accuracy of 97.66% with the InceptionV3-ViT model, surpassing the best prior methods
(97.16%) on the Blood Cell Dataset.

• Feature Fusion: We introduce hierarchical feature fusion to dynamically prioritize salient morpholog-
ical features and integrate multi-scale local and global representations. This reduces misclassifications
for morphologically similar leukemia subtypes (e.g., Classes 3 and 5, with only 1.32% confusion in
InceptionV3-ViT vs. 4.52% in CustomCNN-ViT), addressing a critical limitation of traditional CNNs
that lose contextual information during pooling.

• Enhanced Computational Efficiency: Our framework incorporates cross-model parameter sharing
and attention-guided layer pruning, optimizing computational efficiency without compromising per-
formance. The InceptionV3-ViT model achieves the highest test accuracy (97.66%) in 57.72 min of
training, a 38.83% reduction compared to ResNet50-ViT (94.36 minutes), making it highly suitable for
resource-constrained clinical environments.

• Superior Calibration for Clinical Reliability: Our models, particularly InceptionV3-ViT, deliver well-
calibrated probability estimates (ECE of 0.019, Brier score of 0.026), ensuring reliable uncertainty
quantification critical for clinical decision-making. This contrasts with existing methods that often
overlook calibration, reducing the risk of overconfident misclassifications in high-stakes diagnostics.

• Robust Generalization across Subtypes: The proposed framework demonstrates robust generalization
across all eight blood cell classes, with a minimum class-specific F1-score of 0.95, even for challenging
subtypes. This establishes a strong baseline for normal blood cell classification, paving the way for
accurate detection of hematological disorders like leukemia in future research.

These contributions collectively advance the field of automated hematological analysis by providing a
high-accuracy, efficient, and reliable diagnostic tool, with significant potential to improve clinical outcomes
in leukemia diagnosis and treatment planning. The rest of the paper is organized as follows. Section 2
describes the materials and methods used in our study, detailing the dataset, preprocessing steps, model
architecture, and training strategies. Section 3 presents the experimental results and performance evaluation
of the proposed framework. Finally, Section 5 concludes the paper, summarizing key findings and outlining
directions for future research.

2 Methodologies
In this work, we propose a hybrid deep learning model that combines the strengths of CNNs with

transformer-based architectures to achieve robust classification of blood cell images into eight distinct cat-
egories. CNN architectures, such as ResNet50, EfficientNet, and InceptionNet, have demonstrated superior
capabilities in capturing local and hierarchical features from images. However, they cannot often model long-
range dependencies within the data. By incorporating transformer layers, which excel at modeling global
relationships via self-attention mechanisms, our approach (Fig. 1) is designed to effectively capture both
fine-grained local features and contextual, long-range dependencies. This synergy is expected to improve
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classification performance, particularly in challenging scenarios where subtle variations between classes
must be distinguished.

Figure 1: Module wise representation of proposed deep learning model

2.1 Data Preprocessing & Augmentation
Dataset Description: This dataset comprises 17,092 high-quality microscopic images of individual

normal blood cells acquired using the CellaVision DM96 analyzer at the Hospital Clinic of Barcelona’s Core
Laboratory. These images, meticulously annotated by expert clinical pathologists, represent eight distinct
cell types: neutrophils (3329 files), eosinophils (3117 files), basophils (1218 files), lymphocytes (1214 files),
monocytes (1420 files), immature granulocytes (including promyelocytes, myelocytes, and metamyelocytes)
(2895 files), erythroblasts (1551 files), and platelets (thrombocytes) (2348 files). Crucially, the dataset is
derived from individuals with no infection, hematologic, or oncologic diseases and who were free from any
pharmacological treatment at the time of blood collection. The images, sized at 360 x 363 pixels in JPG format,
offer a standardized and reliable resource for developing and evaluating automated blood cell classification
systems. This dataset is particularly valuable for research focused on distinguishing normal blood cell
morphology, providing a strong foundation for comparative studies involving pathological samples. Each
class sample image and its definition are shared in Fig. 2 and Table 1.

Preprocessing Steps: The blood cell image dataset, located in the Kaggle repository, underwent a series
of preprocessing steps to prepare it for training a deep learning model. The following procedures were
implemented:
1. Data Loading and Initial Processing:

• The dataset was loaded using keras utils image dataset from directory, which
automatically assigned integer labels based on the directory structure.

• Images were resized to 224 × 224 pixels, consistent with the input requirements of pre-trained
models.

• A batch size of 32 was used for efficient memory management during training.
• The dataset was split into training and validation sets, with 20% reserved for validation, using a

fixed random seed of 42 for reproducibility.
• prefetch(tf.data.AUTOTUNE)was applied to both training and validation sets to optimize

data loading performance.
2. Class Name Extraction:

• Class names were extracted from the dataset object using dataset class names for later use
in model evaluation.
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3. Manual Refinement of Train-Validation Split:
• The dataset was further split using dataset.skip() and dataset.take() to ensure precise

control over the train-validation partitioning.
4. Data Augmentation:

• Data augmentation was performed using a keras.Sequential model, including:
– Random horizontal and vertical flips to account for the symmetrical nature of blood cells, ensuring

robustness to orientation variations in microscopic images.
– Random rotations up to 0.4 radians (approximately 23 degrees) to simulate realistic variations in

cell orientation during slide preparation, preserving critical morphological features such as nucleus
shape and cytoplasm boundaries.

• This augmentation strategy was designed to increase dataset diversity, mitigate overfitting, and improve
model generalization to real-world variations in blood cell imaging, while maintaining the biological
integrity of the cells.

5. Test Dataset Loading:
• The test dataset was loaded using the same keras.utils.image dataset from

directory function as the training and validation sets, ensuring consistency in preprocessing.

This preprocessing pipeline ensured that the dataset was optimally prepared for training and evaluating
deep learning models, addressing issues such as data variability and potential overfitting.

Figure 2: Representative images of normal blood cell types. This dataset, comprising 17,092 images, showcases eight
distinct normal blood cell classes: (a) Basophils, (b) Eosinophils, (c) Erythroblasts, (d) Immature Granulocytes, (e)
Lymphocytes, (f) Monocytes, (g) Neutrophils, and (h) Platelets. Images were obtained from healthy individuals at the
hospital clinic of Barcelona
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Table 1: Detailed definitions of blood cell classes

Class Definition
Basophil A type of white blood cell involved in allergic reactions and inflammatory

responses. They contain granules that stain dark blue with basic dyes.
Eosinophil Another type of white blood cell, primarily involved in combating parasitic

infections and allergic reactions. Their granules stain red with acidic dyes.
Erythroblast An immature red blood cell. These cells are precursors to mature red blood cells

(erythrocytes) and are typically found in bone marrow. The presence of high
numbers of Erythroblasts in peripheral blood can indicate disease.

Immature
granulocyte (ig)

Developing granulocytes, including promyelocytes, myelocytes, and
metamyelocytes. Granulocytes are a type of white blood cell. An increased number

of immature granulocytes in the blood can indicate infection or certain blood
disorders.

Lymphocyte A type of white blood cell that plays a crucial role in the immune system. They
include T cells, B cells, and natural killer cells.

Monocyte A large white blood cell that differentiates into macrophages and dendritic cells,
which are involved in phagocytosis and antigen presentation.

Neutrophil The most abundant type of white blood cell, crucial for fighting bacterial infections.
Their multi-lobed nucleus characterizes them.

Platelet
(Thrombocyte)

Small, irregularly shaped cell fragments that play a vital role in blood clotting.

2.2 Proposed System Architecture
The proposed hybrid architecture integrates convolutional neural networks (CNNs) with Vision

Transformers (ViT) to leverage both local feature extraction and global context modeling for blood cell
classification. The system processes input images through multiple CNN backbones that extract localized,
high-resolution features capturing fine-grained morphological details critical for distinguishing between
blood cell types.

The CNN-extracted feature maps undergo dimensional transformation through global average pooling
and linear projection to create token embeddings compatible with transformer processing. Positional
embeddings are incorporated to preserve spatial relationships within the feature sequence. The transformer
component consists of stacked blocks, each containing multi-head self-attention mechanisms that model
long-range dependencies, feed-forward networks with Gaussian Error Linear Unit (GELU) activation
for non-linear transformation, layer normalization for training stability, and dropout regularization to
prevent overfitting.

2.2.1 Hybrid Feature Fusion Strategy
The architecture employs a concatenation-based fusion mechanism to integrate multi-scale

representations:

1. Multi-Scale Feature Extraction: CNN backbones extract hierarchical feature maps capturing local
morphological patterns at different scales and resolutions.

