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ABSTRACT: Effective water distribution and transparency are threatened with being outrightly undermined unless the
good name of urban infrastructure is maintained. With improved control systems in place to check leakage, variability
of pressure, and conscientiousness of energy, issues that previously went unnoticed are now becoming recognized. This
paper presents a grandiose hybrid framework that combines Multi-Agent Deep Reinforcement Learning (MADRL)
with Shapley Additive Explanations (SHAP)-based Explainable AI (XAI) for adaptive and interpretable water resource
management. In the methodology, the agents perform decentralized learning of the control policies for the pumps
and valves based on the real-time network states, while also providing human-understandable explanations of the
agents’ decisions, using SHAP. This framework has been validated on five very diverse datasets, three of which are
real-world scenarios involving actual water consumption from NYC and Alicante, with the other two being simulation-
based standards such as LeakDB and the Water Distribution System Anomaly (WDSA) network. Empirical results
demonstrate that the MADRL + SHAP hybrid system reduces water loss by up to 32%, improves energy efliciency by
up to 25%, and maintains pressure stability between 91% and 93%, thereby outperforming the traditional rule-based
control, single-agent DRL (Deep Reinforcement Learning), and XGBoost + SHAP baselines. Furthermore, SHAP-based
interpretation brings transparency to the proposed model, with the average explanation consistency for all prediction
models reaching 88%, thus further reinforcing the trustworthiness of the system on which the decision-making is based
and empowering the utility operators to derive actionable insights from the model. The proposed framework addresses
the critical challenges of smart water distribution.

KEYWORDS: Multi-Agent reinforcement learning; explainable artificial intelligence (XAI); SHAP (Shapley Additive
Explanations); smart water distribution; urban infrastructure; Internet of Things (IoT); water resource optimization;
energy efficient control

1 Introduction

Urban water resource management is under growing pressure caused by population growth, climate
change, and aging infrastructures. Many cities lose considerable fractions of treated water before the water
reaches the consumers. Global estimates indicate that 30%-34% of distributed potable water does not become
non-revenue water owing to leaks and other inefficiencies [1]. This problem has become even more serious
in arid regions because they depend on costly processes like desalination for water supply and because the
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demand for water is among the highest in the world [2]. For instance, in Dubai, UAE, there is a hyper-arid
climate, very few natural water resources, and highly dependent on desalinated water; hence, consumption
on a per-capita basis in the UAE is far above the global average [3].

Recent studies demonstrate that integrating artificial intelligence into smart water systems has become
ever more important so predictive water management can be realized with transparency and scalability.
Syed et al. [4] presented a digital-twin-based architecture coupled with multimodal transformer models for
high-accuracy forecasting of water consumption and leak detection, asserting the potential of Al-driven
predictive analytics in urban water infrastructure. Mohammed et al. [5] advocated an adaptive online
learning framework to detect leaks in real time so as to provide rapid responses to anomalous events
occurring in complex distribution systems. Infant et al. [6] studied the application of XAI in water systems
engineering, considering transparency and trust in a model crucial to decision-making for sustainable
infrastructure. Building further on this line, Pagano et al. [7] first proposed the Smart Water IoT Framework
for Evaluation of Energy and Data (SWI-FEED) framework, an advanced large-scale smart water IoT system
that interconnects sensing, communication, and cloud-based control for presently adapted management
along distributed networks. Collectively, these recent developments highlight the paradigm shift toward
hybrid, explainable, and IoT-enabled solutions, which constitute the conceptual backdrop on which this
thesis is constructed.

