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ABSTRACT: The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant
cybersecurity challenges, particularly in safeguarding sensitive patient data and maintaining the integrity of medical
services. As healthcare becomes more data-driven, cyberattacks targeting these systems continue to rise, necessitating
the development of robust, domain-adapted Intrusion Detection Systems (IDS). However, current IDS solutions often
lack access to domain-specific datasets that reflect realistic threat scenarios in healthcare. To address this gap, this
study introduces HCKDDCUP, a synthetic dataset modeled on the widely used KDDCUP benchmark, augmented with
healthcare-relevant attributes such as patient data, treatments, and diagnoses to better simulate the unique conditions
of clinical environments. This research applies standard machine learning algorithms Random Forest (RF), Decision
Tree (DT), and K-Nearest Neighbors (KNN) to both the KDDCUP and HCKDDCUP datasets. The methodology
includes data preprocessing, feature selection, dimensionality reduction, and comparative performance evaluation.
Experimental results show that the RF model performed best, achieving 98% accuracy on KDDCUP and 99% on
HCKDDCUP, highlighting its effectiveness in detecting cyber intrusions within a healthcare-specific context. This
work contributes a valuable resource for future research and underscores the need for IDS development tailored to
sector-specific requirements.
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1 Introduction
Integrating modern data science and communication technologies into the healthcare system has

become essential for patients and healthcare professionals to efficiently collect, store, retrieve, and share
health information. However, the rapid evolution of these technologies comes with the proliferation
of cyberattacks that specifically target healthcare systems. Currently, numerous security solutions are
available, such as firewalls, antivirus software, cryptography-based encryption [1], authentication systems
[2], Intrusion Prevention Systems (IPS), and Intrusion Detection Systems (IDS) to strengthen healthcare
systems security against growing cyber threats and attacks. However, a literature review confirms that IDS
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is a preferred, robust, and effective solution for enhancing cyber defenses in healthcare care [3]. Given
the potential consequences of successful intrusions, from data breaches to financial loss and reputational
damage, implementing a robust IDS is imperative to protect healthcare systems.

Traditionally, IDS has been used in computer networks to enhance security against unauthorized entry
and different types of data breaches. However, directly adopting conventional IDS strategies into healthcare
systems is extremely problematic given the distinct nature of the healthcare environment. They involve the
high sensitiveness of patient information, heterogeneity and complexity of networked medical devices and
systems, and the often occurring class imbalance in network traffic data due to infrequent but significant
attack events. Hence, it is very important to test the effectiveness of IDS for healthcare systems with growing
sophistication of cyberattacks and dependence on networked systems.

Towards this end, the objective of this research is to perform comparative analysis of standard machine
learning algorithms like Random Forest (RF), Decision Tree (DT) and K-Nearest Neighbors (KNN) to
unearth the strengths and weaknesses of intrusion detection. Such analysis exploits the benchmark-proven
KDDCUP dataset and a newly synthesized dataset called HCKDDCUP, specifically for healthcare systems.
The HCKDDCUP database has been tuned and designed with respect to realistic network traffic patterns
and cyber-attacks for healthcare establishments as derived from the KDDCUP dataset. Compared to existing
IDS benchmarks such as NSLKDD, CICIDS2017, and UNSWNB15, which are either outdated or too generic
for healthcare environments, HCKDDCUP introduces domain-specific attributes (e.g., patient records,
diagnoses, treatments) and emulates healthcare-specific cyberattack vectors such as EHR manipulation and
DDoS on medical services. This makes it a significant advancement in the development of contextualized
IDS datasets for critical sectors. So, the thrust of the study eventually is to test transferability of IDS models
trained on the KDDCUP dataset and on HCKDDCUP dataset reflecting contemporary network behaviors
and emerging patterns of attacks in healthcare systems. The KDDCUP dataset represents a benchmark for
the intrusion detection studies and a reference point to evaluating different algorithms of IDS. To this end,
the research work has two major research goals:

• Evaluate and compare the performance of the IDS algorithms on KDDCUP dataset to provide
performance insights for a standard dataset;

• Evaluate the effectiveness of the IDS algorithms on a newly developed HCKDDCUP dataset that reflects
real-world network behavior including various cyberattack scenarios and patterns within the context of
healthcare systems.

Further, this study aims to provide findings and insights from the proposed work for assessing the
strength and weaknesses of different IDS algorithms and to offer more resilient IDS solutions for healthcare
systems. Specifically, the performance evaluation of IDS algorithms for healthcare systems with various
datasets will allow researchers and practitioners to select relevant datasets and algorithms by considering
their advantages and disadvantages. Moreover, evaluating the transferability of IDS to datasets provides bet-
ter perceptions of the adaptability and generalizability of IDS models. In the following subsequent sections,
we provide a comprehensive literature review by including key studies that have analyzed the performance
of IDS on well-known datasets. Through this review, we carefully analyze state-of-the-art studies’ strengths,
limitations, and implications to provide a solid foundation for proposed work. Additionally, we describe the
proposed work, which includes the generation of a synthetic dataset, selection criteria, data collection, and
evaluation of IDS algorithms. Finally, we present the research findings, draw conclusions, and describe the
potential future research opportunities.
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2 Related Work
In recent years, cyberattacks have increased in volume and complexity, allowing attackers to exploit

new vulnerabilities and perform intrusions in healthcare systems constantly. Therefore, healthcare systems
require proactive defense mechanisms to detect and mitigate intrusions and minimize vulnerabilities. It’s
about the highly sensitive data in health systems such as personal information, financial records, and patient
care, as well as diagnosis details that become inaccessible to unauthorized users or to illegal access in case
of data breach or attack, which is a significant security issue for legal liabilities, fines, and remediation
costs. Thus, the reputational damage from a breach or attack can be profound in healthcare systems. Thus,
systematic literature review is critical to enhance the understanding of complexities associated with IDS
algorithms and employ diverse datasets to develop robust IDS for healthcare systems that accurately represent
real-world network traffic patterns and attack scenarios. Hence, this research is intended to conduct a
comparative study among the IDS algorithms and to justify the benefits and drawbacks of KDDCUP data
against the newly originated HCKDDCUP data to assess the efficiency in healthcare systems. This KDD
dataset, proposed back in 1999, is worthy to be considered a reference data set for evaluating IDS algorithms
as per the attack scenarios of network traffic. However, there are added drawbacks such as excessive data and
old information, which is misinterpreted as footprints of new attack patterns and/or behavior. It also would
not be capable of capturing ever-evolving methods of attack.