2. Feature Standardization: Extracted features are flattened and projected through linear layers to ensure
dimensional consistency across different backbone architectures.
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3. Global Context Learning: Token embeddings are processed through transformer blocks where self-
attention mechanisms learn global contextual relationships and feature interdependencies.

4. Feature Integration: CNN-derived local features are concatenated with transformer-enhanced global
representations, creating a comprehensive feature vector that encapsulates both fine-grained details and
contextual information.

5. Classification Output: The fused representation is processed through a classification head consisting
of fully connected layers with dropout regularization and softmax activation to produce probability
distributions over the eight blood cell classes.

This hybrid approach addresses the complementary strengths of CNNs and transformers: CNNs excel
at capturing local spatial patterns and morphological features essential for cell type identification, while
transformers provide superior global context modeling and long-range dependency learning. The fusion
strategy ensures that subtle morphological differences between blood cell classes are preserved while
maintaining awareness of broader contextual patterns, resulting in enhanced discriminative capability for
accurate classification.

2.2.2 Pseudo Code and Flowchart
To elucidate the operational flow of the proposed hybrid CNN-Transformer framework, we provide

Algorithm 1, which outlines the step-by-step process of blood cell classification, and Fig. 3, which presents a
flowchart of the overall approach. These additions complement Fig. 1 (basic module architecture) and Fig. 3
(detailed hybrid model architecture) to ensure clarity for readers.

Algorithm 1: Hybrid CNN-transformer framework for blood cell classification

1: Input: Blood cell image dataset D = {(xi , yi)}
N
i=1, where xi is an image and yi ∈ {0, 1, . . . , 7} is the

class label.
2: Output: Predicted class probabilities P(y∣xi) for each image.
3: Initialize pre-trained CNN backbone (e.g., InceptionV3) and Vision Transformer (ViT) layers.
4: Initialize adaptive attention and feature fusion modules.
5: Step 1: Preprocessing
6: for each image xi ∈ D do
7: Resize xi to 224 × 224 pixels.
8: Apply data augmentation (random rotation, flipping, brightness adjustment).
9: Normalize pixel values to [0, 1].

10: end for
11: Step 2: CNN Feature Extraction
12: for each preprocessed image xi do
13: Extract local features using CNN backbone: FCNN = CNN(xi).
14: FCNN ∈ R

H×W×C , where H, W are spatial dimensions, C is channels.
15: end for
16: Step 3: Vision Transformer Processing
17: for each FCNN do
18: Flatten and project FCNN to patch embeddings: E = Linear(FCNN).
19: Add positional embeddings: Epos = E + PosEmb.
20: Apply multi-head self-attention (MHSA): FViT =MHSA(Epos)

21: Process through transformer layers: FViT = Transformer (FViT).
(Continued)
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Algorithm 1 (continued)
22: end for
23: Step 4: Feature Fusion
24: for each FCNN, FViT do
25: Concatenate features: Ffused = Concat (FCNN, FViT, Fattn)

26: Apply layer normalization: Ffused = LayerNorm(Ffused).
27: end for
28: Step 5: Classification
29: for each Ffused do
30: Pass through fully connected layer: Z = FC(Ffused).
31: Compute class probabilities: P(y∣xi) = Softmax(Z).
32: end for
33: Step 6: Training
34: Initialize loss function (e.g., cross-entropy) and optimizer (e.g., AdamW).
35: for each epoch do
36: Compute loss: L = CrossEntropy (P(y∣xi), yi).
37: Update model parameters using backpropagation with cross-model parameter sharing.
38: end for
39: Step 7: Inference
40: Return predicted class probabilities P(y∣xi) for test images.

Figure 3: Hybird blood cell classification architecture workflow

The sparse categorical cross-entropy (SCCE) loss was selected for its effectiveness in multi-class
classification and compatibility with the hybrid CNN-Transformer framework. Given the dataset’s class
imbalance (e.g., 3329 neutrophils vs. 1214 lymphocytes), alternative loss functions, such as focal loss, which
prioritizes hard-to-classify examples, were considered during preliminary experiments. However, SCCE,
combined with data augmentation (random flips and rotations up to 0.4 radians) and cross-model parameter
sharing, provided robust performance across all classes, effectively addressing the imbalance. Future work
could explore focal loss for datasets with more pronounced class disparities or pathological samples.
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2.3 Model Implementation and Architecture Analysis
2.3.1 Vision Transformer Configuration

The Vision Transformer (ViT) component of the hybrid CNN-Transformer framework was configured
with the following hyperparameters to optimize performance for normal blood cell classification:

• Embedding Dimension: Set to 256 to align with the feature dimensionality of the pre-trained CNN
backbones, ensuring seamless integration of CNN-extracted features into the ViT’s sequence-based
processing.

• Number of Attention Heads: Configured with 8 heads per transformer block to enable the model to
capture diverse feature interactions, critical for distinguishing subtle morphological differences across
blood cell classes (e.g., neutrophils vs. lymphocytes).

• Feed-Forward Dimension: Set to 256, paired with GELU activation, to provide sufficient capacity for
non-linear transformations while maintaining computational efficiency.

• Number of Transformer Layers: Limited to 2 layers to balance model expressiveness and computational
cost, as preliminary experiments showed negligible accuracy gains with additional layers for the dataset
of 17,092 images.

• Dropout Rate: Applied at 0.2 in both attention and feed-forward layers to regularize the model and
prevent overfitting, particularly given the moderate dataset size.

The ViT architecture processes CNN-extracted features by first applying global average pooling,
followed by a dense layer to project features into the 256-dimensional embedding space. A positional
embedding is added to preserve sequence information, followed by two transformer blocks, each comprising
multi-head self-attention, layer normalization (with ε= 10−6), and a feed-forward network. The output is
flattened and passed through a dense layer with softmax activation for classification across eight blood cell
classes. These parameters were empirically tuned to optimize performance on the Blood Cell Images dataset.

2.3.2 Model Architecture Comparison
Four hybrid CNN-ViT architectures were developed and evaluated for automated leukemia subtype

classification, each employing distinct backbone networks with varying computational complexities and
feature representation capabilities (Table 2).

Table 2: Combined comparative model architectures

Layer/Metric CustomCNN ViT ResNet50 ViT EfficientNetB3 ViT InceptionV3 ViT
Input layer (224, 224, 3) (224, 224, 3) (224, 224, 3) (224, 224, 3)

Feature extraction Sequential CNN ResNet50 EfficientNetB3 InceptionV3
Feature map shape (14, 14, 256) (7, 7, 2048) (7, 7, 1536) (5, 5, 2048)

Reshape layer (196, 256) (49, 2048) (49, 1536) (25, 2048)
Transformer blocks 2 2 2 2

Global average pooling (256) (2048) (1536) (2048)
Dense layer (Output) (8) (8) (8) (8)

Total parameters 5,684,168 359,287,688 199,643,959 357,502,760
Trainable parameters 5,684,168 355,152,904 195,772,794 350,504,264

Non-trainable parameters 0 4,134,784 3,871,165 6,998,496
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CustomCNN-ViT Architecture: This lightweight model employs a sequential CNN backbone with
progressive downsampling through alternating convolutional and max-pooling layers. The architecture
generates (14 × 14 × 256) feature maps, producing 196 sequence tokens of 256 dimensions each. With only
5.68 M trainable parameters, this model offers computational efficiency suitable for resource-constrained
clinical environments while maintaining adequate spatial resolution for transformer processing.

ResNet50-ViT Architecture: Leveraging deep residual connections, this model produces highly com-
pressed spatial representations (7 × 7 × 2048) resulting in 49 sequence tokens of 2048 dimensions.
The 359.3 M parameter architecture (with 4.13 M frozen pre-trained weights) benefits from hierarchical
residual structures that facilitate gradient flow and capture multi-scale features essential for detecting subtle
morphological variations in leukemic cells.

EfficientNetB3-ViT Architecture: This model implements compound scaling optimization, balancing
network depth, width, and resolution through mobile inverted bottleneck convolutions (MBConv) with
squeeze-and-excitation mechanisms. Generating (7 × 7 × 1536) feature maps and 49 sequence tokens of 1536
dimensions, the architecture achieves favorable computational efficiency with 199.6 M total parameters (3.87
M non-trainable), minimizing parameter redundancy while maintaining representational capacity.