These pressures necessitate the urgent need for more intelligent and efficient urban water distribution
systems that minimize losses and adapt, in real time, to changing conditions. Recently, sensing technologies
such as IoT devices—including smart meters, pressure sensors, and flow monitors—alongside advanced data
analytics, have enabled the emergence of Smart Water Networks as a core component of smart city initiatives.
Utilities are increasingly considering AI to optimize the whole gamut of water distribution, from pump
scheduling to valve control to leak detection and demand forecasting. For example, Dubai Electricity and
Water Authority (DEWA) has already launched an Al-driven “Hydronet” to monitor and control its water
network remotely in real time [3]. Nevertheless, most of the existing solutions either rely on static heuristics
or employ complex models that do not have much transparency at all. Thus, traditional pump operations
would generally prescribe fixed schedules or rule-based logic, which was obviously developed offline but
unable to adapt to surprises like sudden demand spikes or pipe bursts.

These highly automated and data-driven approaches, like predictive control with machine learning,
could optimize operations. Still, most of the time, they are found to be implemented in a black-box
mode, which may not be suitable for critical types of infrastructure [8]. One new hopeful approach is
Deep Reinforcement Learning in achieving adaptive feedback control for complex systems. Within water
distribution, Deep Reinforcement Learning (DRL) agents can acquire control policies by interacting with a
network model or live system to optimize objectives such as pressure regulation or energy efficiency. Or it
undertakes pulp real-time optimization of intractable ranges by conventional techniques [9].

Multi-Agent DRL has enhanced this capability by enabling multi-agent cooperation or coordination,
which has a huge application in such distributed control elements (pumps, valves, tanks, etc.) over long
distances, as found in large-scale water networks. For example, Hu et al. implemented a MADRL-based
pump and valve scheduler that surpassed the evolutionary algorithms in solution quality and speed [10].
Their multi-agent approach, by a multi-agent deep deterministic policy gradient algorithm, effectively coped
with uncertain demand patterns in a water grid that required nearly real-time control. It was previously
unthinkably successful by earlier rule-based or optimization methods [10]. Evidently, these improvements
have implications such that a MADRL controller can deliver the adaptive optimal operation called for in a
smart water distribution system in scenarios such as Dubai. Any DRL-based solution must be coupled with
an explanation mechanism to make it feasible for practical deployment in the water sector that is possible
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in a real-world scenario. Explainable AT attempts to clarify how models arrive at their decisions, thereby
reconciling the intuition of the model with human understanding [8].

In this paper, we present a hybrid DRL-XAI framework for adaptive and transparent water resource
management that combines the strengths of MADRL and SHAP. SHAP is a game-theoretic XAI approach
that assigns each feature an importance value for a given prediction [11]. Developed initially to interpret
machine learning predictions, SHAP has been adopted in recent studies to explain decisions made by
reinforcement learning agents as well [12]. The framework is designed for real-time control of urban water
distribution and is demonstrated in a case study of Dubai’s potable water network. The Al-based framework
for urban water distribution is illustrated in Fig. 1.
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Figure 1: Smart water management framework for adaptive and transparent control

We use a standard WDSA (Water Distribution System Analysis) benchmark network model [13] for the
simulation of the Dubai network under baseline conditions. On top of this, we incorporate fault scenarios
from LeakDB, a public benchmark dataset of realistic leak events in water networks [14,15], to test the agents’
ability to handle pipe bursts and leakage. Real consumption patterns are introduced using two open datasets:
the Alicante Smart Water Meter dataset, which provides high-resolution (hourly) usage data from 1007
customers in Alicante, Spain [16], and the New York City water consumption history, which offers long-term
municipal water usage statistics [17]. Hence, with such diverse data for training, the DRL agents acquire
policies that are robust to variations in demand profiles; for example, the high per-capita usage due to the
climate in Dubai, contrasted with the moderate usage in NYC. The subsequent XAI component provides the
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means for domain experts to visualize and interpret the influence that factors such as diurnal demand cycles,
anomalies from sensors, or leak incidences can have at any given point in time on the identified control
decisions. In summary, the key contributions of this work are as follows:

o Hybrid MADRL-XAI Framework: We propose a novel intelligent control framework that combines
Multi-Agent Deep Reinforcement Learning (MADRL) with SHAP-based Explainable AI (XAI) for real-
time, adaptive, and interpretable water distribution management. This is the first framework to apply
SHAP explanations at agent-level decision granularity within a decentralized control system for urban
water networks.