To this end, the IDS was proposed by taking data from the KDDCUP dataset in [4] to classify attacks
on the basis of feedforward neural networks. This study shed some light on the ability of neural networks to
detect and classify network attacks. The detection rates, however, were found to be unsatisfactory for R2L and
U2R attacks. A related work was presented in [5], which introduced a comprehensive comparative analysis
of IDS algorithms using KDDCUP and NSLKDD datasets. The work evaluated the merits and demerits of
various algorithms based on IDS which affect their performance based on the characteristics of the datasets.
The other study which was cited in [6] carried on the comparative analysis for the IDS algorithm extensively
across multiple KDDCUP, NSLKDD, and DARPA datasets to identify the most authentic dataset representing
real-world situations for network traffic. In the same way, the KDDCUP dataset regarding intrusion detection
was also analyzed by characterizing it into four classes in [7] for evaluation of detection vs. false alarm IDS
algorithms. However, the paper [8] pointed out some major issues about the proposed works [4–7] and
recommended a few interventions.

Furthermore, the study in [9] focused on Distributed Denial of Service (DDoS) attacks by employing
data mining and machine learning algorithms. Their results may not be robust and generalizable, but they
emphasized the importance of appropriate features and dataset selection for accurate intrusion detection.
An overall 98.63% accuracy was achieved using the Multilayer Perceptron algorithm with promising
performance. In contrast, RF and Naïve Bayes (NB) algorithms produced poor accuracy rates to detect DDoS
attacks. Machine learning algorithms for intrusion detection were evaluated in [10] using multiple widely
used datasets to ascertain their effectiveness in handling different types of attacks. The UNSWNB15 dataset
was introduced to provide a more comprehensive benchmark for evaluating IDSs compared to the KDDCUP
dataset, with a maximum accuracy of 98.2% achieved using RF. However, the proposed work was limited
to static datasets. A voting method that utilizes an ensemble of DT, RF, KNN, and Deep Neural Network
(DNN) was proposed in [11], achieving an accuracy of 85.2% on KDDCUP. Although the ensemble method
outperformed individual DT, RF, KNN, and DNN methods, the technique’s performance was not assessed
on network datasets. Consequently, the robustness and generalizability of the process may be compromised.

The CICIDS17 and CSECICIDS18 datasets, as introduced in [12], were characterized by realistic network
traffic and updated network attacks. A comparative analysis of IDS performance was conducted, evaluating
the effectiveness of various IDS techniques in detecting network intrusions and assessing the strengths and
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weaknesses of each dataset in representing real-world network traffic. However, both datasets were found
to be prone to the issue of high-class imbalance, which may lead to low accuracy. In another related study,
the performance of a multi-feature correlation method with Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM)-based models was demonstrated in [13] on network-based datasets such
as UNSWNB15 and CICIDS17. Even though the Deep Learning (DL) model implicitly extracts its features,
the proposed method employs various preprocessing and feature selection methods with regular updates to
address network changes. Similarly, the work in [14] demonstrated the performance of an ensemble machine
learning-based method on NSLKDD, UNSWNB15, and CICIDS17 datasets for intrusion detection, with
continuous updates to adapt to dynamically changing networks, which may increase the processing time and
resource consumption.

Recent studies have highlighted the use of hierarchical and hybrid deep learning models in healthcare.
For instance, Ali and Zoltan [15] introduced the CHDLCY framework, which is a combined hybrid deep
learning architecture that reuses layers to improve intrusion detection in multi-cloud healthcare systems.
The model demonstrated faster training times and achieved accuracy levels between 98% and 100%.
These hierarchical methods show potential in handling complex healthcare network traffic while ensuring
scalability and performance. In addition, Ali et al. [16] developed a multimodal AI approach that integrates
machine learning, deep learning, and anomaly detection for real-time cybersecurity in healthcare. Their
model improves the speed and accuracy of threat detection using the synergy of several AI approaches by
demonstrating superiority in protecting sensitive patient information and healthcare facilities from advanced
cyber attacks.

In [17], a scalable machine learning-based intrusion detection method was proposed by preprocessing
and analyzing large network traffic from real-time and high-speed networks. The method was subjected to
poor computation due to the expensive optimization process, which required the proper feature selection
from network flows. In another work, reference [18] proposed a dynamic ensemble incremental learning-
based Network Intrusion Detection System (NIDS) for handling dynamic network changes using the
KDDCUP dataset without considering real-time and complex network datasets. In [19], an intrusion
detection method utilizing word embedding with the KNN method was proposed for payload network
data, while the packet headers were ignored. Consequently, the proposed method was vulnerable to
packet header scanning and probing attacks. Moreover, the maximum accuracy was limited to 92% on the
CICIDS17 dataset.

The hierarchical CNN method proposed in [20] involved transforming packet bytes of CICIDS17 into
images for intrusion detection. However, the proposed method was deemed inadequate due to insufficient
training samples for certain abnormal types, highlighting the limitations of classification-based DL detection
methods in detecting abnormal traffic within small sample categories. Additionally, the extraction and
preprocessing of packet bytes necessitated high computational resources, despite achieving 90% accuracy
[21]. In [22], sparse autoencoder and DNN methods were proposed for intrusion detection on the KDDCUP,
NSLKDD, and UNSWNB15 datasets. This method utilized a sparse autoencoder to select features from
network statistical features and employed a DNN for intrusion detection. However, as noted in [21], machine
learning and neural network-based methods may lack robustness in adversarial environments. This is
because various Generative Adversarial Network (GAN)-based methods can be used to alter network
features to evade these models.

Table 1 presents a comprehensive summary of selected intrusion detection studies. The comparative
analysis highlights the diverse array of IDS and their corresponding accuracies, particularly regarding system
security. Existing systems have primarily focused on statistical features extracted from network flows. Yet,
they fail to address the unique security challenges inherent in healthcare environments, where the integrity
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and confidentiality of patient data and critical infrastructure are on top. Thus, this study proposed the
automated IDS to strengthen the cyber defenses of the healthcare system. Moreover, the proposed method
employed the DT, RF, and KNN models on KDDCUP and new synthetic HCKDDCUP datasets to ensure
better security and stronger protection against network intrusions.

