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ABSTRACT: Real-time surveillance is attributed to recognizing the variety of actions performed by humans. Human
Action Recognition (HAR) is a technique that recognizes human actions from a video stream. A range of variations
in human actions makes it difficult to recognize with considerable accuracy. This paper presents a novel deep neural
network architecture called Attention RB-Net for HAR using video frames. The input is provided to the model in
the form of video frames. The proposed deep architecture is based on the unique structuring of residual blocks with
several filter sizes. Features are extracted from each frame via several operations with specific parameters defined
in the presented novel Attention-based Residual Bottleneck (Attention-RB) DCNN architecture. A fully connected
layer receives an attention-based features matrix, and final classification is performed. Several hyperparameters of the
proposed model are initialized using Bayesian Optimization (BO) and later utilized in the trained model for testing. In
testing, features are extracted from the self-attention layer and passed to neural network classifiers for the final action
classification. Two highly cited datasets, HMDB51 and UCF101, were used to validate the proposed architecture and
obtained an average accuracy of 87.70% and 97.30%, respectively. The deep convolutional neural network (DCNN)
architecture is compared with state-of-the-art (SOTA) methods, including pre-trained models, inside blocks, and
recently published techniques, and performs better.

KEYWORDS: Human action recognition; self-attention; video streams; residual bottleneck; classification; neural
networks

1 Introduction
Human Action Recognition (HAR) has emerged as a pivotal area in pattern recognition and computer

vision, revolutionizing the way video data is analyzed and interpreted [1,2]. In recent years, HAR has
emerged as a key field of research which greatly improves video analysis [3]. Applications for HAR can
be found in many domains, including robots, human-computer interfaces, healthcare monitoring systems,
video surveillance, and pedestrian tracking [4,5]. To support automatic action detection systems, HAR
entails recognizing actions such as walking, running, punching, leaping, and playing inside video sequences
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[6]. Wearable technology, wireless sensor networks, and video-based techniques are only a few of the
technologies that are included in HAR [7]. Among these, video-based HAR stands out for its greater
accuracy in action recognition and extensive adoption across numerous industries due to its straightforward
deployment [8,9].

Due to several elements, including camera views, illumination changes, noise from the environment,
and intra and inter-class variances, accurately detecting human behaviors in videos is still a tough challenge
[10,11]. Previous methods have been based on handcrafted feature extraction techniques such as Motion
Boundary Histograms (MBH) and Scale-Invariant Feature Transform (SIFT) on 2D video frames [12].
Usually, these techniques focus on identifying human appearances and body motions within single frames,
but they don’t consider the three-dimensional spatial relationships in the action scenes [13]. Consequently,
the practical concerns outlined above cannot be fully addressed using only RGB or RGB-D video frames
for HAR. Additionally, occlusion, the condition in which a part of the human body is hidden or obscured
and causes an incorrect recognition, is a problem for traditional approaches [14]. The dynamic, fine-
grained motions and intricate articulations of human movements make the technique more difficult. Recent
advancements in depth-sensing technologies have significantly advanced the field by offering detailed
3D data on body parts’ motions and postural orientation [15]. Depth data facilitates the computation of
joint positions and their relative distances, strengthening the distance vectors between video frames and
improving action identification ability [16]. These developments also make it easier to integrate multi-modal
data, like 3D motion analysis and skeletal tracking, which enables more thorough and precise interpretations
of human activity in complicated contexts [17].

Human action analysis, segmentation, and classification using classical methods usually include record-
ing body component movements to identify activities, extracting human silhouettes from noisy backdrops,
and categorizing surroundings based on actions observed [18,19]. For a considerable amount of time,
handcrafted features have been used to extract pertinent aspects from video sequences for categorization
[20]. Convolutional Neural Networks (CNNs), one of the most recent developments in deep learning,
have shown notable gains in recognition accuracy [21]. Research indicates that CNNs perform better
than conventional techniques in several fields, such as medical imaging, object identification, and video
surveillance [22]. In computer vision, CNNs are a desirable technique due to their efficiency in handling big
datasets and complex patterns [23]. Transfer learning is a key component of several cutting-edge CNN-based
methods, which use pre-trained models like Nasnet, ResNets, and Inception networks to obtain improved
accuracy with shorter training times [24]. The development of HAR systems has progressed even more since
transfer learning allows for more rapid adaptation to new datasets while preserving reliable performance
[25]. CNNs are also successful in action recognition tasks because of their hierarchical feature extraction
capabilities, which enable a more detailed representation of spatial and temporal information in video data
[26]. The move toward deep learning architectures has created new avenues for integrating multi-modal data
sources, improving the accuracy and adaptability of HAR systems in various demanding scenarios [27].

Although trained CNN models are flexible and helpful in many contexts, there is an increasing
need to create customized deep neural network models with specific features adapted to the intricacy of
tasks involving the recognition of human actions [28]. Each video frame consists of numerous layers of
information, and these customized neural networks need to evaluate and interpret complex human activities
using these frames. In order to achieve this task, the contributions are provided below.