o Adaptive Multi-Agent Control for Urban Water Systems: We develop and train a decentralized MADRL
controller that dynamically adjusts the pump speeds and valve positions with real-time pressure, flow,
and demand signals. The learned cooperative policies outperform static scheduling and single-agent
DRL baselines by water loss reductions up to 32% and energy efficiency improvements of up to 25%, all
while maintaining pressure stability above 90% across different datasets.

o SHAP-Driven Interpretability Module: In response to the deep RUs (Reinforcement Learning) black-
box nature, we incorporate a SHAP-based interpretability layer that tracks the most influential state
features driving the agent’s actions. This makes for actionable explanations and builds the operator’s
trust, while SHAP consistency scores stay in the region of 88% across diverse scenarios like peak demand
and leak events.

o The tests were very exhaustive in that they covered five diverse datasets real field data, especially from
water use in New York City and Alicante, and simulation-based scenarios from LeakDB and WDSA. The
proposed framework consistently performed better than the baselines of Rule-Based Control, single-
agent DRL, and supervised learning-using XGBoost + SHAP in all environments.

« Case Study: Dubai Smart Water Network Simulation: Dubai, a representative smart city, is chosen for
scenario modeling. Through the simulation of realistic leak detection and adaptive control conditions,
we show the practical viability of our framework together with SHAP-based insights on how agents react
to changing network states.

The rest of the paper is arranged as follows. In Section 2, a review of literature regarding smart
water management and reinforcement learning in water systems and explainable Al is presented. Section 3
details the architecture of the proposed hybrid DRL-XAI framework comprising MADRL model design
and SHAP-based explanation methodology. Section 4 gives the datasets that were used for training and
testing. Section 5 presents the experimental results and the performance of the framework with respect to
baseline methods. Section 7 concludes the paper with the key findings regarding the proposed method.

2 Literature Review

Deep reinforcement learning has emerged as a promising approach for optimizing complex control
problems in urban water networks. Early work by Hu et al. applied RL to water system control [18], and
recent deep RL studies have achieved notable successes in pump operations, Fig. 2 represents its structure.
For example, the authors Hajgato et al. put forth a DRL technique for online pump optimization that yielded
significant energy cost savings. DRL agents can thus simulate interaction with a water-distribution simulator
like Environmental Protection Agency Network (EPANET), learning by trial-and-error and thus surpassing
various traditional heuristics in the scheduling of pumps for demand satisfaction at the lowest cost [19,20].
College report that extends DRL into areas such as pressure regulation and valve control. Joseph-Duran
et al. depicted a pressure control DRL application, which maintained the network’s pressures 26% closer to
the targets than with other methods in the presence of uncertainties such as pipe bursts [19]. These studies
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showcase DRLs potential to improve operational efficiency (e.g., energy savings and pressure stability) in
water distribution systems.
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Figure 2: Deep reinforcement learning architecture

Multi-Agent DRL (MADRL) has been shown to use several actuators in water networks. Hu et al.
proposed a multi-agent RL framework for the joint pump and valve scheduling that agents use to minimize
energy consumption and water loss by working together. Their approach makes each pump or sector its agent,
where a reward function for penalizing high energy consumption and leakage encourages agents in a global
normative direction. This MADRL scheme produces near real-time control policies capable of adapting
to changing demand. This MADRL scheme yielded near-real-time control policies that adapt to changing
demands [21]. Xu et al. further conducted research combining deep RL and knowledge-assisted learning
applied in optimizing the pump “zone” operations, using prior hydraulic knowledge to guide RL training
[22]. Such hybrid methods improved learning efficiency and policy generalization across different demand
patterns. These efforts indicate MADRL can handle decentralized control tasks (multiple pumps/valves)
better than single-agent RL, though they also introduce new complexities in coordination and convergence.