InceptionV3-ViT Architecture: Utilizing factorized convolutions and parallel processing pathways, this
model produces the most spatially compact representation (5 × 5 × 2048) with only 25 sequence tokens of
2048 dimensions. The 357.5 M parameter architecture (6.99 M non-trainable) employs inception modules
for simultaneous multi-scale feature extraction across different receptive field sizes, enhancing detection of
diverse morphological patterns.

All architectures incorporate standardized transformer components with two identical blocks featuring
multi-head self-attention mechanisms for global contextual modeling, followed by global average pooling
and an eight-node classification layer corresponding to leukemia subtypes.

2.3.3 Transfer Learning and Fine-Tuning Strategy
The pre-trained backbone networks (ResNet50, EfficientNetB3, InceptionV3) employed a progres-

sive unfreezing strategy to optimize knowledge transfer from ImageNet while adapting to blood cell
morphological characteristics.

Freezing Strategy: Initial layers responsible for low-level feature extraction (edges, textures, basic
shapes) were frozen to preserve valuable generic representations learned during ImageNet pre-training. The
freezing thresholds were architecture-specific:

ResNet50: First 100 layers frozen, enabling deeper residual blocks to adapt to blood cell-specific features
while maintaining fundamental edge and texture detection capabilities. EfficientNetB3: First 300 layers
frozen due to the deeper, more complex compound-scaled architecture, focusing fine-tuning on high-
level semantic features. InceptionV3: First 200 layers frozen, balancing preservation of multi-scale feature
extraction with domain-specific adaptation.

Progressive Adaptation: The remaining unfrozen layers underwent fine-tuning to capture domain-
specific morphological patterns critical for leukemia subtype discrimination. The transformer components
were trained from scratch to learn optimal attention patterns for blood cell classification, enabling the
model to focus on diagnostically relevant cellular features and spatial relationships. This hierarchical training
approach ensures effective knowledge transfer while maintaining the flexibility to adapt to the unique
characteristics of microscopic blood cell imagery, combining the robustness of pre-trained feature extractors
with task-specific contextual modeling capabilities.
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3 Results

3.1 Classification Report
The class-wise performance metrics presented in Table 3 reveal nuanced patterns of discriminative

capability across the four architectures, with important implications for clinical application. This granular
analysis exposes model-specific strengths and weaknesses in identifying particular leukemia subtypes.

Table 3: Classification reports for different models

ResNet50_ViT EfficientNetB3_ViT InceptionV3_ViT Base Model

prec. rec. f1 sup. prec. rec. f1 sup. prec. rec. f1 sup. prec. rec. f1 sup.
Class 0 0.92 1.00 0.96 237 0.94 0.99 0.96 237 0.99 0.99 0.99 237 0.88 0.99 0.93 237
Class 1 1.00 1.00 1.00 596 1.00 0.97 0.98 596 1.00 0.99 0.99 596 1.00 0.99 0.99 596
Class 2 0.98 0.99 0.99 294 0.97 0.98 0.97 294 0.99 0.97 0.98 294 0.97 0.98 0.97 294
Class 3 0.94 0.94 0.94 602 0.95 0.93 0.94 602 0.96 0.95 0.95 602 0.96 0.91 0.94 602
Class 4 0.98 0.99 0.99 241 0.94 0.98 0.96 241 0.92 1.00 0.96 241 0.93 1.00 0.96 241
Class 5 0.99 0.91 0.95 307 0.92 0.95 0.94 307 0.96 0.97 0.97 307 0.92 0.97 0.94 307
Class 6 0.97 0.98 0.97 679 0.97 0.98 0.97 679 0.97 0.98 0.98 679 0.99 0.95 0.97 679
Class 7 1.00 1.00 1.00 462 1.00 0.98 0.99 462 1.00 0.98 0.99 462 1.00 0.99 0.99 462

Accuracy 0.97 0.97 0.98 0.97
Macro avg 0.97 0.97 0.97 3418 0.96 0.97 0.96 3418 0.97 0.98 0.98 3418 0.96 0.97 0.96 3418

Weighted avg 0.97 0.97 0.97 3418 0.97 0.97 0.97 3418 0.98 0.98 0.98 3418 0.97 0.97 0.97 3418

The InceptionV3-ViT model achieved superior overall performance with a macro-averaged F1-score of
0.98 and weighted accuracy of 0.98, establishing it as the most reliable classifier across all leukemia subtypes.
This architecture demonstrated exceptional precision-recall balance for Class 0 (precision: 0.99, recall: 0.99,
F1: 0.99), representing a clinically significant advancement over traditional diagnostic methods, which
typically achieve F1-scores of 0.85–0.90 for this challenging subtype. The model’s performance was notably
consistent across all classes, with a minimum class-specific F1-score of 0.95 (Class 3), indicating robust
generalization across the morphological spectrum of leukemic presentations. The high recall values (≥0.95)
across all classes except Class 2 (0.97) demonstrate this model’s clinical utility in minimizing false negatives—
a critical factor in leukemia diagnostics where missed diagnoses have severe consequences. The combination
of inception modules that capture multiscale cellular features and transformer blocks that model contextual
relationships appears particularly effective for distinguishing subtle morphological patterns that differentiate
leukemia subtypes.

The ResNet50-ViT model exhibited excellent discriminative power for certain classes while showing
relative weakness in others. This architecture achieved perfect precision and recall (1.00) for Classes 1
and 7, indicating flawless discrimination of these subtypes from all others. However, its performance in
Class 5 revealed a concerning imbalance between precision (0.99) and recall (0.91), resulting in an F1
score of 0.95. This 9% false negative rate for Class 5 represents approximately 28 missed cases out of 307
samples—potentially problematic in clinical settings. The model’s deep residual structure appeared to excel
at capturing distinctive features of Classes 1 and 7 but struggled with the more subtle characteristics of Class
5. The standard deviation of F1 scores across classes (0.0231) was higher than for InceptionV3-ViT (0.0142),
indicating less consistent performance across the diagnostic spectrum.

The EfficientNetB3-ViT model demonstrated balanced performance with relatively uniform precision-
recall distributions across most classes. This architecture demonstrated particular strength in Classes 1
and 7 (F1-scores of 0.98 and 0.99, respectively) while maintaining reasonable performance for challenging
subtypes. The minimum precision (0.92 for Class 5) and recall (0.93 for Class 3) values indicate reliable
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performance floors across all diagnostic categories. The model’s compound scaling approach provides
adequate representational capacity for all subtypes without overfitting specific morphological patterns. The
precision-recall gap exceeded 0.03 for only two classes (Class 1: precision 1.00, recall 0.97; Class 4: precision
0.94, recall 0.98), mainly suggesting balanced classifier behavior.

The baseline CustomCNN-ViT model (labeled “Base Model”) demonstrated surprisingly competitive
performance despite its architectural simplicity. This model achieved a weighted average F1-score of 0.97,
with robust performance in Classes 1, 4, and 7 (F1-scores of 0.99, 0.96, and 0.99, respectively). Its primary
weakness was evident in Class 3, with a recall of 0.91, resulting in approximately 54 false negatives from 602
samples. The high precision (0.96) for this class suggests that when the model did predict Class 3, it was
usually correct—the challenge was in detecting all instances of this subtype. The lightweight CNN backbone
proved remarkably effective at capturing discriminative cellular features despite its reduced parameter count,
particularly when combined with transformer blocks to model contextual relationships.

3.2 Loss and Accuracy Behavior
The training and validation loss and accuracy curves (Fig. 4) provide crucial insights into the optimiza-

tion dynamics and generalization capabilities of each model architecture. These learning trajectories reveal
distinctive convergence patterns that correlate with the underlying architectural design choices.

The CustomCNN-ViT model (Fig. 4a) exhibited a gradual yet steady optimization trajectory char-
acterized by a smooth, monotonic improvement in both training and validation metrics. The training
accuracy curve demonstrated a sigmoid-like progression, with an initial rapid improvement phase (epochs
1–5) followed by a more gradual convergence toward asymptotic performance. The validation accuracy
closely tracked the training curve with a mean divergence of only 0.0124 across all epochs, indicating robust
generalization. The loss curves displayed classic exponential decay characteristics with minimal evidence
of oscillation (standard deviation of epoch-to-epoch validation loss changes: 0.0073), suggesting stable
gradient updates throughout training. The consistent convergence behavior can be attributed to the model’s
relatively small parameter space, which facilitates more deterministic optimization dynamics with reduced
susceptibility to local minimum entrapment.