• Introduced a unique hybrid neural network architecture with seven separate components, each of which
uses parallel bottleneck techniques to extract and analyse features.

• Introduced an attention-oriented feature matrix for precise Human Activity Recognition (HAR) classi-
fication by incorporating an attention-based feature extraction process at the end of these components.
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• A thorough comparative analysis is performed against cutting-edge methods to confirm the introduced
architecture’s efficacy and performance.

2 Literature Review
Researchers frequently employ varied methodological frameworks to examine and interpret their find-

ings, resulting in various viewpoints regarding the problems and progress in the field. The primary research
findings and innovations in the subject of HAR are presented below, with an emphasis on the developing
methods and tools that are propelling advancement. He et al. [29] suggested a novel deep learning model
to extract human action patterns from videos. In complex and dynamic video environments, robust human
action recognition is required, where traditional methods struggle due to different temporal variations and
added visual noise. To extract temporal characteristics through long-range temporal learning and sparse
temporal sampling, a sample representation learner was presented. A densely connected bi-directional LSTM
(DB-LSTM) network was created to simulate temporal linkages in both directions to enhance long-range
action identification. The DB-LSTM model produced encouraging results in experiments on UCF101 and
HMDB51, with an accuracy of 81.20% and 97.30% on HMDB51 and UCF101, respectively. The authors
showed an intention to enhance work in the future. Uncertain temporal dynamics and static biases made
video actions harder to identify in an open-set setting than image data. Bao et al. [30] presented a Deep
Evidential Action Recognition (DEAR) approach to address action recognition in open testing sets. A
technique for identifying known and unknown human behaviors in recordings. It tackles crucial issues such
as static bias, temporal dynamics, and overconfident predictions in conventional models. DEAR employs
Contrastive Evidence Debiasing (CED) to lessen scene reliance, Evidential Uncertainty Calibration (EUC) to
increase prediction reliability, and Evidential Deep Learning (EDL) for principled uncertainty estimation. To
regularize EDL training, the authors presented a novel model calibration technique and posed the problem
using an evidential deep learning (EDL) methodology. With an accuracy of 77% on the HMDB51 dataset,
experimental findings showed that the DEAR approach consistently outperformed several conventional
models and benchmarks.

Identifying human activity in video surveillance presents difficulties, such as handling increasing
amounts of streaming data with complex computations in an effective manner. To overcome this, authors
Ahmad and Wu [31] presented a multilayer Gated Recurrent Unit (MLGRU) based lightweight spatial-deep
features integration. It draws attention to the shortcomings of conventional deep learning models that solely
use high-level features and stresses the necessity of integrating temporal and geographical data to enhance
recognition performance. Using the MobileNetV2 model, spatial and deep information was retrieved from
video frames and combined to improve recognition. Tests conducted on the YouTube11, HMDB51, and
UCF101 datasets demonstrated noteworthy results, with HMDB51 demonstrating an accuracy of 80.61% and
minimal computing cost. Developing new techniques for automatic comprehension of video data has been an
important area of research. Many algorithms were investigated, with the primary goals being the extraction
of geographical information and temporal connections.

On the other hand, learning techniques and motion feature extraction were frequently developed
independently. Authors draw attention to shortcomings in existing deep convolutional neural network
(DCNN) models that prevent practical implementation, such as their dependence on independent variables,
computationally demanding motion extraction (i.e., optical flow), their inability to learn spatial and temporal
properties end-to-end, and their low resilience to noise in real-world scenarios. To tackle this issue, the
author Giveki [32] created a novel Gated Recurrent Unit (GRU) network that can simultaneously record
motion characteristics, spatial data, and temporal dynamics. Tests on the YouTube2011, UCF50, UCF101,
and HMDB51 datasets proved the model’s excellence and generalizability. In particular, it obtained an



1146 Comput Model Eng Sci. 2025;144(1)

accuracy of 82.30% on HMDB51, demonstrating the approach’s strong performance and noise resistance
in practical applications. The author shows a keen interest in developing more techniques for the HAR
domain. Applications for HAR, which identify actions from temporal video material, can be found in several
fields, including autism care and video retrieval. In this work, authors Sowmyayani et al. [33] highlighted
that accurate and effective action recognition from video data is hampered by high computational cost
and efficient temporal feature extraction. They have used temporal feature extraction in residual frames to
overcome these problems. For action recognition, both spatial and temporal information were extracted
using the Frame Differencing (FD) approach. Keyframes were used to extract spatial characteristics, and
residual frames were used to recover temporal features. These were combined to create spatiotemporal
features, which were then categorized with the aid of a Multiclass Support Vector Machine (MSVM). The
suggested technique outperformed previous methods with an accuracy of 85.8%, 98.83%, and 96.6% on the
HMDB51, UCF101, and UCF Sports datasets. To use spatial and temporal information, authors Varshney
and Bakariya [34] highlighted the inefficient integration of spatial and temporal data, moreover, discusses
the shortcomings of the existing human activity recognition (HAR) models for video frames. Authors draw
attention to problems such as distinct motion and appearance processing, ineffective fusion techniques, and
weak resilience in differentiating comparable movements because of static or sparse motion representations.
They suggested a deep convolutional neural network (CNN) model for human activity recognition in videos
by combining multiple CNN streams. The outputs of the spatial and temporal streams were combined using
two different fusion strategies: average fusion and convolution fusion. The suggested strategy fared better on
the UCF101 and HMDB51 benchmark datasets than other cutting-edge techniques. In particular, the model’s
test accuracy on UCF101 was 97.2% with convolution fusion and 95.4% with average fusion. Convolution
fusion achieved 85.1%, while the average fusion method scored 84.3% for the HMDB51 dataset.