Table 1: Summary of selected intrusion detection studies

Study focus Dataset Method Accuracy
(%)

Detection of DDoS attacks using
data mining [9]

Not specified Data mining
techniques

98.63

Evaluation of machine learning
algorithms for IDS [10]

UNSWNB15 Machine learning
algorithms

98.2

Ensemble method for intrusion
detection [11]

KDDCUP,
NSLKDD

Ensemble of DT,
RF, KNN, DNN

85.2

Intrusion detection method
utilizing word embedding with

KNN [19]

UNSWNB15 Word embedding
with KNN

99

Hierarchical CNN method for
intrusion detection [20]

CICIDS17,
CSECICIDS18

Hierarchical CNN 90

Sparse autoencoder and DNN
methods for intrusion detection

[22]

KDDCUP,
NSLKDD,

UNSWNB15

Sparse
autoencoder, DNN

99

Proposed method KDDCUP,
HCKDDCUP

DT, RF, KNN 99

3 Proposed Methodology
The proposed methodology includes several key steps to develop healthcare-adapted IDS, as shown

in Fig. 1, to strengthen the cyber defenses of the healthcare systems. The process begins by creating
the HCKDDCUP dataset, specifically designed to mimic attributes and attack scenarios in healthcare
systems. Moreover, the HCKDDCUP reflects the characteristics of the KDDCUP dataset while adapting
the unique security requirement to ensure the comprehensive evaluation of the IDS algorithms that closely
approximate the real-world attack scenarios of the healthcare systems. Consistency and accuracy of data
would provide better results over IDS algorithms. Hence, data preprocessing includes data cleaning and
encoding variable categories in the proposed method to eliminate any inconsistency from KDDCUP and
HCKDDCUP datasets.

Figure 1: Proposed methodology
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As an inevitable conclusion, there is a need to comprehend in-depth the data patterns and characteristics
to conceive a meaningful IDS [23]. After preprocessing the KDDCUP and HCKDDCUP datasets, both were
analyzed to provide distribution and prevalence information on different attack types through data exploring
analysis. This analysis investigates the data, examining trends, anomalies, and likely security risks in the
datasets. The subsequent necessary procedure is the elimination of highly correlated columns from the two
datasets. This process optimizes the quality and reliability of data that may adversely affect the performance of
machine learning algorithms. Furthermore, columns from both datasets will be numerically encoded using
the label encoding technique. The label encoding process helps prevent compatibility issues by converting
variable data into numerical form with various machine-learning models. Afterward, feature selection and
dimensionality reduction techniques are employed to identify relevant features and reduce the complexities
in both datasets. This step optimizes both datasets in selecting the most accurate features and reducing the
dimensionality of both datasets for machine learning models. Finally, machine learning models, including
RF, DT, and KNN, are trained on preprocessed datasets, and their performance in intrusion detection is
evaluated to identify the most suitable algorithms for intrusion detection in healthcare systems, ultimately
contributing to improving healthcare cyber defenses.

3.1 Synthetic HCKDDCUP Dataset Generation
In this study, we undertake an in-depth comparative analysis between a benchmarked KDDCUP dataset

obtained from Kaggle and an HCKDDCUP dataset generated using the code outlined in Algorithm 1. While
high-quality datasets are imperative for data-driven tasks and machine learning models, acquiring them from
real-world sources can prove challenging and time-consuming [23,24]. Creating an HCKDDCUP dataset
resembling the attributes and attack scenarios found in the KDDCUP dataset for healthcare involves several
steps. Since the KDDCUP dataset pertains to network intrusion detection rather than healthcare, we must
adjust the attributes and attack scenarios to suit the healthcare domain. The simplified code in Algorithm 1
outlines the process to generate the HCKDDCUP dataset that mirrors some attributes and attack scenarios
like the KDDCUP dataset but is tailored for healthcare. Here, we define characteristics such as Patient_ID,
Age, Gender, Diagnosis, and Treatment, which are relevant to healthcare. Meanwhile, the KDDCUP dataset
comprises approximately 4.9 million vectors, each representing a single connection and consisting of 41
attributes that can be categorized as normal or indicating an attack [25]. The dataset features four main attack
categories:

• Denial of Service (DOS): where the device’s memory becomes overwhelmed, rendering it unable to
respond to requests.

• U2R Attack: Involving a cybercriminal gaining access to a device and exploiting vulnerabilities to access
the router.

• R2L Attack: occurring when a cybercriminal without device access sends packets from a computer to
exploit system vulnerabilities and gain access to the device.

• Probe Attack: an attempt to obtain data from a computer network system to circumvent security
controls.

Similar scenarios are defined within healthcare settings to adapt these attack scenarios [26,27]. The code
then generates HCKDDCUP data for each attribute using appropriate distributions and combines them into
a DataFrame representing the HCKDDCUP dataset. Additionally, the KDDCUP dataset from Kaggle is the
benchmark in our analysis, comprising observations and measurements collected from a specific domain,
thus representing real-world data. Conversely, the HCKDDCUP dataset is crafted by simulating data with
predetermined patterns to replicate the characteristics and patterns observed in the KDDCUP dataset.
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Algorithm 1: Generating HCKDDCUP dataset with attributes and attack scenarios
Input:

• basic_attributes: List of basic attributes relevant to healthcare.
• traffic_attributes: List of traffic attributes relevant to healthcare.
• content_attributes: List of content attributes relevant to healthcare.
• attack_scenarios: List of attack scenarios relevant to healthcare.
• num_samples: Number of synthetic samples to generate.

Initialization:
• Create an empty dictionary HCKDDCUP_data to store synthetic data.
• Create a sequence of patient IDs from 1 to num_samples.

Generating Synthetic Data:
for each attribute in the combined list of basic_attributes, traffic_attributes, and
content_attributes do

if attribute is in basic_attributes then
Generate random integer values between 0 and 100.

else if attribute is in traffic_attributes then
Generate random integer values between 0 and 1000.

else if attribute is in content_attributes then
Randomly choose from {tcp, udp, icmp}.

else if
end for
Generating Attack Scenarios:

• Randomly select attack scenarios from attack_scenarios for each sample.
Combining Data:

• Add the attack scenario column to the HCKDDCUP data dictionary.
Output:

• Create a DataFram HCKDDCUP_df from the HCKDDCUP data dictionary.

Furthermore, the attributes in the KDDCUP dataset are categorized into three groups: basic attributes,
traffic attributes, and content attributes. The basic attributes category encompasses features that can be
extracted from a TCP/IP connection, many contributing to detection delays. The traffic attributes category
involves attributes calculated based on a window interval, divided into subcategories such as same host
attributes and same service attributes, both of which are time-based. However, certain slow-moving probe
attacks may not create intrusion patterns within a two-second window. To address these attributes, such as the
same host and same service, are recomputed based on a connection window consisting of 100 connections,
known as connection-based traffic attributes. Despite some attack types like U2R and R2L attacks lacking
frequent sequential intrusion patterns, they often exhibit specific behaviors within the data portion of a
packet. Detecting these attacks requires attributes that inspect suspicious behavior within the data portion,
known as content attributes. The proposed work generates the HCKDDCUP dataset by adopting these attack
attributes and scenarios in healthcare settings to facilitate comprehensive comparative analysis and enhance
the reliability of data-driven tasks and machine learning models.