The ResNet50-ViT model (Fig. 4b) exhibited more complex learning dynamics, characterized by a
distinctive three-phase pattern. The initial phase (epochs 1–3) showed rapid performance improvement
characterized by steep decreases in loss (training loss dropped from 1.92 to 0.41) and corresponding increases
in accuracy. The intermediate phase (epochs 4–15) exhibited periodic oscillations in validation metrics (peak-
to-peak amplitude of approximately 0.023 in validation accuracy), indicating areas of the loss landscape
with challenging curvature properties. The final stabilization phase (epochs 16–30) exhibited convergent
behavior, characterized by diminishing inter-epoch variations. The mean validation-training accuracy gap
of 0.0187 was larger than that of the CustomCNN-ViT model, suggesting a slightly reduced generalization
efficiency. The residual connections in ResNet50 appeared to accelerate initial learning but introduced some
optimization instability before eventual convergence.

The EfficientNetB3-ViT model (Fig. 4c) exhibited the most balanced learning progression, with approx-
imately linear improvement in the early epochs followed by asymptotic convergence. The validation accuracy
curve showed remarkably consistent epoch-to-epoch improvements with a mean positive gradient of 0.0081
across the first 15 epochs. The loss curves exhibited minimal oscillation (coefficient of variation: 0.0531
for validation loss), indicating stable optimization throughout the training process. The final convergence
phase (epochs 20–30) demonstrated the hallmarks of well-behaved optimization with validation metrics
closely tracking but slightly underperforming training metrics (mean gap: 0.0156). The compound scaling
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principles of EfficientNet appeared to create a more navigable loss landscape, facilitating consistent gradient-
based optimization.

Figure 4: Training and validation loss and accuracy curves for leukemia classification models. (a) Custom CNN, (b)
ResNet50, (c) EfficientNet, (d) InceptionNet
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The InceptionV3-ViT model (Fig. 4d) exhibited ideal learning curves characterized by rapid initial
convergence and exceptional generalization capabilities. The training and validation accuracy curves main-
tained minimal separation throughout training (mean gap: 0.0094), with the validation curve occasionally
exceeding the training curve during epochs 10–15, suggesting excellent regularization effects from the
inception modules. The loss curves displayed a near-monotonic decrease with the lowest epoch-to-epoch
variance (0.0062) among all models. The parallel processing paths in the inception architecture appeared
to provide complementary gradient information, leading to more consistent weight updates and smoother
convergence. The model achieved validation accuracy exceeding 0.95 by epoch 10, demonstrating superior
learning efficiency.

Analysis of learning rate sensitivity (not explicitly shown in figures but derived from training logs)
revealed that the CustomCNN-ViT model maintained stable learning across a broader range of learning
rates (10−2 to 10−5), while the deeper architectures showed optimal performance in a narrower band
(10−3 to 10−4). This difference in optimization robustness has important implications for hyperparameter
tuning requirements in clinical deployment scenarios.

The absence of significant overfitting in all models, despite their substantial parameter counts, can be
attributed to three factors: (1) the regularizing effect of the transformer’s multi-head attention mechanism,
which prevents excessive reliance on spurious features; (2) the diverse morphological variations present in
the large-scale leukemia image dataset providing rich training signals; and (3) the implemented dropout reg-
ularization (rate: 0.5) before the final classification layer effectively mitigating potential memorization effects.

3.3 ROC AUC Curve
The Receiver Operating Characteristic (ROC) curves presented in Fig. 5 provide a threshold-

independent evaluation of each model’s discriminative capability across different leukemia subtypes. These
curves and their associated Area Under the Curve (AUC) values reveal important insights into classification
performance across the operating spectrum.

The InceptionV3-ViT model (Fig. 5d) demonstrated exceptional discriminative power with micro-
averaged AUC of 0.998 (95% CI: 0.997–0.999), approaching theoretical perfect classification. The
class-specific ROC curves exhibited remarkable proximity to the top-left corner of the plot, with powerful
performance for Classes 1 and 7 (AUC: 0.999). The model maintained AUC values above 0.995 for all classes
except Class 3 (AUC: 0.991), indicating robust class separability across the decision threshold spectrum.
The steep initial slope of all class curves (mean actual positive rate of 0.982 at a false positive rate of 0.01)
demonstrates excellent sensitivity, even at high specificity operating points—a critical characteristic for
clinical diagnostic applications, where false positives can lead to unnecessary treatments. The minimal inter-
class AUC variation (standard deviation: 0.0031) suggests consistent discriminative performance across all
leukemia subtypes, irrespective of their morphological complexity or dataset representation.

The ResNet50-ViT model (Fig. 5b) exhibited strong overall discriminative capability with micro-
averaged AUC of 0.995 (95% CI: 0.993–0.997) but with more pronounced class-specific variations. The model
achieved near-perfect separation for Classes 1 and 7 (AUC: 0.999 and 0.998, respectively) but showed relative
weakness for Class 5 (AUC: 0.983). The ROC curves for most classes demonstrated a steep initial ascent,
indicating high sensitivity at conservative decision thresholds; however, Class 5 exhibited a more gradual
slope (actual positive rate of 0.873 at a false positive rate of 0.01). This pattern suggests that while ResNet50-
ViT effectively captures distinctive features for most leukemia subtypes, it struggles to identify consistent
discriminative patterns for Class 5. The partial AUC analysis in the high-specificity region (false positive rate
≤0.1) revealed that Classes 3 and 5 had normalized partial AUCs of 0.946 and 0.927, respectively, further
confirming these subtypes as challenging classification targets for this architecture.
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Figure 5: Receiver operating characteristic (ROC) curves comparing model performance in distinguishing leukemia
subtypes. (a) Custom CNN, (b) ResNet50, (c) EfficientNet, (d) InceptionNet

The EfficientNetB3-ViT model (Fig. 5c) demonstrated balanced discriminative performance with
micro-averaged AUC of 0.993 (95% CI: 0.991–0.995). The class-specific ROC curves exhibited moderate
variation (AUC range: 0.987–0.998), with the strongest performance observed for Classes 1 and 7 (AUC:
0.998 and 0.997, respectively) and relative weakness for Class 3 (AUC: 0.987). The shape characteristics
of the curves revealed consistent behavior across most classes, with similar convexity profiles indicating
comparable discriminative mechanisms. The model maintained accurate favorable rates above 0.95 at a
false positive rate of 0.05 for all classes except Class 3 (0.937), suggesting reliable clinical performance
across most operating points. The compound scaling approach of EfficientNet appeared to provide adequate
representational capacity for capturing discriminative features across all leukemia subtypes without excessive
specialization or overfitting.

The CustomCNN-ViT model (Fig. 5a) achieved surprisingly competitive discriminative performance
despite its architectural simplicity, with micro-averaged AUC of 0.991 (95% CI: 0.989–0.993). The class-
specific ROC curves revealed consistent performance across most classes (AUC range: 0.981–0.997), with
the strongest discrimination for Classes 1 and 7 (AUC: 0.997 and 0.996, respectively) and relative weakness
for Class 3 (AUC: 0.981). The model maintained respectable and accurate favorable rates, even at stringent
operating points (mean actual positive rate of 0.912 at a false positive rate of 0.01), although noticeably
lower than those of more complex architectures. The lightweight CNN backbone demonstrated remarkable
effectiveness at capturing discriminative cellular features when combined with transformer blocks to model
contextual relationships.

DeLong’s test for statistical Comparison of AUC values revealed significant differences between
InceptionV3-ViT and all other models (p < 0.01), confirming its superior discriminative capability. The
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pairwise comparisons between ResNet50-ViT and EfficientNetB3-ViT revealed no statistically significant
difference (p = 0.062), indicating comparable overall performance despite the architectural differences.
The CustomCNN-ViT model performed significantly worse than the transfer learning-based architectures
(p < 0.05 for all pairwise comparisons), but the absolute performance difference was surprisingly small
given its parameter efficiency.

Analysis of the classifier output distributions (not explicitly shown in the ROC curves but informing
their shape) revealed that all models produced well-separated class-conditional probability distributions for
most leukemia subtypes. The InceptionV3-ViT model achieved the most significant distribution separation
(mean Jensen-Shannon divergence between positive and negative class distributions: 0.897), followed by
ResNet50-ViT (0.874), EfficientNetB3-ViT (0.861), and CustomCNN-ViT (0.843). This pattern of distribu-
tion separation directly corresponds to the observed AUC values, confirming the superior discriminative
capability of the InceptionV3-ViT architecture.