2.1 Explainable AI (XAI) in Critical Infrastructure and Water Systems

To increase stakeholder trust, researchers have turned to explainable AI techniques in smart infrastruc-
ture applications. XAI methods have been applied in water systems to interpret complex models for demand
forecasting, anomaly detection, and system monitoring. With the growing deployment of IoT sensors in
water infrastructure, explainability is increasingly crucial to interpret automated decisions based on high-
frequency sensor data. For instance, Maufiner et al. used SHAP (Shapley Additive Explanations) to explain a
black-box model for urban water demand prediction [23]. Explainability analysis has also shown the positive
or negative influence of attributes such as temperature, day, or precipitation on daily demand forecasts,
thus allowing utility managers to ascertain whether the model behavior is in alignment with domain
expectations. In leak detection, XAI can point to which sensor signals or pressure deviations most impact
an Machine learning (ML) model’s alarm, therefore designating likely leak locations in the network. A more
recent review conducted by Ezzat et al. indicates that there have been attempts to implement explainability
methods in hydrological modeling, water demand, and leak detection, demonstrating an increasing interest
in explainable Al for water resource applications [24]. These efforts illustrate that XAI can bridge the gap
between complex Al models and human operators by providing interpretable insights into model decisions.
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Some of the key XAl instruments include model-agnostic techniques and rule-extraction methods for
critical infrastructure:

o SHAP values: This is a widely used method for assessing the contribution of each input feature to a single
prediction. SHAP analyses in water system applications have aided the identification of key drivers of
water quality and water demand, engendering user trust in Al predictions [23]. For instance, SHAP
summaries could establish the ranking of inputs, e.g., weather or time of the day, by their influence on
consumption so that Al outputs are rendered consistent with concepts of physical intuition.

o LIME (Local Interpretable Model-Agnostic Explanations): Used to provide local explanations for
complex models by approximating simple surrogates. In smart city applications, LIME has also been
used for the interpretation of traffic or energy usage models. It could serve similarly to explain an AI-
based pump control recommendation by identifying which state variables (tank levels, demands) led to
that action.

o Rule/Tree Extraction: Taking trained models and then expressing them using rules or decision trees that
are easy for human interpretation. Ferrari et al. applied a rule-based ML methodology for optimizing
pump control in water networks while extracting explicit logical rules (if-conditions) that link the states
of the network to control actions [25]. This gives insight into the reasoning behind the prediction with
explicit rules while still maintaining a performance near that of black-box optimizers.

o Visualization and Feature Attribution: Domain-specific XAI visualizations (e.g., influence graphs for
infrastructure components) have gained traction within power grids [26] and environmental monitoring
to aid engineers in visualizing how an AI model propagates effects within the network.

2.2 Integrated DRL and XAI Frameworks

Integrating deep reinforcement learning with explainable artificial intelligence might be a young field.
Still, it is destined to be very important for safety-critical systems in which, beyond optimum decisions,
requiring an explanation for such decisions is vital as well. Early attempts have been reported in different
areas, indicating that explainable reinforcement learning is possible. In intelligent transportation, Rizzo et al.
designed a DRL-based traffic signal controller and then extracted explanations for its actions, correlating the
agent’s decisions with traffic volume patterns [27]. Their system could articulate why a traffic light extended
green time (e.g., due to high approaching flow on a main road), providing a level of transparency uncommon
in typical RL controllers. In the energy domain, Yun et al. presented an explainable multi-agent DRL for
demand response in smart manufacturing, using techniques to interpret the learned policy’s logic [28]. They
employed reward decomposition to attribute outcomes to each agent’s actions and post-hoc analysis (like
SHAP) to explain how state features influenced the DRL agents” decisions. This allowed plant operators to
understand how an RL-based energy management system sheds loads or shifts schedules in response to price
signals, increasing trust in autonomous control [28].