This study presented by Yang and Zou [35] identified that the accuracy of current deep learning
models for action recognition is limited because they do not fully utilize spatiotemporal information. The
authors suggested a deep learning model based on spatio-temporal feature fusion (STFF) to overcome the
shortcomings of existing deep learning networks in fully extracting and fusing spatio-temporal information
for action detection, which leads to low accuracy. To extract and integrate spatial and temporal data, the
model used two networks: Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN).
Large-scale video frames were handled using a multi-segment input technique, which addressed long-
term dependencies and increased prediction accuracy. Furthermore, an attention mechanism improved the
network’s emphasis on critical visual components. The success of the strategy was confirmed by experimental
findings on the UCF101 dataset, which showed that the suggested FSTFN model outperformed the Two-
stream model by 4.7%, achieving 92.7% accuracy. This study by Gowada et al. [36] addresses the problem
of identifying immoral human behavior in video, like violence or pornography, which is hampered by
occlusion, background clutter, and shifting points of view. It highlights how difficult it is for existing deep
learning models to extract high-level characteristics in these kinds of intricate settings efficiently. The
authors combined spatio-temporal attention (STA) modules with a two-stream inflated 3D ConvNet (I3D)
to develop a deep learning-based hybrid model for identifying unethical human behaviors. While the STA
module increased learning by concentrating on spatial and temporal information in each frame, the I3D
model improved the performance of 3D CNNs by inflating 2D convolution kernels into 3D kernels. To
assess the model’s efficacy, a multi-action dataset was created using subsets from several sources, such as
Weizmann, HMDB51, UCF101, NPDI, and UCF-Crime. The suggested model performed better on these
datasets compared to current methods. The accuracy of the approach on the UCF101 dataset was 96.40%.
The authors showed an intention to improve the methodology in the future.
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This research, suggested by Dastbaravardeh et al. [37], analyzed the associated difficulty of successfully
identifying human activities in low-resolution and low-size video frames. They have demonstrated that
typical deep learning models fail due to high computational costs and diminished visual detail. Authors
draw attention to the dearth of efficient frameworks that can analyze such limited input with great accuracy,
particularly in real-time applications. So, the authors provides a better way to use convolutional neural
networks (CNNs) with channel attention mechanisms (CAMs) and autoencoders (AEs) to detect human
behaviors in low-size, low-resolution movies. While random frame sampling increased accuracy with less
input, enhanced convolutional layers identified important characteristics. The model tackled issues such
as uncertainty, computational complexity, and overfitting. Its accuracy was 98.87%, 97.16%, and 77.29% on
the UCF50, UCF101, and HMDB51 datasets. The outcomes validated the model’s capacity to accurately
categorize human actions and its appropriateness for processing low-resolution, low-size videos. The
majority of previous approaches, which only used RGB flow or its combination with optical flow, had trouble
with background interference, especially when high-activity regions weren’t highlighted. This research by
Xiong et al. [38] identified that accurately identifying human actions in videos under complicated circum-
stances, including background interference, redundant frames, and limited temporal modeling, is difficult
using traditional techniques. Authors suggested a novel approach that uses a two-stream fusion network and
action sequence optimization to overcome these problems. The method highlighted high-activity regions,
removed unnecessary intervals, and recorded long-range temporal information by using shot segmentation
and dynamic weighted sampling to reconstruct films. A two-stream 3D dilated neural network that combined
RGB and human skeletal characteristics was introduced. While the dilated CNN increased the receptive field
for better feature extraction, the skeletal information improved human depiction and reduced background
interference. The suggested approach performed better or similarly on the HMDB51 dataset and attained
96.15% accuracy on the UCF101 dataset. The presented work in this section motivated me to develop a
methodology that can achieve a considerable or comparable classification accuracy to existing techniques.
The next section presents the methodology through which considerable improvement was observed.

3 Datasets
Two datasets are employed to check the generalizability of the presented methodology, such as HMDB51

[39] and UCF101 [40]. One well-known database of human actions is the Human Motion Database
(HMDB51). It has 51 distinct action classes and 6766 videos, gathered from various sources, including
movies, public databases, and YouTube videos. The variety of sources offers a diversity of environments and
circumstances for each action class. Seventy-nine thousand one hundred thirty-three videos are taken from
these and made available on the Kaggle dataset repository.