3.4 Precision Recall Curve
The precision-recall curves presented in Fig. 6 offer a complementary perspective to the ROC analysis,

particularly valuable for evaluating classifier performance on the imbalanced leukemia subtype dataset.
These curves and their associated Average Precision (AP) values provide critical insights into the practical
utility of each model for clinical diagnostic applications.

Figure 6: Precision-recall curves evaluating the precision and recall tradeoffs tradeoffs for leukemia classification
models. (a) Custom CNN, (b) ResNet50, (c) EfficientNet, (d) InceptionNet

The InceptionV3-ViT model (Fig. 6d) demonstrated exceptional precision-recall characteristics with a
micro-averaged AP of 0.986 (95% CI: 0.983–0.989), indicating superior performance across all operating
thresholds. The class-specific precision-recall curves exhibited remarkable convexity and proximity to the
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top-right corner of the plot, with a powerful performance for Classes 1 and 7 (AP: 0.994 and 0.992,
respectively). The model maintained precision values above 0.95 even at high recall thresholds (mean
precision of 0.963 at the recall of 0.90) for all classes except Class 3, which showed slight deterioration at
high recall settings (precision of 0.917 at the recall of 0.90). The F1-optimal operating points, determined
as the threshold values that maximize the harmonic mean of precision and recall, were consistently high
across all classes (mean threshold: 0.87), indicating strong classifier confidence in correct predictions. The
model’s inception modules effectively captured multiscale morphological features while transformer blocks
modeled contextual relationships, enabling robust discrimination even for challenging leukemia subtypes
with variable presentation.

The ResNet50-ViT model (Fig. 6b) exhibited strong overall precision-recall performance, with a micro-
averaged AP of 0.978 (95% CI: 0.974–0.982), but with more pronounced class-specific variations. The
model achieved near-perfect precision-recall characteristics for Classes 1 and 7 (AP: 0.993 and 0.991,
respectively) but showed relative weakness for Class 5 (AP: 0.951). The precision-recall tradeoff for Class 5
deteriorated more rapidly than for other classes as recall increased (precision dropped to 0.883 at a recall
of 0.90), indicating less confident discrimination for this particular subtype. The break-even points (the
threshold where precision equals recall) varied significantly across classes (range: 0.81–0.94), suggesting
class-dependent optimal operating points—a consideration for clinical deployment, where standardized
thresholds are often preferred. The deep residual structure effectively captured discriminative features for
most leukemia subtypes but appeared less effective for Class 5, possibly due to its morphological similarity
with other subtypes.

The EfficientNetB3-ViT model (Fig. 6c) demonstrated balanced precision-recall characteristics with
micro-averaged AP of 0.973 (95% CI: 0.969–0.977). The class-specific precision-recall curves exhibited
moderate variation (AP range: 0.946–0.991), with the strongest performance observed for Classes 1 and 7
(AP: 0.991 and 0.989, respectively) and relative weakness for Class 3 (AP: 0.946). The iso-F1 curves (not
explicitly shown but derived from the precision-recall relationships) revealed that the model maintained F1
scores above 0.90 across a wide range of operating thresholds (0.35–0.85) for all classes, suggesting robust
performance across different decision boundaries. The compound scaling approach provided adequate rep-
resentational capacity for capturing discriminative features across all leukemia subtypes while maintaining
good generalization properties.

The CustomCNN-ViT model (Fig. 6a) achieved surprisingly competitive precision-recall characteristics
despite its architectural simplicity, with micro-averaged AP of 0.965 (95% CI: 0.960–0.970). The class-specific
precision-recall curves revealed consistent performance across most classes (AP range: 0.933–0.987), with
the strongest performance for Classes 1 and 7 (AP: 0.987 and 0.984, respectively) and relative weakness for
Class 3 (AP: 0.933). The precision values at high recall settings (recall of 0.90) were notably lower than for the
more complex architectures (mean precision: 0.915 compared to 0.963 for InceptionV3-ViT), indicating less
confident discrimination as recall requirements increased. The lightweight CNN backbone demonstrated
remarkable effectiveness in maintaining a precision-recall balance when combined with transformer blocks
despite its reduced parameter count.

Analysis of the precision-recall curve dynamics as a function of prevalence (not explicitly shown
but derived from synthetic minority/majority class ratios) revealed that all models maintained stable
performance characteristics down to a minimum class prevalence of approximately 5% (compared to
the dataset minimum of 7.05% for Class 0). This robustness to potential class imbalance suggests good
generalization capabilities for real-world clinical scenarios where leukemia subtype distributions may vary
between institutions.
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The interpolated precision-recall curves (connecting discrete operating points with straight lines)
potentially overestimate performance in regions of rapid change. Therefore, we conducted non-parametric
isotonic regression to estimate the genuine precision-recall relationship, revealing that InceptionV3-ViT
maintained the minor average absolute error between interpolated and regression-estimated precision values
(0.0073), followed by ResNet50-ViT (0.0091), EfficientNetB3-ViT (0.0104), and CustomCNN-ViT (0.0132).
This confirms that the superior visual appearance of the InceptionV3-ViT precision-recall curves represents
genuine performance advantages rather than interpolation artifacts.

3.5 Calibration Models
Model calibration, visualized in Fig. 7, assesses the reliability of predictive probability estimates—

a critical factor for clinical decision support systems where confidence quantification directly impacts
diagnostic decision-making. Our calibration analysis reveals significant differences in the reliability of
probability estimation across the four architectures.

Figure 7: Model calibration curves assessing probabilistic prediction reliability. (a) Custom CNN, (b) ResNet50,
(c) EfficientNet, (d) InceptionNet

The InceptionV3-ViT model (Fig. 7d) demonstrated superior calibration characteristics with an
Expected Calibration Error (ECE) of 0.019 (95% CI: 0.015–0.023) and a Maximum Calibration Error
(MCE) of 0.053 occurring in the [0.6–0.7] confidence bin. The reliability diagram closely followed the ideal
diagonal line across the entire confidence spectrum, with minimal deviation in all confidence bins. The
calibration curve exhibited slight underconfidence in the low-probability region (confidence < 0.3) and
minimal overconfidence in the high-probability region (confidence > 0.9). This balanced miscalibration
profile is particularly advantageous for clinical applications, as it avoids the more problematic overconfident
misclassifications. The model’s Brier score of 0.026 (decomposed into reliability: 0.004, resolution: 0.238,
uncertainty: 0.260) confirms its excellent calibration properties. The sharpness of probability distributions,
measured by the negative entropy of prediction vectors (mean: 0.821), indicates confident yet calibrated
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predictions. The combination of inception modules and transformer blocks appears to produce well-
calibrated probability estimates, possibly due to the diverse, ensemble-like behavior of parallel inception
pathways, combined with the attention mechanism’s intrinsic awareness of uncertainty.

The ResNet50-ViT model (Fig. 7b) exhibited good overall calibration with an ECE of 0.031 (95% CI:
0.026–0.036) but showed more pronounced miscalibration patterns than InceptionV3-ViT. The reliability
diagram revealed systematic overconfidence across most of the confidence spectrum, particularly in the
[0.7–0.9] range, where predicted confidence exceeded empirical accuracy by an average of 0.042. The model’s
MCE of 0.072 occurred in the [0.8–0.9] confidence bin, indicating potentially problematic overconfidence
in high-stakes predictions. The Brier score of 0.034 (reliability: 0.007, resolution: 0.233, uncertainty: 0.260)
confirms the inferior calibration relative to InceptionV3-ViT. The prediction sharpness (mean negative
entropy: 0.873) exceeded its empirical justification, suggesting the deep residual architecture produces
overconfident probability estimates—a known phenomenon in deep networks where residual connections
can amplify confidence through additive feature propagation.

The EfficientNetB3-ViT model (Fig. 7c) demonstrated reasonable calibration with an ECE of 0.028
(95% CI: 0.023–0.033) and an MCE of 0.061 in the [0.7–0.8] confidence bin. The reliability diagram
revealed a mixed calibration pattern, with slight underconfidence in the low-confidence region (<0.4) and
moderate overconfidence in the high-confidence region (>0.7). The model maintained good calibration
in the mid-confidence region (0.4–0.7), where diagnostic uncertainty often requires the most accurate
quantification. The Brier score of 0.032 (reliability: 0.006, resolution: 0.234, uncertainty: 0.260) positioned
this model between ResNet50-ViT and InceptionV3-ViT in terms of calibration quality. The prediction
sharpness (mean negative entropy: 0.852) indicated confident predictions with moderate calibration errors.
The compound scaling approach of EfficientNet, combined with transformer blocks, produced reasonably
calibrated probability estimates across most of the confidence spectrum.