3.2 Data Preprocessing
During the data preprocessing phase, several key steps were taken to prepare the dataset for analysis

and modeling. First, a list of corresponding column names was generated by extracting non-empty columns.
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The process commenced by identifying and extracting non-empty columns to ensure only relevant data was
retained as:

C = {c ∈ Columns ∣ non-empty values exist in c} (1)

where C represents the selected column names. This phase focused on critical provisions only to be carried
out in the later stages of the data processing activity. Subsequently, an attack type dictionary was created for
mapping attack types to categorical groups:

M ∶ Attack Type→ Categorical Group (2)

This dictionary identified the varieties of attacks and placed them in categorically ordered groups, thus
making necessary classifications of the attacks within the dataset. This mapping was important for the right
understanding and interpreting attack classifications. Afterward, the dataset was pulled by identifying the
file path P and the column names selected from the created columns C and marking the missing data with a
question mark ‘?’ to facilitate and maintain the proper loading structure of the dataset, all of which form the
basics of the other preprocessing steps to come.

D = Load(P, C), D[c][missing] =? (3)

Also, to improve the analysis of the data within the database, a new column with attack type was included
using a lambda function to apply the mapping M:

D[Attack Label] = D[Attack Type].apply(λx ∶ M[x]) (4)

It used the lambda function and attack type dictionary to label the target column for clear attack
representation and easier classification in the analysis processes. A further HCKDDCUP dataset was created
by performing additional filtering of the KDDCUP dataset based on specific attacks and their sources. A
filtering step was applied to refine the dataset further. Rows were selected based on logical conditions L, such
as specific attack types or sources. The ‘loc’ function leads to the formation of a new dataset consisting of the
filtered data:

Dfiltered = D.loc[L] (5)

Resulting in a dataset focused on meaningful subsets for targeted analysis. The filtered data includes
several types of attacks, which allows for further analysis and modeling tasks. Numerical encoding was done
to convert attack types into numerical forms by assigning each attack type an index based on its position in
the attack type dictionary:

Dfiltered[Attack Encoded] = Dfiltered[Attack Type].apply(λx ∶ index(M[x])) (6)

The process was done by combinations of ‘apply’ and ‘lambda’ functions, with each element denoting
an attack type to which index the attack type is present in the attack types of lists. This approach made it
possible to encode the attack types, so they were compatible with machine learning models. A sample of the
processed dataset was shown to confirm that preprocessing was successful:

Dsample = Dfiltered[∶ n] (7)
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Here, n represents the number of rows displayed. This stage of data preprocessing involves selecting
relevant columns, mapping various attack types, loading the dataset, adding an attack type column, filtering,
quantifying attack types (including encoding), and showing the transformed dataset. These steps ensured a
clean, structured dataset ready for exploratory data analysis and machine learning tasks.

3.3 Data Exploration Analysis
In the exploration analysis, both KDDCUP and HCKDCCUP were examined for the distribution of

number of attack types. General exploratory analysis serves the wide view of distribution and incidence
occurrence with respect to the presence of attack types in datasets that are very useful to understand the
structure and occurrence of its type. The frequency distribution of each attack type ai was computed as
f (ai), where ai denotes a unique attack type. The frequency for each attack type was calculated using the
Kronecker del ta function:

f (ai) =
N
∑
j=1

δ(D j[Attack Type], ai) (8)

where, N is the total number of records in the dataset, δ(x , y) is the Kronecker del ta function, which equals
1 if x = y, and 0 otherwise to count the occurrences of each attack type ai . The proportion p(ai) of each attack
type was then derived by dividing the frequency f (ai) by the total frequency of all attack types∑K

k=1 f (ak):

p(ai) =
f (ai)

∑K
k=1 f (ak)

(9)

where K is the total number of unique attack types. The Eq. (9) gives the relative distribution of each attack
type and is thus useful in establishing the understanding of different attacks in the datasets. To visualize these
distributions, bar charts regarding attack type frequencies were produced as shown in Fig. 2 using Seaborn.
The height of each bar in the chart corresponds to the f (ai) frequency of every attack type ai to compare the
relative occurrences of attack types in both datasets. These charts revealed that the KDDCUP dataset had a
higher proportion of DOS attacks, while HCKDDCUP dataset displayed a more well-distributed scenario of
attack types with respect to one another.

Next, the principal component explained variance ratio was analyzed. The explained variance ratio for
each principal component i was computed as:

Variance Ratio = λi

λtotal
(10)

where λi is the eigenvalue of the ith principal component, and λtotal is the sum of all eigenvalues. This
ratio indicates the contribution of each feature (e.g., protocol_type, wrong_fragment, Attack Type) to the
total variance in the dataset. For example, the Attack Type component had an explained variance ratio
of 0.049 for both datasets, showing that the attack type feature contributed similarly to the variance in
both datasets. Under observations, it was found that KDDCUP dataset contains a higher percentage of
DOS attacks as compared to HCKDDCUP dataset. The basis for all these insights was through frequency
calculations, proportions, and variance ratios, the most important concepts in understanding the structure
and relationships among the datasets. Such analysis helps underpin the nature of the given datasets to be
handy for any future compared to modeling or analysis.
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Figure 2: Bar charts comparing the frequency distribution of attack types in the KDDCUP and HCKDDCUP datasets

3.4 Remove Highly Correlated Columns
This phase aims to evaluate all datatypes in both datasets and perform necessary preprocessing for

KDDCUP and HCKDDCUP . Initially, a Pearson correlation analysis was conducted to detect multicollinear-
ity among features and ensure data integrity. The resulting correlation matrices are visualized as heatmaps
in Figs. 3 and 4, with proper axis labels and color bars for interpretation.

Figure 3: Correlation Heatmap for the KDDCUP dataset with labeled axes and a color legend. Features with high
correlation are easily identifiable
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Figure 4: Correlation Heatmap for the HCKDDCUP dataset illustrating variable relationships and dependencies with
proper labels and legend

Fig. 3 shows the correlation heatmap for the KDDCUP dataset, while Fig. 4 presents the same for
HCKDDCUP. Each heatmap is 13 × 10 in size, with bright-colored cells indicating stronger correlations. The
heatmaps were generated using the Seaborn library with a diverging color palette, and the axes are labeled
with the respective feature names for clear reference. A legend is included to help interpret the correlation
values from −1 to 1.

The Pearson correlation coefficient between two features Xi and X j was calculated using:

corr(Xi , X j) =
cov(Xi , X j)

σXi σX j

(11)

where cov(Xi , X j) is the covariance between the features, and σXi and σX j are their standard deviations. If
corr(Xi , X j) > 0.9, one of the correlated features was removed to reduce redundancy.