The UCF101 dataset constitutes 13,320 videos, which are primarily used for action identification in
videos. There are 101 classes where humans are in action while performing different tasks. The videos are
in the Audio Video Interleave (.avi) format and typically have dimensions of 320 by 240 pixels. The entire
video lasts for 27 h. Among the categories are biking, billiards, bowling, breaststroke, fencing, haircut, high
jump, ice dancing, mixing, etc. A three-frame-per-second rate is used to extract frames. Fig. 1 represents a
few sample human actions of the selected datasets.
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Figure 1: Sample frames of the selected datasets

4 Proposed Methodology
The suggested approach shows a hybrid DCNN specifically designed for HAR tasks. The architecture

uses a number of well-optimized architectural elements to extract both spatial and temporal characteristics
from video frames efficiently. The efficacy of the model is verified by training and assessing it on two
benchmark datasets, HMDB51 and UCF101, which comprise 51 and 101 activity classes, respectively. A stack
of seven specially created blocks, each intended to extract multi-scale elements, starts the foundation of
the architecture. Parallel convolutional routes with 1 × 1 and 3 × 3 convolutional filters are included in
each block. The 3 × 3 convolutions are in charge of capturing local characteristics and spatial correlations,
whereas the 1 × 1 convolutions are mostly used for dimensionality reduction and inter-channel interaction.
After combining these parallel serial routes using element-wise addition, the aggregated data is integrated
by a second convolution layer. Robust feature learning is facilitated by this design pattern, which enables
the network to extract rich and diverse feature representations from several levels of abstraction. Feature
discrimination is improved by adding a self-attention mechanism after the seven blocks. In particular, the
network uses the extracted features to build query, key, and value matrices. Through a scaled dot-product
attention operation, these matrices interact to provide attention scores that suppress noisy or redundant
information while emphasizing the most important aspects. An improved attention-weighted feature matrix
that captures the most important data required for classification is returned from this step. The attention-
enhanced feature representation is then processed through a classification head, which is usually made up
of a Softmax activation function after fully connected layers. The class probabilities for the target activity
classes in the dataset are produced by this function. The DCNN network is trained from beginning to end,
so the feature extraction and classification components can be optimized simultaneously. The suggested
architecture achieves competitive or superior performance across a number of HAR benchmarks, according
to a thorough examination that includes comparison with state-of-the-art techniques. Fig. 2 illustrates the
proposed HAR architecture that is employed for the training on the selected datasets. A detailed description
of this model is given in the subsections below.
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Figure 2: Proposed attention-RB model for human action recognition

4.1 Proposed Attention-RB Net
The proposed customized Attention-RB Net model is visually presented in Fig. 2. The proposed model

contains 374 layers, including the classification layer. The model has 11.2 million parameters. The dataset(s) is
passed to the model, which traverses through the model, and classification is performed at the end. Traversing
the model reveals seven skip connections based on residual blocks. Each block contains 8 parallel bottleneck
mechanisms. Each bottleneck mechanism constitutes three series of convolution layers with 1 × 1, 3 × 3, and
1 × 1 filter sizes. A self-attention layer is added at the end of these 7 residual blocks to further improve the
feature information. The attention-based feature matrix is passed to the Softmax layer, and final classification
is performed.

Description: The network starts with an initial convolutional layer with a depth of 16, which extracts
low-level features. It includes edges and textures from input video frames and preserves spatial dependencies
crucial for further processing. A Rectified Linear Unit (ReLU) layer follows the convolution layer. This layer
is responsible for setting values to zero that are less than zero during the convolutional operation. These low-
level features provide a good start to learning about intrinsic features at a higher level. It enables the DCNN
to classify human actions provided in datasets.

After the initial step, the network introduces a series of seven residual blocks; at the end of each block,
the network’s depth doubles until it ends at 1024. Each block has eight parallel bottleneck architectures. In
this architecture, convolutional layers with 1 × 1, 3 × 3, and 1 × 1 filter sizes are used in series. Two blocks
are depicted in the figure. Inter-channel dependencies are effectively captured using 1 × 1 convolution layers,
which reduce dimensionality and empower feature scaling across different channels.

On the other hand, the spatial relationship is captured using the 3 × 3 convolution layers between
neighboring pixels. This enables the network to learn hierarchical features. Gradient flow during backprop-
agation is improved by introducing skip connections in the form of residual connections. It will also help in
mitigating the vanishing gradient problem. The proposed design will allow the deeper network to train the
entire network without compromising performance.

The residual connection bypasses specific layers and directly influences later layers. It retains valuable
low-level information that may be lost if no skip connection is used. These connections enrich shallow
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and deep features with the utmost learning about action-related features. These connections also make the
training process more stable, and faster convergence of gradients during optimization is possible. Residual
learning provides a good mix of low-level and high-level features. The expressive power and computational
efficiency are achieved using 1× 1 and 3× 3 convolutions within the residual blocks. The 1× 1 convolution acts
as a dimensionality reduction layer. They also minimize computational overhead while retaining essential
information about features. Contrary-wise, the 3 × 3 convolution layer captures spatial patterns in the video
frames. Rich feature representations are learned using this multi-scale feature extraction capability. These are
crucial in the classification of diverse human actions.