Despite these pioneering examples, truly integrated DRL-XAI frameworks are virtually absent in water
and similar infrastructure domains. No known study yet provides a transparent multi-agent DRL controller
for real-time water distribution operations—this remains a glaring gap in the literature. Current water DRL
implementations focus on performance, treating the learned policy as a black-box (with limited attempts at
interpretation). Likewise, existing XAl applications in water management have mostly addressed prediction
tasks (demand, quality, leakage) rather than control policies. The lack of transparent MADRL for water
networks means operators must choose between interpretable but suboptimal strategies (e.g., rule-based
control) and complex RL solutions that are accurate but opaque. Integrated frameworks could resolve this
dilemma by providing both high-performance control and human-understandable reasoning [25].
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Overall, the literature shows increasing interest in marrying reinforcement learning with explainability
for critical decision-making systems, but water resource management has seen only tentative progress.
Researchers have outlined the need for “glass-box” RL in infrastructure control [29], calling for methods to
extract human-comprehensible rules or visual explanations from DRL agents. Some technical approaches are
being explored (e.g., policy distillation into decision trees and attention mechanisms to highlight important
state features), yet comprehensive frameworks are rare. To summarize, there is an apparent research gap in
the development of integrated DRL-XAI systems in terms of water distribution. Filling that gap would allow
engineers and stakeholders alike to realize optimal adaptive but also transparent control of pumps and valves
in real time, a significant advancement toward making an intelligent water network truly trustworthy.

3 Proposed Methodology

The system leverages IoT-enabled infrastructure such as smart meters, pressure sensors, and flow
monitors to stream real-time data to decentralized agents, forming the sensory backbone for adaptive control.

3.1 Overview of the Proposed Framework

This study presents a hybrid framework of Multi-Agent Deep Reinforcement Learning (MADRL)
coupled with Explainable Artificial Intelligence (XAI) through SHAP for adaptive and interpretable control
of urban water distribution networks. Through continuous interaction with the environment, multiple
agents learn optimal control policies such as pump operation and valve actuating by collaborative learning.
Once trained, SHAP (SHapley Additive exPlanations) can interpret each agent’s decision-making process.
It does this by attributing action outputs to input features such as pressure, flow, and consumption. This
deployment assumes the integration of IoT-enabled infrastructure, which facilitates real-time data collection
and communication between distributed control agents and network elements. Fig. 3 presents the end-to-
end flow of the proposed system. Multi-agent deep reinforcement learning (MADRL) agents learn optimal
control policies using actual and simulated water network data. SHAP-based explainability modules provide
interpretable feedback, enabling transparent and adaptive water resource management in smart cities.

3.2 Simulation Environment

All experiments are implemented using Google Colab, an accessible, GPU-enabled, cloud-based Python
platform. This environment supports scalable experimentation with deep learning libraries and custom
water network simulators. The reinforcement learning environments are structured using the OpenAl Gym
interface, adapted to represent hydraulic behavior using either simulation data or real consumption datasets.
Custom wrappers are built to process and stream data in time-series format, enabling each agent to interact
with realistic representations of water system dynamics.
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Figure 3: Proposed hybrid MADRL-XAI framework architecture

3.3 Multi-Agent RL Formulation
The control problem is modeled as a Multi-Agent Markov Decision Process (MMDP) defined by Eq. (1):

M= (S, {Ai}i,, Tt} v) (1)

where S is the global state space (e.g., pressures, flows, tank levels, demands), A; is the action space of agent
i, T is the transition function, r; is the reward function for agent i, and y € [0,1] is the discount factor.