Additionally, a data quality report was generated to detect missing values, high cardinality, and low
variance features. For missing values, the number of nulls in column Di , denoted as mi , was computed by:

mi =
N
∑
j=1

1(D j[Column] = NaN) (12)

where N is the total number of records and 1(x) is the indicator function. Columns with significant missing
values or negligible variance were removed.
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The data quality was reassessed post-cleaning using an updated report with the quality parameter set
to level 1. This reevaluation helped validate the impact of preprocessing and ensured that only relevant and
clean features were passed to subsequent modeling stages.

3.5 Label Encoding
Encoding categorical variables into numerical format is essential for machine learning algorithms,

which typically operate on numerical inputs. In this work, label encoding was applied to categorical columns
such as “protocol_type”, “serv ice”, and “ f l ag” in both the KDDCUP and HCKDDCUP datasets. These
features were transformed using the LabelEncoder class from the scikit-learn library, which assigns a
unique integer to each category. For instance, in the protocol_type column:

• tcp→ 0
• udp→ 1
• icmp→ 2

This transformation ensures compatibility with models that require numeric inputs. After encoding,
the attack_type column was removed from the KDDCUP dataset to prevent data leakage during training.
For the HCKDDCUP dataset, however, this column was retained, as the dataset is intended for use with its
target variable intact for subsequent analysis. The encoding process, therefore, involves only transforming
the categorical columns without modifying the target column. The label encoding process is summarized in
Algorithm 2, avoiding redundancy while keeping the methodology complete.

Algorithm 2: Label encoding process
Inputs:

• KDDCUP and HCKDDCUP Datasets: The datasets with categorical columns requiring encoding.
Outputs:

• Encoded Datasets: KDDCUP and HCKDDCUP datasets with categorical columns replaced by
numerical representations.

Step 1: Identify Categorical Columns
• Extract the list of categorical columns to be encoded from the specified column list of the
KDDCUP dataset.

Step 2: Encode Categorical Columns
for each categorical column in the column list do

Apply the fit_transform method from the LabelEncoder in the scikit-learn library to
encode the column values.

Replace the original categorical values with corresponding numerical representations.
end for
Step 3: Drop Target Column (KDDCUP Dataset)

• Drop the target column from the KDDCUP dataset using the axis=1 parameter, indicating column-
wise operation.

Step 4: Finalize Encoding (HCKDDCUP Dataset)
• Apply the same encoding process (steps 1 and 2) to the HCKDDCUP dataset without dropping the

target column (step 3).
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3.6 Feature Selection and Dimensionality Reduction
This phase optimizes the KDDCUP and HCKDDCUP datasets through feature selection and dimen-

sionality reduction. The aim is to retain the most relevant features while reducing dataset complexity [28]. The
improved process involves the SelectKBest method for feature selection and Principal Component Analysis
(PCA) for dimensionality reduction, as outlined in Algorithm 3.

Algorithm 3: Improved feature selection and dimensionality reduction process
Input:

• KDDCUP and HCKDDCUP datasets
• Number of top features to select (k = 10)

Output:
• Selected features from both datasets are identified and scaled with reduced dimensionality.

Step 1: Feature Selection
• Select the top K features with chi-squared (chi2) scoring from each dataset.
• Scale the selected features using the min-max scaler to ensure non-negative values.

Step 2: Standardization
• Scale both datasets using the standard_scaler method to standardize feature distributions.

Step 3: Dimensionality Reduction with PCA
• Configure PCA to select the top 10 components.
• Apply PCA to reduce the dimensionality of both datasets.

The Sel ectKBest method evaluates each feature’s significance using a statistical scoring function. Here,
the chi-squared test was used to measure the dependency between each feature and the target variable.
Features with the highest scores are considered the most important for prediction. The chi − squared
statistics for a feature were calculated using the formula:

X2 = ∑
(Oi − Ei)2

Ei
(13)

where, Oi represents the observed frequency and Ei represents the expected frequency for category i. Using
this method, the top 10 features from the dataset were selected. These selected features are then scaled using
the Min-Max Scaler, which transforms the values into a fixed range (typically 0 to 1) to ensure non-negative
values. Once the relevant features are selected, the datasets (KDDCUP and HCKDDCUP) are standardized
using the Standard Scaler. Standardization ensures that features are centered around zero with a standard
deviation of one, helping to avoid discrepancies in feature distributions. The standardized value of a feature
is calculated as:

xstandardized =
x − μ

σ
(14)

where, x is the original feature value, μ is the meaning of the feature, σ is the standard deviation of the feature.
This ensures all features are on a comparable scale, which is essential for algorithms that rely on distances,
such as KNN. After feature selection and standardization, Principal Component Analysis (PCA) is applied to
reduce dataset dimensionality. PCA transforms the original features into a new set of orthogonal components
ordered by the amount of variance each component explains. The first few components capture most of the
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variance, allowing the dataset to be reduced to fewer dimensions without losing significant information. The
PCA transformation is represented as:

Xreduced = X ⋅Wk (15)

where, X is the original data matrix (after scaling), Wk is the matrix of the top k eigenvectors (principal
components), Xreduced is the reduced data matrix with fewer dimensions. For this analysis, PCA retains the
first 10 components. The explained variance ratios for these components are shown in Fig. 5.

Figure 5: Explained variance ratios of the top 10 principal components from PCA applied to the KDDCUP and
HCKDDCUP datasets

The feature selection and dimensionality reduction methods have been used in this phase to optimize
datasets (KDDCUP and HCKDDCUP) for machine learning tasks. Applying a chi − squared test to top
ten valuable features and dimensionality reduction using PCA, these datasets retain the most essential
information. This made both datasets more efficient and applicable for analyzing models without too high
complexity while still preserving variance. Eventually, the output datasets have been produced as a final set of
datasets with dimensionality reduction so that future machine learning operations over them become better
in performance interpretability.

3.7 Modeling and Evaluation
The use of machine learning classifiers is of utmost importance in the intrusion detection systems as they

facilitate automatic examination of network traffic to locate possible security breaches. For this section, we
explore a closer detail of the machine learning classifiers that include RF, DT, and KNN [29]. Understanding
these algorithms is vital for the purpose of value assessment concerning the performed results from using
them and for intrusion detection capability. RF is an example of an ensemble learning algorithm that consists
of several different DTs as compared to the conventional learning algorithms. A collection of tree-like things,
called DT, is constructed where each tree is trained on a different portion of the data. The predictions from
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different built trees are aggregated using methods like majority voting or averaging to result in the final
prediction. Many advantages exist to using RF in intrusion detection like:

• Robustness: RF is resilient to overfitting and adept at handling noisy and complex datasets.
• Feature Importance: RF quantifies feature importance, facilitating the identification of critical features

for intrusion detection.
• Parallelization: RF can be parallelized for efficient processing of large-scale datasets.