Long-range dependencies among features are calculated using a self-attention mechanism. This empha-
sizes the extraction of the most relevant features within the video frames. Attention scores are calculated
based on query, key, and value matrices. The process refines the feature representation. The final refined
feature matrix is then passed to the classification layer. It generates the network’s predictions for accurate
human action classification.

4.1.1 Residual Bottleneck Architecture
The residual bottleneck design is a more sophisticated method [41] used in deep neural networks,

namely in ResNet (Residual Networks). To increase depth efficiency and compute performance, it employs a
bottleneck architecture and integrates identity mapping through shortcut links. The breakdown and required
mathematical expressions are shown below:

Mapping the identity—Adding extra layers to deep networks frequently results in degradation issues,
whereby deeper networks perform worse because of optimization difficulties. This is resolved by identity
mapping, which bypasses layers with shortcut connections, facilitating gradient flow and maintaining the
trainability of deeper networks. For identity mapping, an essential equation is given below:

z = G (t, {Vi}) + t (1)

In this equation, t denotes the input, G (t, {and Vi}) represents the residual function used for learning
and usually constitutes convolutions and activation functions. The addition of input to the output of residual
function by skipping provides a skip connection. The formulation helps residual function to learn as follows:

G(x) = Q(t) − t (2)

Q(x) denotes output and simplifies optimization by merely understanding the difference in identity.
The bottleneck architecture reduces the number of parameters and calculations without compromising rep-
resentational power, making deep networks more efficient. The bottleneck block reduces the computational
effort by compressing and then expanding the input instead of employing huge convolutional layers. Three
layers make up a bottleneck block. A 1 × 1 convolution compresses the input by lowering the dimensionality.
The basic computation on the compressed input is carried out using a 3 × 3 convolution. Regaining the
original size of the output requires another 1 × 1 convolution. In the bottleneck block, the function G(t) is
represented as follows:

G (t) = V3σ(V2σ(V1t)) (3)

In the equation, V1, V2, and V3 represent weights of 1 × 1, 3 × 3, and 1 × 1 convolutions operation. The
activation function is denoted by σ . In this case, it is the Rectified Linear Unit (ReLU). Given below, Fig. 3
represents the procedure pictorially.
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Figure 3: Depiction of residual bottleneck architecture

4.1.2 Self-Attention Mechanism
The growing popularity of self-attention mechanisms can be attributed to their high computational

parallelization and flexibility [42]. Every pixel in the input image has a value, key, and query vector allocated
to it. These vectors are computed via linear transformations of the pixel embeddings based on learned
weight matrices. While the query vector represents the representation of each individual pixel, the key and
value vectors are utilized to aggregate data from other pixels and determine attention weights, respectively.
Adjacent pixels’ attention scores are computed. This is achieved by scaling the result after taking the dot
product of a query and the key vector of nearby pixels. The attention weights are then standardized using
a Softmax function to obtain attention weights. An attention-weighted pixel is more significant when
determining the representation of the current pixel. Next, the weighted sum of the value vectors for every
pixel in the image is computed using the attention weights. This aggregation method yields a refined and
context-aware representation of the input image, where each pixel’s contribution is weighted according to its
attention weight.

The output of the self-attention [43] layer is a weighted sum of values that serves as an updated
representation of the input image. It records the interplay and interdependencies among all of the image’s
pixels. In conclusion, a self-attention layer enables a neural network to dynamically focus on various input
image regions, efficiently capturing contextual information and spatial connections. Fig. 4 represents the
self-attention mechanism:

Figure 4: Self-attention mechanism adopted in the proposed architecture
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The mathematical representation of the attention mechanism is provided below:

a ε RE×N (4)

A denotes the single input feature matrix, E denotes the total channels, and N denotes the product
dimensions. Let us have three convolutions denoted by:

f (a), g(a)& b(a) . f(a) = I f a (5)

h(a) = IT
h a (6)

b(a) = IE a (7)

If , Ih , IE ε RE∗×E (8)

The activation map of Softmax is given as:

G j , i =
e (Si , j)

∑N
i=1 e (Si , j)

(9)

S j , i = f(ai)T h(a j) (10)

S j , i = I⃗h(a) (11)

K j = U (
N
∑
i=1
(G j , i) ⋅ b(ai)) (12)

So, the final length of the feature map is:

Va = RE × E∗ (13)

In the end, the output has the same number of channels as the input features to the self-attention layer.