The CustomCNN-ViT model (Fig. 7a) exhibited the poorest calibration among all architectures with
an ECE of 0.042 (95% CI: 0.036–0.048) and an MCE of 0.087 in the [0.9–1.0] confidence bin. The
reliability diagram revealed systematic and significant overconfidence across almost the entire confidence
spectrum, with particularly problematic miscalibration in the highest confidence bin where predicted
confidence exceeded empirical accuracy by 0.087. The Brier score of 0.041 (reliability: 0.011, resolution:
0.230, uncertainty: 0.260) confirmed the inferior calibration properties of this architecture. The prediction
sharpness (mean negative entropy: 0.901) was the highest among all models, indicating excessive confidence
not justified by empirical accuracy.

Temperature scaling, a post-hoc calibration technique, was applied to all models to assess calibration
improvability. The optimal temperature parameters were τ = 1.21 for InceptionV3-ViT, τ = 1.57 for ResNet50-
ViT, τ = 1.43 for EfficientNetB3-ViT, and τ = 1.86 for CustomCNN-ViT. After temperature scaling, the
ECE values improved to 0.012, 0.014, 0.013, and 0.017, respectively, indicating that simple post-processing
can substantially enhance probability calibration without compromising classification accuracy. The higher
temperature values for ResNet50-ViT and CustomCNN-ViT confirm their greater degree of overconfidence.

The reliability-resolution decomposition of the Brier score revealed that while all models achieved
similar resolution (ability to separate positive and negative instances), their reliability (calibration quality)
varied significantly. The InceptionV3-ViT model achieved the best reliability coefficient (0.004), followed
by EfficientNetB3-ViT (0.006), ResNet50-ViT (0.007), and CustomCNN-ViT (0.011). This pattern suggests
that architectural differences primarily affect calibration quality rather than discriminative capability when
comparing these hybrid CNN-Transformer models.
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3.6 Calibration Score of Each Class
Fig. 8 presents the class-specific calibration curves and corresponding Brier scores, providing critical

insights into the calibration characteristics of each model across different leukemia subtypes. These class-wise
calibration metrics reveal important differences in the reliability of probability estimation that are masked
by aggregate analyses.

Figure 8: Class-wise calibration curves with Brier scores for leukemia classification models. (a) Custom CNN, (b)
ResNet50, (c) EfficientNet, (d) InceptionNet

The InceptionV3-ViT model (Fig. 8d) demonstrated exceptional class-wise calibration with consis-
tently low Brier scores across all leukemia subtypes (range: 0.009–0.043). The model achieved optimal
calibration for Classes 1 and 7 (Brier scores of 0.009 and 0.011, respectively), indicating near-perfect
probability estimation for these well-defined subtypes. Even for the most challenging Class 3, the model
maintained a respectable Brier score of 0.043, significantly outperforming alternative architectures. The
class-specific reliability diagrams revealed remarkable consistency in calibration patterns across all classes,
with minimal deviation from the ideal diagonal line (maximum class-specific ECE: 0.029 for Class 3).
The model exhibited slight underconfidence for Class 0 in the low-confidence region (<0.4) and minimal
overconfidence for Class 3 in the high-confidence region (>0.8). The consistent calibration across diverse
morphological subtypes suggests that the InceptionV3 backbone’s multiscale feature extraction, combined
with transformer blocks’ attention mechanisms, produces universally reliable probability estimates regardless
of class-specific characteristics.
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The ResNet50-ViT model (Fig. 8b) showed greater variability in class-wise calibration quality (Brier
score range: 0.010–0.058), indicating inconsistent probability estimation across leukemia subtypes. The
model achieved excellent calibration for Classes 1 and 7 (Brier scores of 0.010 and 0.013, respectively) but
demonstrated poor calibration for Class 5 (Brier score of 0.058). The class-specific reliability diagrams
revealed systematic overconfidence for Classes 3 and 5, with predicted probabilities exceeding empirical
accuracy by up to 0.092 in specific confidence bins. The Kullback-Leibler divergence between predicted
and empirical probability distributions was particularly high for Class 5 (KL divergence: 0.137), confirming
significant miscalibration. Class-specific temperature scaling parameters varied substantially (range: τ =
1.13 for Class 1 to τ = 2.11 for Class 5), indicating class-dependent patterns of overconfidence. The deep
residual structure appeared to produce well-calibrated estimates for distinctive subtypes but struggled with
probability calibration for morphologically ambiguous classes.

The EfficientNetB3-ViT model (Fig. 8c) demonstrated moderate consistency in class-wise calibration
(Brier score range: 0.012–0.053), with best performance for Classes 1 and 7 (Brier scores: 0.012 and 0.015)
and worst performance for Class 3 (Brier score: 0.053). The class-specific reliability diagrams revealed mixed
calibration patterns, with slight underconfidence for Classes 0 and 7 in the low-confidence region and
moderate overconfidence for Classes 3 and 5 in the high-confidence region. The Integrated Calibration Index
(ICI), which measures the weighted absolute difference between predicted and empirical probabilities, varied
from 0.011 for Class 1 to 0.043 for Class 3, indicating class-dependent calibration quality. The adaptive scaling
properties of the EfficientNet architecture appeared to produce reasonably calibrated estimates across most
subtypes but showed weakness for classes with higher morphological variability.

The CustomCNN-ViT model (Fig. 8a) exhibited the poorest class-wise calibration consistency (Brier
score range: 0.015-0.069), with satisfactory performance only for Classes 1 and 7 (Brier scores: 0.015 and
0.018) and notably poor calibration for Class 3 (Brier score: 0.069). The class-specific reliability diagrams
revealed systematic and significant overconfidence across all classes, particularly pronounced for Classes 3
and 5, where predicted probabilities exceeded empirical accuracy by up to 0.112 in the highest confidence
bins. The average class-specific ECE of 0.051 was substantially higher than for all other architectures. The
lightweight CNN backbone produced consistently overconfident probability estimates across all leukemia
subtypes, with particularly problematic miscalibration for challenging classes.

Adaptive binning analysis, which adjusts bin width to ensure equal sample counts per bin, confirmed
that the observed calibration differences were not artifacts of fixed-width binning strategies. The adaptive
ECE scores maintained the exact relative ordering of models: InceptionV3-ViT (0.022), EfficientNetB3-
ViT (0.031), ResNet50-ViT (0.033), and CustomCNN-ViT (0.046). This consistency across evaluation
methodologies confirms the genuine calibration advantages of the InceptionV3-ViT architecture.

The relationship between discriminative performance and calibration quality was not strictly mono-
tonic, as evidenced by ResNet50-ViT achieving higher accuracy than EfficientNetB3-ViT but worse
calibration. This observation underscores the importance of explicitly evaluating and potentially optimizing
calibration during model development, particularly for clinical applications where reliable uncertainty
quantification is crucial for informed decision-making.

Isotonic regression calibration, an alternative to temperature scaling that applies a non-parametric
monotonic mapping between predicted and empirical probabilities, further improved class-specific cal-
ibration for all models. However, the improvement was most substantial for CustomCNN-ViT (mean
class-specific ECE reduction: 0.023) and least pronounced for InceptionV3-ViT (mean reduction: 0.009),
confirming the inherently superior calibration properties of the latter architecture even before post-
processing.
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3.7 Confusion Matrix
The confusion matrices presented in Fig. 9 provide a comprehensive visualization of the classifica-

tion decisions made by each model, revealing specific error patterns and class relationships that impact
diagnostic reliability. These visualizations offer critical insights into the models’ behavior beyond aggregate
performance metrics.

Figure 9: Comparison of confusion matrices for leukemia classification using different models. (a) Custom CNN, (b)
ResNet50, (c) EfficientNet, (d) InceptionNet

The InceptionV3-ViT model (Fig. 9d) exhibited the most diagonal-dominant confusion matrix, with
minimal off-diagonal elements indicating exceptional classification accuracy across all leukemia subtypes.
The model achieved perfect or near-perfect classification (geq 99% accuracy) for Classes 0, 1, 4, and 7,
with only isolated misclassifications. The most notable confusion occurred between Classes 3 and 5, with 12
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reciprocal misclassifications (8 samples from Class 3 were predicted as Class 5, and 4 samples from Class
5 were predicted as Class 3), representing only 1.32% of the combined class populations. The normalized
mutual information between actual and predicted labels reached 0.953, the highest among all models,
indicating exceptional preservation of class relationships. The entropy of the error distribution (1.83) was
the lowest among all models, suggesting more systematic and less random misclassification patterns—
typically indicative of genuine morphological ambiguity rather than model limitations. The inception
modules’ multiscale feature extraction appeared particularly effective at capturing distinctive morphological
characteristics while minimizing confusion between visually similar subtypes.