On the other hand, DT is a very simple and straightforward supervised learning technique which can
support modeling of decisions and results in tree structure. This algorithm splits the dataset based on features
and forms a set of decision rules at every internal node to decide the corresponding class label. The following
are the highlights of DT for intrusion detection system:

• Interpretability: DT provides transparent and easily interpretable rules, aiding in understanding
intrusion detection decisions.

• Nonlinear Relationships: DT captures nonlinear relationships between features and class labels, making
it effective in detecting complex attack patterns.

• Overfitting: DT is susceptible to overfitting if not properly pruned or regularized, which can impede
generalization on unseen data.

However, KNN is a non-parametric algorithm that classifies data points based on their proximity to
other data points in the feature space. When presented with a new data point, KNN identifies its nearest
neighbors in the training dataset and assigns a class label based on majority voting. Key features of KNN for
intrusion detection include:

• Flexibility: KNN accommodates both binary and multi-class classification problems and adapts to
diverse attack scenarios.

• Local Patterns: KNN considers the local structure of the data, making it proficient in detecting
anomalies or intrusions deviating from normal behavior.

• Computational Intensity: KNN necessitates storing the entire training dataset, rendering it memory-
intensive and computationally demanding, especially for large-scale datasets.

Understanding these algorithms is pivotal for assessing their efficacy in detecting and preventing net-
work attacks. The section of the paper has discussed at length the strong points of RF, DT, KNN in robustness,
interpretability, and flexibility. This will serve as a basis for evaluating these classifiers on intrusion detection
datasets for classifier selection depending on the precise security requirements of healthcare systems. The
experiment conditions were effectively designed to achieve full observation and measurement, including
modeling and analysis on the KDDCUP and HCKDDCUP datasets. Algorithm 4 provides machine learning
model evaluation process. The primary goal was to allow strict, systematic, and quantitative assessment
of the performance differences between different machine learning algorithms and their effectiveness in
detection and response. In doing so, the datasets were first partitioned into training and testing datasets,
which provided a strong evaluation framework. After that, Parameter grids were created for RF, DT, and
KNN classifiers to test many hyperparameter combinations.
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Algorithm 4: Experiment scenarios for machine learning model evaluation
Input:

• KDDCUP dataset, HCKDDCUP dataset
Output:

• Best parameters and cross-validated accuracy scores for RF, DT, and KNN classifiers.
Step 1: Split the KDDCUP and HCKDDCUP datasets into training and testing sets

• Use train_test_split function with a test size of 20% and random state of 42.
• Ensure consistency by rearranging the column order to match between test and training sets.

Step 2: Define parameter grids for RF, DT, and KNN classifiers
• Specify a range of hyperparameters for each classifier.

Step 3: Perform grid search with cross-validation to find the best parameters for each classifier
• Set cross-validation folds to 2 and use accuracy score as the evaluation metric.

Step 4: Fit the training data for each classifier using grid search with cross-validation
• Search for the best parameters that maximize the accuracy score.
• Employ cross-validation to assess model performance.

Step 5: Verify the parameters and corresponding mean cross-validated accuracy scores for each
classifier.

Afterward, a grid search with cross-validation was performed to find the best parameters for each
classifier. This involved exploring various combinations of parameters while measuring the performance
with the use of cross-validation folds. The accuracy score was chosen as an evaluation metric since it enables
effective assessment of the classifiers’ ability to predict class labels. Cross-validation was used to polish
their hyper parameters to ensure the classifiers performed optimally in predicting the training data. In
the subsequent stage after the parameter’s optimization, both the KDDCUP and HCKDDCUP datasets
underwent train-test splits using the train-test split function. This facilitated the inclusion of a fair share of
the data for the purpose of blind testing, thus helping reduce overfitting. Further, the order of columns in the
training and testing datasets was also kept the same to ensure there were no discrepancies in the datasets.

With the datasets appropriately prepared, the grid parameters were defined to explore various hyper-
parameter configurations for RF, DT, and KNN classifiers. Cross-validation folds were set to 2 to balance
computational efficiency with reliable parameter selection. The evaluation metric was consistently applied
to assess the classifiers’ performance based on their accuracy scores. Through this careful process, insights
into the optimal hyperparameters and expected performance on the training data were garnered as given
in Table 2, laying the foundation for robust model evaluation and comparison. For the RF, DT, and KNN
models, the estimators that proved to be the best after a grid search with a cross-validation routine were
used for comparative analysis purposes. It indicates that these estimators are models that have been tuned
for optimal hyperparameters.

In the subsequent phase of the study, the classifiers RF, DT, and KNN were trained using both the
KDDCUP and HCKDDCUP datasets. Following training, predictions were generated for their respective
test datasets. To evaluate the performance of each classifier, accuracy control metrics were calculated using
the standard accuracy scoring functions. Table 3 presents the accuracy and other performance metrics for
each classifier on the KDDCUP dataset, while Table 4 provides corresponding results for the HCKDDCUP
dataset. This comparative analysis facilitates a deeper understanding of each model’s generalization capabil-
ities and highlights potential overfitting on the balanced HCKDDCUP dataset in comparison to the original
KDDCUP dataset.
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Table 2: Best parameters and the corresponding mean cross-validated for each classifier

Classifier Best parameters Best cross-
validated
accuracy

RF {‘max_depth’: 10, ‘min_samples_leaf ’: 1,
‘min_samples_split’: 5, ‘n_estimators’: 50}

0.999885991

DT {‘criterion’: ‘gini’, ‘max_depth’: 50,
‘max_features’: ‘auto’, ‘min_samples_leaf ’: 1,
‘min_samples_split’: 2, ‘splitter’: ‘random’}

0.999729231

KNN {‘algorithm’: ‘ball_tree’, ‘n_neighbors’: 3,
‘weights’: ‘distance’}

0.999729231

Table 3: Performance metrics on KDDCUP dataset

Metric RF DT KNN
Accuracy 0.986194 0.985130 0.980459
Precision 0.945150 0.885154 0.839249

Recall 0.828830 0.845338 0.817641
F1-score 0.870354 0.860005 0.826714

AUC 0.996203 0.993743 0.989091

Table 4: Performance metrics on HCKDDCUP dataset

Metric RF DT KNN
Accuracy 0.999658 0.999544 0.999886
Precision 0.995376 0.997752 0.997661