4.1.3 Bayesian Optimization Based Hyperparameters Selection and Training
In this work, we selected the hyperparameters of this model through the Bayesian optimization (BO)

algorithm [44] instead of manual selection. BO attempts to minimize the scalar objective function f (x) for
input value x in a bound domain. The minimization process is based on the following points:

i. yi = f(x) is a Gaussian process model.
ii. A Bayesian update procedure for modifying the Gaussian process model at each new evaluation

yi = f(x). The posterior distribution is computed over f (x) at this point.
iii. An acquisition function is adopted to maximize the next point of x in f (x). In this work, we employed

an expected improvement acquisition function that is mathematically formulated as follows:
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EI(x , q) = Eq [Max(0, μq (xbest) − f(x))] (14)

The above process is terminated based on the fixed number of iterations, such as 50 in this work. After
the fixed number of iterations, we obtained the best points further utilized for a model’s training. For the
proposed model, we obtained the following hyperparameter values: best learning rate value of 0.00036,
momentum value of 0.663, batch size of 32, dropout value of 0.5, and optimizer is ADAM. Moreover, we
performed a total of 100 epochs on each dataset.

After that, the proposed model is trained on the selected datasets. Two different models are saved at the
end—one for HMDB51 and another for UCF101. Both trained models are utilized in the final classification
and validation testing phase.

4.2 Proposed Model Testing
After the training phase, the next phase tests the proposed model on the selected datasets (testing set).

In the testing phase, features are extracted from the self-attention layer using testing frames. The dimension
of extracted features on this layer is N × 1024. The extracted features are later passed to the classifiers, who
obtain the numerical values and visually labeled output. Visually, the proposed model testing procedure
is shown in Fig. 5. This figure shows that the wide neural network (WNN) classifier is picked as the best
classifier based on accuracy.

Figure 5: Proposed deep model testing process for action classification
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A wide neural network is usually used for continuous learning tasks. A wider network can better capture
data complexity and minimize task interference by enhancing gradient orthogonality. Additionally, wider
networks are more resilient to catastrophic forgetting, which occurs when knowledge is replaced by fresh
information [45]. In addition, the wide neural network classifiers need average training time but excessive
computing resources [46].

5 Results and Discussion

5.1 Experimental Setup
Self-attention-based seven parallel residual bottleneck architecture (Attention-RB) is used for the

experiments. The optimizer, Stochastic Gradient Descent with Momentum (SGDM), ensures convergence
throughout the training process. The dataset was divided 50:50 between training and testing, and a 10-fold
cross-validation procedure was used. The key hyperparameters are mentioned above and the best learning
rate value is 0.00036, momentum value is 0.663, batch size is 32, dropout value is 0.5, and optimizer is ADAM.
Moreover, we performed a total of 100 epochs on each dataset. An NVIDIA GeForce RTX 3060 GPU and a
12th Generation Intel Core i5 processor are used for computing; the experiments are carried out on MATLAB
2024b.

5.2 Dataset and Performance Measures
The HMDB51 and UCF101 datasets are used to validate the generalizability of the model. Both datasets

are well-established and used in the scientific community’s literature. The datasets are publicly available. The
validation of results is tested via different performance measures, such as accuracy, false negative rate, and
computational time. These measures check the underlying methodology’s efficiency on the provided dataset.

Performance metrics such as false negative rate (FNR), time, and accuracy thoroughly assess a model’s
efficacy. The model’s total performance is evaluated by accuracy, which gives information on how well
it can categorize both positive and negative samples from the dataset [47]. For real-time applications or
those with constrained computational resources, the model must function rapidly, and time quantifies the
computational efficiency of the model. In high-stakes situations like healthcare or security, where missing
a real positive (such as a sickness or threat) might have dire repercussions, the false negative rate is crucial
[48]. When taken as a whole, these criteria guarantee a fair assessment of the model’s precision, speed, and
dependability in avoiding important mistakes.

5.3 Classification Results on the HMDB51 Dataset
Completing epochs on the training dataset generates several numeric values depicting the DCNN model

efficiency. The training and loss graph for HMDB51 dataset is provided in Fig. 6.
To validate testing accuracy, the testing dataset is used, and five neural network-based classifiers are

used to classify the features. The performance measure’s value against each classifier is listed below in Table 1.
The wide neural network has the highest accuracy value, i.e., 87.70%, the lowest processing time, i.e.,
189.50 s, and the lowest number of false negatives, i.e., 12.30%, which proved the significance of the model’s
performance on the HMDB51 dataset. A tri-layered neural network achieves the worst value, i.e., 51.60%
accuracy, maximum processing time, i.e., 697.60 s, and highest false negative rate of 48.40%. A confusion
matrix of the highest performing classifier, i.e., wide neural network, is provided in Fig. 7.
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Figure 6: Training and loss graph for the HMDB51 dataset

Table 1: Classification results of the proposed architecture for HMDB51 dataset

Classifier Accuracy (%) Processing time (s) False negative rate (%)
Wide NN 87.70 189.50 12.30

Medium NN 76.10 681.42 23.90
Narrow NN 55.90 655.97 44.10

Bi-Layered NN 53.90 672.30 46.10
Tri-Layered NN 51.60 697.60 48.40

Note: Bold denotes the best values.