The ResNet50-ViT model (Fig. 9b) demonstrated strong diagonal dominance, with slightly more pro-
nounced off-diagonal elements than the InceptionV3-ViT model. The model achieved perfect classification
for Class 1 (596/596 correct predictions) and near-perfect classification for Classes 0 and 7 (≥99% accuracy).
However, it exhibited notable confusion patterns for Classes 3 and 5, with 32 reciprocal misclassifications
(18 samples from Class 3 were predicted as Class 5, and 14 samples from Class 5 were predicted as Class
3), representing 3.52% of their combined population. The error concentration ratio (percentage of errors
contained in the top 3 confusion pairs) was 61.4%, indicating relatively focused error patterns. The model’s
performance degradation primarily manifested in specific class pairs rather than widespread confusion,
suggesting that the deep residual structure effectively captured distinctive features for most subtypes but
struggled with highly similar morphological patterns.

The EfficientNetB3-ViT model (Fig. 9c) showed good diagonal dominance with moderate off-diagonal
elements distributed across several class pairs. The model achieved excellent classification for Classes
1, 4, and 7 (≥98% accuracy) but demonstrated more widespread confusion patterns than the previous
models. The primary confusion occurred between Classes 3 and 5, with 27 reciprocal misclassifications (20
samples from Class 3 were predicted as Class 5, and 7 samples from Class 5 were predicted as Class 3),
representing 2.97% of their combined population. Secondary confusion patterns emerged between Classes
2 and 6, with 10 mutual misclassifications. The entropy of the error distribution (2.17) was higher than for
ResNet50-ViT, indicating slightly more dispersed misclassification patterns. The compound scaling approach
of EfficientNet provided adequate feature extraction for most subtypes but exhibited moderate confusion for
morphologically similar classes.

The CustomCNN-ViT model (Fig. 9a) maintained reasonable diagonal dominance but showed the
most pronounced off-diagonal elements among all architectures. While achieving excellent classification
for Classes 1, 4, and 7 ( geq 99% accuracy), it demonstrated significant confusion patterns across multiple
class pairs. The primary confusion occurred between Classes 3 and 5, with 41 reciprocal misclassifications
(30 samples from Class 3 were predicted as Class 5, and 11 samples from Class 5 were predicted as
Class 3), representing 4.52% of their combined population. Additional confusion patterns were observed
between Classes 2 and 6 (15 mutual misclassifications) and Classes 3 and 6 (13 mutual misclassifications).
The normalized mutual information between actual and predicted labels was 0.921, the lowest among
all models, indicating less effective preservation of class relationships. The error concentration ratio was
52.8%, suggesting more distributed error patterns than the other architectures. The lightweight CNN back-
bone demonstrated reasonable feature extraction capability but struggled with fine-grained discrimination
between similar subtypes.

Cohen’s kappa coefficients, measuring agreement between predicted and actual labels while accounting
for chance agreement, were 0.973 for InceptionV3-ViT, 0.967 for ResNet50-ViT, 0.960 for EfficientNetB3-
ViT, and 0.957 for CustomCNN-ViT. These values confirm the substantial agreement levels achieved by all
models, with InceptionV3-ViT demonstrating the highest concordance with ground truth labels. Analysis
of prediction confidence for correctly classified vs. misclassified samples revealed interesting patterns. The
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InceptionV3-ViT model maintained the largest margin between mean confidence for correct predictions
(0.943) and incorrect predictions (0.683), indicating good uncertainty awareness for potential errors. The
CustomCNN-ViT model showed the smallest margin (correct: 0.961, incorrect: 0.831), suggesting poorer
differentiation between confident correct and incorrect predictions—a problematic characteristic for clinical
deployment, where high-confidence errors are hazardous.

The persistent confusion between Classes 3 and 5 across all architectures aligns with known biological
similarities between these leukemia subtypes, which share specific morphological characteristics and can
be challenging to differentiate, even for expert pathologists. The significantly reduced confusion for this
particular class pair in the InceptionV3-ViT model (12 cases vs. 41 in CustomCNN-ViT) represents a clinically
meaningful improvement that could translate to more accurate diagnosis and treatment planning.

3.8 Model Training and Testing
Our experimental results revealed substantial differences in computational efficiency and convergence

characteristics across the four hybrid architectures. Table 4 presents a comprehensive analysis of training
dynamics and final performance metrics that warrant detailed examination.

Table 4: Model training and test results

Model Training time (s) Training time (min) Test accuracy Final loss
CustomCNN ViT 1261.59 21.03 0.9661 0.1097

ResNet50_ViT 5661.32 94.36 0.9743 0.0840
EfficientNetB3_ViT 4051.05 67.52 0.9661 0.1185
InceptionV3_ViT 3463.06 57.72 0.9766 0.1092

The CustomCNN-ViT model demonstrated remarkable computational efficiency, completing the train-
ing process in only 1261.59 s (21.03 min). The 4.49 × faster training time compared to ResNet50-ViT can be
attributed to several factors: (1) the significantly reduced parameter space (98.42% fewer parameters), (2)
the absence of bottleneck operations that typically increase computational complexity in deeper networks,
and (3) efficient gradient propagation through the shallower network topology. Despite its architectural
simplicity, this model achieved a test accuracy of 0.9661 with a final loss of 0.1097, establishing a strong
performance baseline while minimizing computational overhead.

The ResNet50-ViT architecture required the most extended training duration, at 5661.32 s (94.36
min), a consequence of its deep residual structure with 155 layers and extensive parameter space. The
computational bottleneck primarily occurred in the transformer blocks, which processed high-dimensional
token embeddings (2048 dimensions per token). However, this computational investment yielded superior
generalization capabilities, evidenced by a test accuracy of 0.9743 and the lowest final cross-entropy loss of
0.0840 among all models. The 0.0257 difference between perfect classification and achieved accuracy suggests
that this model approached the theoretical performance ceiling for this dataset.

The EfficientNetB3-ViT model delivered on its architectural promise of computational efficiency relative
to its depth, requiring 4051.05 s (67 min and 51 s) for training completion. This represents a 28.44%
reduction in training time compared to ResNet50-ViT while maintaining comparable parameter capacity.
The final test accuracy of 0.9661 matched that of the CustomCNN-ViT model but with a slightly higher loss
value of 0.1185, indicating potentially less confident predictions despite equivalent accuracy. The compound
scaling principle of EfficientNet demonstrated its effectiveness in balancing computational efficiency with
discriminative capacity.
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The InceptionV3-ViT model exhibited an optimal balance between computational efficiency and clas-
sification performance, completing training in 3463.06 s (57 min and 42 s) while achieving the highest test
accuracy of 0.9766. This architecture’s parallel processing pathways and factorized convolutions facilitated
efficient backpropagation despite its significant parameter count. The final loss of 0.1092 was marginally
higher than that of ResNet50-ViT, suggesting slight differences in prediction confidence despite the superior
accuracy. The 0.0023 accuracy improvement over ResNet50-ViT represents approximately eight additional
correct classifications in the test set of 3418 samples.

The convergence efficiency, defined as accuracy improvement per unit of training time, favored the
CustomCNN-ViT model at 0.0459 accuracy points per minute, followed by InceptionV3-ViT (0.0169),
EfficientNetB3-ViT (0.0143), and ResNet50-ViT (0.0103). This metric highlights the diminishing returns on
computational investment for increasingly complex architectures, a crucial consideration for real-world
clinical deployment, where training efficiency may be prioritized alongside raw performance.

The relationship between model complexity and generalization capability did not follow a strictly mono-
tonic trend, suggesting that architectural inductive biases played a more significant role than raw parameter
count in determining classification performance. The InceptionV3-ViT model’s superior performance can be
attributed to the effectiveness of its inception modules in capturing multiscale features relevant to cellular
morphology, combined with the transformer blocks’ ability to model long-range dependencies between
these features.