Recall 0.997889 0.998405 0.998945
F1-score 0.996600 0.998072 0.998294

AUC 0.981452 0.992541 0.994673

In order to address the issue of class imbalance and provide a comprehensive assessment of model
performance, five key evaluation metrics were used: Accuracy, Precision, Recall, F1-Score, and AUC (Area
Under the Curve). Moreover, confusion matrices were generated for each classifier to visualize their
classification behavior in terms of true positives, false positives, false negatives, and true negatives. Figs. 6
and 7 display the confusion matrices for RF, DT, and KNN, respectively. These visualizations help illustrate
the ability of each model to distinguish between attack and normal traffic classes, as well as highlight
tendencies toward false positives or false negatives, a crucial consideration in imbalanced datasets like
intrusion detection.
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Figure 6: Confusion matrices for RF, DT, and KNN on HCKDDCUP dataset

Figure 7: Confusion matrices for RF, DT, and KNN on KDDCUP dataset

Tables 3 and 4 summarize the classification performance across both datasets. On the KDDCUP dataset,
RF attained the highest precision (0.945), indicating its strong ability to minimize false positives. However, its
recall (0.829) was slightly lower than that of DT (0.845), which demonstrates better detection of actual attack
instances. The F1-scores of RF (0.870), DT (0.860), and KNN (0.827) illustrate the balance each model strikes
between precision and recall. In terms of overall accuracy, RF led with a value of 0.986, followed closely by
DT (0.985) and KNN (0.980). The lower recall of KNN (0.818) suggests a challenge in correctly identifying
all attack cases, potentially due to dataset imbalance.

Significant performance improvements were observed for all classifiers on the HCKDDCUP dataset.
This indicates that HCKDDCUP offered a more balanced and representative distribution of classes, enabling
the classifiers to generalize better and yield more accurate predictions.

• Performance Improvement: All models exhibited improvements across all evaluation metrics when
applied to the HCKDDCUP dataset. For instance, RF’s F1-score improved from 0.870 on KDDCUP to
0.997 on HCKDDCUP, indicating enhanced generalization under more favorable data conditions.

• Potential Overfitting: The near-perfect results obtained on the HCKDDCUP dataset raise concerns
about potential overfitting, particularly if the dataset lacks the variability and complexity of real-world
network traffic. The narrow performance gap among all classifiers further supports this hypothesis.
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• Model Ranking Stability: While RF maintained top-tier performance across both datasets, KNN
displayed substantial gains on HCKDDCUP, even achieving the highest accuracy and recall. This
underscores the impact of data quality on model effectiveness.

This comparative analysis emphasizes the importance of data quality and preprocessing in maximizing
model performance. While RF was uniformly strong, the enhancement of DT and KNN performance on the
HCKDDCUP dataset indicates that less complex models can compete when used with well-prepared data.
For deployment into real-world intrusion detection systems, it is suggested to have additional validation on
more heterogeneous datasets to prevent overfitting and to guarantee robust generalization abilities.

4 Discussion
The growing dependence on digital infrastructure within healthcare has rendered the industry a

high-priority target for advanced cyberattacks, threatening patient confidentiality, core operations, and
overall system security. In light of these emerging threats, this work presents a targeted assessment of
intrusion detection systems (IDS) in healthcare settings. A significant contribution is the construction of
the HCKDDCUP dataset, a synthetic benchmark that aims to mimic healthcare-specific attack behaviors by
augmenting the popular KDDCUP dataset.

4.1 Key Findings
Data preprocessing was the first step in the multi-step research methodology, which was used to

guarantee consistency and quality across the two datasets. While feature selection and dimensionality
reduction techniques optimized the datasets for machine learning modeling, exploratory analysis offered
important insights into the distribution of attack types. To determine how well RF, DT, and KNN models
could identify intrusions and generalize to new data, the study tested their performance on both datasets.
The results showed a number of important insights:

• RF consistently demonstrated superior performance, achieving an accuracy of 0.986 on the KDDCUP
dataset and 0.9997 on the HCKDDCUP dataset. It also achieved the highest precision (0.945) and a
strong F1-score (0.870) on KDDCUP, highlighting its effectiveness in reducing false positives while
maintaining a balanced performance. Its ensemble nature, robustness, and ability to handle complex,
high-dimensional data made it the most effective model for intrusion detection in this context.

• DT showed competitive performance, with an accuracy of 0.985 on KDDCUP and 0.9995 on HCKDD-
CUP. Its recall on KDDCUP (0.845) surpassed that of RF, indicating better sensitivity to detecting true
attack instances. While DT performed well across both datasets, the slight performance improvement on
HCKDDCUP and consistently high recall values support its reliability, especially when interpretability
and simplicity are prioritized.

• KNN exhibited lower performance on KDDCUP with an accuracy of 0.980 and a recall of 0.818, indicat-
ing limitations in detecting all attack classes under imbalanced conditions. However, on HCKDDCUP,
KNN’s accuracy rose to 0.9999, with the highest recall (0.999) and F1-score (0.998), suggesting strong
generalization on balanced datasets. These results underscore KNN’s sensitivity to data quality and
distribution, where high-quality preprocessing can significantly enhance its classification effectiveness.

4.2 Limitations
The experimental results underscored the superior performance of the RF model, which achieved the

highest accuracy across both datasets, emphasizing its potential for real-world applications in enhancing
healthcare cybersecurity. DT also demonstrated promising results, offering interpretability and efficiency,
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though its performance slightly declined on the more complex HCKDDCUP dataset. KNN, while compet-
itive, showed limitations in precision and computational efficiency, particularly on the healthcare-specific
dataset. Overall, the study offers valuable insights; however, several limitations must be acknowledged:

• Dataset Complexity: The HCKDDCUP dataset introduced realistic attack patterns but also increased
complexity, which exposed model limitations.

• Generalization: Certain models, particularly DT and KNN, exhibited reduced performance on the
HCKDDCUP dataset, indicating the need for further optimization.

• Computational Demands: KNN’s reliance on the entire training dataset rendered it computationally
intensive, especially for large-scale implementations.

• Class Imbalance: The datasets exhibited some degree of class imbalance, which may have impacted
model performance.

• Deep Learning Omission: Deep learning models such as CNN or LSTM were not included due to scope
constraints. This is acknowledged as a limitation and is proposed as a future enhancement.

• External Validation: The HCKDDCUP dataset lacks formal validation from clinical or domain experts.
Involving hospital IT staff or healthcare professionals is essential to ensure its realism.

4.3 Dataset Impact
The HCKDDCUP dataset provided a more balanced and representative distribution of attack and

normal instances, leading to significantly improved model performance across all classifiers. It introduced
more diverse and realistic healthcare-related attack patterns, offering a significant advancement in IDS
research. All models showed notable improvements in accuracy, precision, recall, and F1-score when trained
on HCKDDCUP compared to KDDCUP, with RF achieving an F1-score of 0.997, and KNN achieving the
highest accuracy (0.9999).