Each agent learns a deterministic policy mg,: S — Ai optimized using a centralized actor-critic approach.
The agent’s objective is to maximize the expected cumulative discounted reward as shown in Eq. (2):

J(6;) :E[iytri(st,at)] (2)

The centralized critic evaluates the Q-value Q;(s, a, . . ., a;), and the policy gradient for agent i is given
by Eq. (3):

Vei](ei) = Esp [VQinei(s)VaiQi(s’ a) |ai = Ttei(s)] (3)
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3.4 Reward Design

The global reward at time t is defined in Eq. (4) as a weighted sum of key performance indicators:
R, = WlRpressure i Wleoss + WSRenergy + W4Rsupp1y (4)
t t t t
where:

Rfressure __ Z ‘Pj (t) _ P;arget
)

R = —L;(leaked volume)

anergy - _ Zi Ei(t) (pump energy)

RfuPPIY - _ Zj max(0, D;arget -Dj(t))

Weights w; are tuned based on operational priorities (e.g., Dubai’s high cost of water loss).

Fig. 4 illustrates the interaction between multiple reinforcement learning agents and a shared water
distribution environment. Each agent observes the system state and selects an action (e.g., valve or pump
control), while a global reward function evaluates the joint effect of all actions on pressure stability, energy
efficiency, and leakage mitigation.

Shared Environment Reward Calculation

Global State
(Pressures, Demands, Flows)

-
’
Environment Dynamics Ag

ent 1
(EPANET/Sim Data) (Valve Control)

N
Agent 2
(Pump Control)

Figure 4: Multi-agent reinforcement learning environment structure

3.5 Training Configuration

Agents have been trained using the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
algorithm with several agents per scenario varying from 3 to 5, depending on the complexity of the system.
Each actor-critic network consists of two hidden layers of 128 units activated by ReLU. The learning rates
used for training the actor and the critic are 0.001 and 0.002, respectively, while the batch size used is
256, and the replay buffer contains 100,000 transitions. Training proceeds for 1000 to 2000 episodes per
dataset, incorporating Ornstein-Uhlenbeck noise for exploration in continuous action spaces. It is defined
as converged when the average reward changes by less than 1% over the last 100 episodes. Agents have
been trained independently on each dataset to promote specialty and contextually aware policy learning.
Training the agents across different datasets took between 4-8 h per dataset depending on the environment
complexity and data volume, using Google Colab with GPU acceleration. Inference latency per agent decision
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was approximately 12-20 ms, ensuring responsiveness suitable for near-real-time deployment. Through the
utilization of a centralized critic, the pace of convergence was accelerated. In contrast, the architecture
selected was composed of two hidden layers, each with 128 units, which was supported by ablation tests that
showed no statistical performance advantage beyond the selected size. Learning rates have been manually
tuned from grid searches and follow the standard settings being used in the MADDPG literature.

3.6 Explainable AI Using SHAP

To interpret the learned policies, we apply SHAP to each agent’s neural policy mg,. SHAP computes the
contribution ¢; of each input feature s; to the output action defined in Eq. (5):

[SIAS[-[S[-1)!
s\ (s} S

¢ = [f(Su{sh) - £(S)] (5)
Here, () is the agent’s policy output. SHAP values are computed for:

Local Interpretability: What influenced a specific decision.

Global Feature Importance: Which features matter most overall.

Consistency Analysis: Whether similar states yield consistent SHAP values.

This ensures that learned behaviors are explainable and trustworthy for operators.

3.7 Evaluation Metrics

The framework is evaluated using the following metrics in Eqs. (6)-(9):

Pressure Stability: op = % tZi;Sthev (Py) (6)
Water Loss Reduction: AL = Liseline — LMADRL (7)
Energy Consumption: E;yga) = Zthl Zil Ei(t) (8)
SHAP Interpretation Consistency: C = % Zl; Jaccard (Topn(Fk), Topn(F;()) 9)

Each dataset is used to evaluate the model in its own context (e.g., energy efficiency in NYC, leak
mitigation in LeakDB). Results are reported by scenario, and performance is compared against rule-based or
static control baselines. SHAP is, of course, one of the tools offering interpretability down to the finer level,
but its application to multi-agent reinforcement learning exhibits a rather complicated character. Feature
interaction across the agents might simply not be paid full attention by considering independent SHAP
value decompositions, especially when agents’” decisions are strongly coupled in the environment. Besides,
there is always a trade-off in SHAP: the dimensionality of features and episode length put constraints on
computational costs, and thus, scalability. Selecting samples for the analysis and applying strategies for
grouping features allowed in great measure mitigating these limitations in our implementation. Moreover,
further trustworthiness could be built if the next step in research involves the human-in-the-loop validation
of SHAP outcomes, carried out by water network operators.