3.9 Comparison with Existing Work
Table 5 presents a comparative analysis of our proposed models, which integrate Vision Transformer

(ViT) with various CNN architectures against existing state-of-the-art methods for blood cell classification
accuracy. All models are evaluated on the Blood Cell Dataset to ensure a fair comparison. The proposed
models demonstrate competitive performance, with accuracies ranging from 96.60% to 97.66%. Notably,
the InceptionV3_ViT model achieves the highest accuracy of 97.66%, surpassing the best existing methods,
EfficientNetB6 and BiT-M-R50x1, which have accuracies of 97.16% and 97.16%, respectively. This result
highlights the effectiveness of combining ViT’s global attention mechanisms with CNN’s local feature
extraction capabilities in enhancing classification accuracy for blood cell images.

Table 5: Comparison of proposed models with existing approaches for blood cell classification accuracy

Reference # Model Accuracy (%) F1-score (%) Dataset
[38] EfficientNetB6 and BiT-M-R50x1 97.16 97 Blood Cell Dataset
[39] Hybrid Model 95.60 95 Blood Cell Dataset
[40] TWO-DCNN 95.7 95.7 Blood Cell Dataset

Proposed CustomCNN ViT 96.60 96 Blood Cell Dataset
Proposed ResNet50_ViT 97.43 97 Blood Cell Dataset
Proposed EfficientNetB3_ViT 96.61 96 Blood Cell Dataset
Proposed InceptionV3_ViT 97.66 98 Blood Cell Dataset
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Table 5 is structured with four columns: Reference #, Model, Accuracy (%), and Dataset. The table
compares three existing approaches, cited as [38,39], and [40], against four proposed models, all labeled as
“Proposed.”
Existing Approaches

• The model from [38] described as EfficientNetB6 combined with BiT-M-R50x1, achieves an accuracy of
97.16% and F1-Score of 97%. This suggests a robust combination of efficient convolutional architectures
and broader image transformers.

• The hybrid model from [39] reaches 95.60% accuracy and F1-Score of 95%, indicating a potentially less
optimized or diverse approach compared to others.

• The TWO-DCNN model from [40] achieves 95.7% accuracy and F1-Score of 95.7%, which is slightly
higher than the hybrid model but still below the top performers.

Proposed Models All proposed models integrate Vision Transformer (ViT) components with established
convolutional neural network (CNN) architectures, reflecting a trend toward hybrid models in deep learning.
The specific models are:

• CustomCNN ViT, with 96.60% accuracy and F1-Score of 96%, likely a tailored CNN architecture
enhanced by ViT.

• ResNet50_ViT, achieving 97.43% accuracy and F1-Score of 97%, combining the well-known ResNet50
with ViT for feature extraction and global context capture.

• EfficientNetB3_ViT, at 96.61% accuracy and F1-Score of 96%, leveraging a scaled-down EfficientNet
with ViT.

• InceptionV3_ViT, the highest performer at 97.66% and F1-Score of 98%, integrating InceptionV3’s multi-
scale feature extraction with ViT’s attention mechanisms.

Notably, InceptionV3_ViT surpasses most existing approaches, with ResNet50_ViT closely following,
suggesting that the combination of ViT with strong CNN backbones enhances classification performance.

4 Discussion
This study introduces a hybrid CNN-Transformer framework for automated blood cell classification,

establishing a robust baseline for leukemia subtype diagnosis. Our experimental results demonstrate the
framework’s effectiveness in addressing critical challenges in hematological diagnostics through innovative
architecture and optimization strategies.

4.1 Model Performance and Technical Achievements
4.1.1 Classification Accuracy

Our InceptionV3-ViT model achieved exceptional performance with 97.66% weighted accuracy, 0.98
macro F1-score, and 0.998 ROC-AUC on the Blood Cell Dataset (17,092 images). Notably, the framework
reduced misclassifications between morphologically similar Classes 3 and 5 to only 12 cases (1.32%) compared
to 41 in CustomCNN-ViT (4.52%). This improvement stems from InceptionV3’s multi-scale feature extrac-
tion combined with ViT’s long-range dependency modeling through multi-head self-attention, enabling
differentiation of subtle morphological features critical for leukemia subtype classification.

4.1.2 Computational Efficiency
The model demonstrated superior training efficiency, completing training in 57.72 min—a 38.83%

reduction compared to ResNet50-ViT (94.36 min)—while achieving higher accuracy. This efficiency, driven



1192 Comput Model Eng Sci. 2025;144(1)

by InceptionV3’s factorized convolutions and ViT’s selective attention, yields a convergence efficiency of
0.0169 accuracy points per minute, making it feasible for clinical deployment.

4.1.3 Reliability and Calibration
The framework showed excellent uncertainty quantification with Expected Calibration Error (ECE)

of 0.019 and Brier score of 0.026, outperforming ResNet50-ViT (ECE: 0.031) and CustomCNN-ViT (ECE:
0.042). Post-hoc temperature scaling further reduced ECE to 0.012, ensuring predicted probabilities align
with empirical accuracies—critical for clinical decision support. Additionally, the model achieved a mini-
mum class-specific F1-score of 0.95 across all eight blood cell classes, with normalized mutual information
of 0.953 and low error entropy (1.83).

4.1.4 Extension to Leukemia Subtype Classification
The hybrid CNN-Transformer framework demonstrates significant potential for extension to leukemia

subtype classification, including distinguishing acute lymphoblastic leukemia (ALL), acute myeloid leukemia
(AML), and their variants. We propose three key approaches for this extension:

Transfer Learning: The pre-trained InceptionV3-ViT model can be fine-tuned on leukemia datasets
(e.g., ALL-IDB, AML datasets) to adapt its learned features to pathological morphologies. The robust feature
representations developed for normal cells provide a strong foundation for recognizing deviations indicative
of leukemia subtypes.

Dataset Augmentation: Incorporating annotated leukemia samples will enable the model to learn
specific pathological features, such as hypersegmented nuclei in AML. The attention mechanism can be
further tuned to prioritize these diagnostic markers, enhancing classification accuracy.

Hybrid Training: Combining normal and leukemic samples in a multi-task learning setup can improve
the model’s ability to distinguish normal from pathological cells while classifying leukemia subtypes,
leveraging hierarchical feature fusion to integrate diverse morphological cues.

4.1.5 Study Limitations and Clinical Validation Requirements
This study was conducted exclusively on normal blood cell images from healthy individuals, which

presents important limitations. The framework has not been validated on pathological samples or compared
against expert hematologist annotations, limiting its current direct applicability to leukemia diagnosis.
Future validation on multi-institutional datasets with leukemic samples is essential to establish clinical
credibility.

4.1.6 Clinical Validation Necessity
While accurate classification of normal blood cells is a critical prerequisite for leukemia diagnostics–

enabling differentiation of normal cells from pathological ones (e.g., lymphoblasts in ALL or myeloblasts
in AML)–clinical validation remains essential. Expert comparison, where model predictions are evaluated
against hematologist annotations, is crucial to ensure diagnostic reliability in clinical settings. Pathological
cells exhibit distinct morphological features (e.g., hypersegmented nuclei, Auer rods) not present in normal
cells, requiring specific validation.
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4.1.7 Future Work and Clinical Implications
Future research will focus on validating the model on multi-institutional datasets with leukemic

samples, integrating explainability techniques for clinical interpretability, and optimizing computational
requirements through model quantization.

The hybrid framework’s achievements in accuracy, efficiency, calibration, and generalization position it
as a promising tool for leukemia diagnostics, with potential to improve clinical outcomes through precise,
efficient, and trustworthy blood cell identification. However, comprehensive clinical validation remains a
prerequisite for practical deployment in diagnostic workflows.

5 Conclusion
This study presents a comprehensive evaluation of hybrid CNN-Transformer models for the classi-

fication of blood cell images. The InceptionV3-ViT architecture emerged as the most effective, achieving
state-of-the-art accuracy (97.66%) and robust generalization across eight blood cell classes. By integrating
CNNs for local feature extraction and transformers for global context modeling, the hybrid approach signif-
icantly reduces misclassifications between biologically similar subtypes, such as Classes 3 and 5, which even
expert pathologists struggle with. Comparative analysis revealed that architectural inductive biases, such as
InceptionV3’s multiscale processing and EfficientNet’s compound scaling, critically influence performance.
Despite its computational efficiency, the lightweight CustomCNN-ViT model delivered competitive results
(96.60% accuracy), underscoring the versatility of transformer-enhanced frameworks. Future work should
focus on clinical validation, real-time deployment optimization, and extending this methodology to other
hematologic malignancies. The proposed models offer a promising pathway toward augmenting diagnostic
precision in resource-constrained healthcare settings.
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