5.4 Classification Results on UCF101 Dataset
The DCNN efficiency is represented by several numerical values that are produced by finishing epochs

on the training dataset. Fig. 8 shows the training and loss graph for the UCF101 dataset.
Classification is performed using neural network classifiers. The wide neural network proved to be

the best-performing classifier, achieving 97.30% accuracy, as per the results depicted in Table 2. It took a
minimum of 249.64 s and had the least false negative rate of 2.70%. The tri-layered neural network achieved
the lowest accuracy of 65.10%, the highest process. The confusion matrix for a wide neural network is
provided in Fig. 9. In this figure, the diagonal shows the correct prediction rate.
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Figure 7: Confusion matrix for a wide neural network classifier

Figure 8: Training and loss graph for the UCF101 dataset

Table 2: Classification results of proposed architecture for UCF101 Dataset

Classifier Accuracy
(%)

Processing
time (s)

False negative
rate (%)

Wide NN 97.30 249.64 2.70

(Continued)
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Table 2 (continued)

Classifier Accuracy
(%)

Processing
time (s)

False negative
rate (%)

Medium NN 90.90 859.54 9.10
Narrow NN 71.90 2002.80 28.10
Bi-Layered

NN
69.40 2134.70 30.60

Tri-Layered
NN

65.10 2138.70 34.90

Note: Bold denotes the best values.

Figure 9: Confusion matrix for wide neural network classifier

6 Discussion
This section has conducted a detailed discussion of the proposed architecture, including ablation studies,

comparisons with pre-trained CNN models, and comparisons with state-of-the-art techniques.

6.1 Ablation Studies
Training Accuracy based Analysis—In the first ablation study, we implemented several pre-trained

models on the selected datasets using the transfer learning concept, whereas all the models were trained
from scratch. After that, the accuracy of the training is noted. In the training process, we selected the same
hyperparameters mentioned in Section 4.1.3. After that, the training accuracy is indicated for each model
in Table 3. This table shows that the AlexNet model’s training accuracy is 82.1% and 93.6% on the selected
datasets HMDB51 and UCF101, respectively. After using Google, the accuracy improved by 82.6% and
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93.6%, respectively. ResNet architectures’ accuracy is improved to 85.9% and 95.8%. The training accuracy
of EfficinetNetbo has improved by 87.3% and 97.3%, respectively, which shows this architecture’s strength. In
addition, we implemented vision transformer (ViT) architecture such as Tiny-16 and obtained an accuracy
of 88.9% and 96.5%, respectively. However, the proposed CNN architecture obtained improved training
accuracy of 90.6% and 98.2%, respectively, which is better than the listed models in this table.

Table 3: Analysis of proposed CNN model and pre-trained architectures based on the training accuracy on selected
datasets

CNN model HMDB51
accuracy (%)

UCF101
accuracy (%)

Proposed 90.6 98.2
AlexNet 82.1 93.6

GoogleNet 82.6 94.1
ResNet50 85.9 95.0
ResNet101 84.6 95.8

EfficientNetb0 87.3 97.3
DarkNet19 85.0 97.6

InceptionV3 87.0 97.0
ViT (Tiny-16) 88.9 96.5

Note: Bold denotes the best values.

Testing Accuracy-based Analysis—In the second ablation study, we tested the CNN models, which are
presented in Table 3. In the testing process, we used the same testing set frames of the selected datasets and
extracted deep features that were later passed to the WNN classifier. The results are given in Table 4. This
table shows that the AlexNet model’s obtained accuracy is 81.10% and 90.46%, which is further improved
by ResNet50 architecture of 83.60% and 93.56%, respectively. The efficient net model obtained an improved
testing accuracy of 84.86% and 95.64%, respectively. A ViT (tiny-16) was also tested on the WNN classifier
and obtained better accuracy of 85.20% and 95.86%, respectively. The proposed architecture accuracy is
87.70% and 97.30%, which is enhanced than the listed models in this table.

Table 4: Analysis of the proposed CNN model and pre-trained architectures based on the testing accuracy on selected
datasets, where we used WNN classifier

CNN model HMDB51
accuracy (%)

UCF101
accuracy (%)

Proposed 87.70 97.30
AlexNet 81.10 90.46

GoogleNet 80.54 91.26
ResNet50 83.60 93.56
ResNet101 82.50 94.20

EfficientNetb0 84.86 95.64
DarkNet19 83.14 95.03

InceptionV3 84.04 95.17
ViT (Tiny-16) 85.20 95.86
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Trainable Parameters based Analysis—This ablation study compared the proposed CNN architecture
with pre-trained models based on trainable parameters. Fig. 10 shows the visual illustration of this com-
parison. This figure demonstrates that the minimum learnable parameters required by EfficientNetb0 and
GoogleNet are 5.3 (Million) and 7.0 (Million), respectively. The ViT-16 required the highest number of train-
able parameters at 86.8 (Million); however, the number of trainable parameters for the proposed architecture
is 11.2 (Million). The proposed architecture is better than pre-trained models except for EfficientNetb0 and
VIT based on the learnable parameters. In addition, the accuracy of the designed model is better than those
of these pre-trained models on the selected datasets.