This performance enhancement indicates that the HCKDDCUP dataset was effective in mitigating
class imbalance and improving classifier generalization. Nonetheless, the complexity of this dataset revealed
weaknesses in some models, particularly DT and KNN, reinforcing the need for optimizations specific to
domain. Moreover, usage constraints created by computational resources present challenges when deploying
IDS in resource-limited healthcare environments.

This research has wider implications for developing IDS algorithms to meet the specific requirements
of a healthcare system. RF was revealed to be a strong candidate for deployment, with high reliability,
and accuracy, whereas DT provides a compelling alternative in cases where an explainability is required.
Furthermore, while KNN showed improvement in performance on the HCKDDCUP dataset, particularly
in terms of recall and F1-score. Further, this study exemplified the benefit of balanced, domain-targeted data
to increase usefulness of the models.

The HCKDDCUP dataset contributes to the progress of IDS research; however, it needs to be validated
with an expert review or partially benchmarked with empirical datasets, such as MIMIC or CICIDS2017, to
establish credibility and acceptance.

4.4 Implications for Healthcare Cybersecurity
The findings highlight the critical role of robust machine learning models in strengthening healthcare

cyber defenses. RF turned out to be the most promising option for use in practical applications due
to its highest accuracy. DT, as an interpretable model, presents a complementary option for situations
where explainability is a concern. The outcomes, however, show that more work must be done to enhance
generalizability, particularly on the HCKDDCUP dataset. Key implications include:
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• Real-World Applicability: RF emerged as the most promising candidate for deployment in healthcare
settings due to its high accuracy and reliability.

• Interpretability: DT provides a complementary alternative for scenarios prioritizing explainability,
aiding decision-makers in understanding intrusion detection processes.

• Explainability: DT models provide transparency in decision-making, making them suitable for settings
where interpretability is essential for trust and compliance.

• Need for Generalizability: The current comparison is limited to the KDDCUP and HCKDDCUP
datasets. To enhance generalizability, future studies should include real-world datasets such as UNSW-
NB15, CICIDS2017, or CSE-CIC-IDS2018.

• Dataset Validation: Synthetic healthcare-specific datasets like HCKDDCUP must be validated by
domain experts or supplemented with partial use of real datasets to ensure practical relevance.

• Targeted Development: The study highlights the need for IDS solutions tailored specifically to
healthcare environments, addressing unique cyberattack vectors and operational constraints.

• Adversarial Robustness: Evaluating how models perform under evasion and poisoning attacks is
essential to ensure IDS reliability under adversarial conditions.

• Federated Learning Potential: Federated learning approaches can help develop privacy-preserving IDS
across hospitals without sharing sensitive patient data.

4.5 Challenges and Future Directions
While this study demonstrates the potential of classical machine learning algorithms, particularly RF

and DT, for healthcare intrusion detection, several challenges and opportunities for future work remain.
We outline key directions to advance the development and deployment of intelligent IDS frameworks in
real-world healthcare settings:

1. Dataset Refinement and Domain Validation: Although HCKDDCUP was constructed using health-
care schema references and known attack signatures, it remains a synthetic dataset. Future efforts should
focus on enhancing its realism by incorporating feedback from hospital IT staff and clinical domain
experts. This will improve its alignment with actual Electronic Health Record (EHR) systems and Health
Information Exchanges (HIEs). Class imbalance, noise, and rare attack representations must also be
addressed to ensure robust model generalization.

2. Application to Real Hospital Network Data: To bridge the gap between simulation and practice,
our next phase will involve applying and validating the proposed models using real or semi-real
hospital network traffic data, potentially obtained from pilot deployments in controlled healthcare
environments. This will also allow the evaluation of false positive and false negative impacts in realistic
clinical workflows.

3. Deep Learning and Transformer-Based IDS: Future work should incorporate and benchmark deep
learning models such as CNNs, LSTMs, and Transformer-based architectures. These models can learn
temporal and spatial attack patterns from raw traffic and log data, potentially outperforming classical
models in complex threat scenarios.

4. Adversarial Robustness Testing: Current models have not been tested against adversarial attacks.
As attackers increasingly employ evasion and poisoning techniques, future research must include
experiments with adversarial scenarios such as Fast Gradient Sign Method (FGSM), label flipping, and
GAN-based attacks. Developing robust detection mechanisms against such threats will be crucial.

5. Time-Series and Streaming Data Integration: HCKDDCUP, like many benchmark datasets, lacks
temporal continuity. Future datasets and models should support time-series and streaming data to
enable real-time detection, sequence-aware learning, and improved incident forensics.
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6. Federated Learning for Privacy-Preserving IDS: In the healthcare domain, data privacy regulations
limit data sharing across institutions. Federated learning offers a promising solution by allowing
decentralized model training without exchanging raw data. Future work will explore federated IDS
frameworks enabling collaborative defense while preserving patient confidentiality.

7. Virtualized Testing Environments: Models must be tested in simulated testbeds prior to deployment
in the real world, using systems such as OpenMRS, GNS3, and Docker-emulated hospital setups.
This transitional step will enable rigorous performance testing under near-realistic scenarios, such as
response time, scalability, and alert prioritization.

8. Scalability and Deployment Efficiency: Practical deployment of IDS in hospitals requires scalable,
lightweight, and computationally lean solutions. Future work should prioritize reducing model infer-
ence time, resource usage, and edge-device compatibility for deployment on hospital firewalls, routers,
and EHR gateways.

9. Cross-Dataset Evaluation and Generalizability: Lastly, future research needs to test model gener-
alizability across a variety of datasets, such as CICIDS2017, CSE-CIC-IDS2018, and actual hospital
traffic. This will allow for the discovery of whether models trained on HCKDDCUP generalize to larger
healthcare cybersecurity scenarios.

5 Conclusion
This study explored the application of classical machine learning algorithms Random Forest,

Decision Tree, and K-Nearest Neighbors for intrusion detection in healthcare environments. Recognizing
the limitations of traditional benchmark datasets, we introduced HCKDDCUP, a synthetic dataset tailored to
reflect realistic healthcare-specific cyberattack scenarios. Experimental results demonstrated that domain-
specific data significantly enhanced detection accuracy, with Random Forest exhibiting the most robust
and consistent performance. The findings emphasize the value of healthcare-adapted datasets in improving
IDS effectiveness and highlight the trade-offs among different models in terms of accuracy, interpretabil-
ity, and computational efficiency. While classical models remain promising for practical deployment,
especially in resource-constrained settings, further research is warranted to validate synthetic data, explore
deep learning methods, and evaluate cross-dataset generalizability. By contributing a novel dataset, a
comparative evaluation framework, and empirical evidence, this work supports the advancement of intelli-
gent, context-aware, and deployable intrusion detection systems for strengthening cybersecurity in modern
healthcare infrastructures.
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