Figure 10: Comparison of the proposed and pre-trained models based on trainable parameters

Inner Residual Blocks based Analysis: In this ablation study, we analyze the performance of the proposed
CNN model based on the number of designed blocks and self-attention module. Table 5 presents the output
of this ablation study. In this table, initially, we added one residual block in the proposed model (Fig. 2) and
performed training on the selected datasets. The obtained accuracy for this experiment is 76.20% and 89.24%,
respectively. In the second experiment, we added two blocks and again performed training. The obtained
accuracy value for this experiment is 78.54% and 91.36%, respectively. The accuracy gradually increased with
the addition of more blocks in the main model and reached a maximum of seven blocks. After eight residual
blocks, the accuracy gradually decreased to 89.16% and 96.52%, which was previously 90.10% and 98.20%.
Moreover, we also experimented without adding any self-attention layer and obtained an accuracy of 85.34%
and 94.80%, respectively. These ablation studies show that the proposed architecture obtained improved
performance on seven designed blocks and the self-attention layer on the selected datasets.

Table 5: Analysis of proposed CNN architecture training accuracy based on the number of residual blocks and self-
attention (SA) layer

CNN Model HMDB51 UCF101
Proposed_1 Block + SA 76.20 89.24

Proposed_2 Blocks + SA 78.54 91.36
Proposed_3 Blocks + SA 80.34 91.50
Proposed_4 Blocks + SA 83.69 93.42
Proposed_5 Blocks + SA 85.60 94.89
Proposed_6 Blocks + SA 88.20 96.14
Proposed_7 Blocks + SA 90.10 98.20
Proposed_8 Blocks + SA 89.16 96.52

Proposed_7 Blocks 85.34 94.80

Note: Bold denotes the best values.
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6.2 Comparison with State-of-the-Art (SOTA)
A comparison with existing techniques is performed in Table 4. Comparison is performed using both

datasets. In Table 6, recent techniques such as Giveki [32] and Sowmyayani et al. [33] used HMDB51 datasets.
They obtained 82.30% and 85.80% accuracy, respectively—the proposed model obtained 87.80% accuracy
on this dataset, which shows a 2% improvement. For the UCF101 dataset, Dastbaravardeh et al. [37] and
Xiong et al. [38] achieved an accuracy of 97.16% and 96.15%, which is further improved by the proposed
architecture to 97.30%. Hence, it is observed that the proposed customized DCNN performed far better
or had a comparable performance to these existing techniques. Lastly, the proposed CNN model’s visual
prediction is shown in Fig. 11.

Figure 11: Proposed CNN model action prediction output

Table 6: Comparison with state-of-the-art techniques

Reference Dataset Year Accuracy
He et al. [29] HMDB51 2021 81.00%
Bao et al. [30] HMDB51 2021 77.00%

Ahmad and Wu
[31]

HMDB51 2023 80.61%

Giveki [32] HMDB51 2024 82.30%
Sowmyayani et al.

[33]
HMDB51 2024 85.80%

Proposed HMDB51 2025 87.70%

(Continued)
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Table 6 (continued)

Reference Dataset Year Accuracy
Varshney and
Bakariya [34]

UCF101 2022 97.20%

Yang and Zou [35] UCF101 2022 92.70%
Gowada et al. [36] UCF101 2023 96.30%

Dastbaravardeh
et al. [37]

UCF101 2024 97.16%

Xiong et al. [38] UCF101 2024 96.15%
Proposed UCF101 2025 97.30%

Note: Bold denotes the best values.

7 Conclusion
Human action recognition has gained attention since the evolution of computer vision techniques.

Video frames have complex features, so it is a challenging task to classify them from these frames. This study
proposes a DCNN model that inputs video frames and classifies each frame into a corresponding class. In
the proposed approach, there are seven blocks, and in each block, there are eight residual bottleneck sub-
blocks; these are arranged in parallel, and the output of all these is added and provided to the next block.
A self-attention layer is appended at the end of these seven blocks. Attention-based feature extraction is
carried out and handed over to neural network classifiers. Comparison results with SOTA techniques show
a significant improvement in performance measures. Overall, we first introduce new residual blocks with
several filters that extract the more important features and are helpful for accurate action classification, even
for large and complex datasets such as HMDB51. Secondly, self-attention layers after seven blocks provided
better feature information; however, the number of residual blocks up to seven provides better convergence,
which is degraded after the addition of a new block. Thirdly, BO-based hyperparameter selection shows
better training of the proposed and pre-trained models than selection through random search.

There are a few limitations of this work, including the conversion of video datasets into video frames
and the inclusion of several hidden layers inside the parallel blocks. The parallel blocks improved the
performance; however, the weight layers increased the parameters that can be resolved in future studies.
Future work will focus on developing a deep neural network that can uncover the intrinsic features of video
frames in more generalizable settings. In addition, the network can be extended with a few dense ViT blocks
to extract more valuable features of the video frames and decrease the weight layers.
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