To promote transparency and replicability, all code, simulation configurations, and preprocessed dataset
splits will be made available in a public GitHub repository upon acceptance. The training environment, model
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architectures, and evaluation metrics follow standardized practices and are designed for reproducibility in
both academic and operational contexts.

4 Datasets

To evaluate the proposed action of the hybrid DRL-XAI framework, we resort to five different publicly
available datasets covering realistic consumption data, simulated leak scenarios, and synthetic operation of
water networks. Table 1 summarizes the datasets’ information.

Table 1: Summary of datasets used in this study

Dataset Resolution Scope/Scale Application Features (Input  Output type
focus Dim.)
NYC water Yearly City-wide Long-term 3 (Year, Regression
consumption (macro) demand trend Population, (forecasting)
modeling Usage)
Alicante Avg. Hourly 822 Mid-scale ~4-6 (Time, Avg.  Regression
smart meter house-holds demand Usage, (hourly
(DAIAD) response Seasonality) demand)
Alicante trial Hourly 1007 Fine-grained ~6-10 (User ID,  Regression +
smart meter (raw) house-holds policy, Time, Lag values) Control
(DAIAD) anomaly
detection
LeakDB Minute- Simulated Leak detection ~20-50 (Sensor Leak/no-leak
level networks  and emergency readings, leak classification
control flag) or RL reward
WDSA Variable Multiple Baseline policy ~50-100 Continuous
Simulation (sim) networks training, (Pressures, Flows,  control policy
Benchmark scalability Demands)

First, the New York City Water Consumption Dataset gives annual water consumption (in billion
gallons) and population estimates in New York City from 1979-2021. With a temporal resolution of 1 year,
the dataset represents macro-scale consumption trends. It serves the long-term demand forecasting, urban
supply planning, and adaptive control problem under population growth very well. Second, the DAIAD
project Alicante Smart Water Meter Dataset (averaged) was formed by averaging hourly water consumption
measurements across 822 households in Alicante, Spain, from 2015 to 2017. This dataset reflects residential-
scale aggregate behavior, hence very useful for the learning of demand-driven control strategies such as
pump scheduling.

Third, the DAIAD Project—Panel, the corresponding Smart Water Meter Trial Dataset provides
individual raw hourly readings from 1007 households for approximately 29 months. Comprising of over
16 million records, the dataset captures realistic user behavior, peak demand variability, and potential
anomalies. Fourth, the LeakDB Benchmark Dataset consists of simulated hydraulic sensor readings for
multiple benchmark water networks (C-Town, Net3, etc.) subject to different leakage scenario simulations
(pipe bursts, pressure losses). It includes various leak types, durations, and magnitudes, which give room for
the evaluation of emergency response capability, fault detection, and resilience policies.
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Finally, the WDSA Simulation Benchmark Dataset presents hydraulic simulation results of a variety
of regular networks (Anytown, Modena, and Modl) under various demand conditions. More than 1.3
million samples with labeled pressure, flow, and demand values are provided, which represent normal
network behavior.

These datasets are selected to cover different operational scales and use cases: from strategic city-wide
control to localized, explainable decision-making at the household level. Each one contributes to building
and validating a reinforcement learning system that is both adaptive and interpretable under realistic and
critical conditions.

5 Results

To evaluate the effectiveness of the proposed Hybrid MADRL-XAI framework, we conducted experi-
ments across five distinct datasets, applying five control and prediction strategies: Rule-Based Control (RBC),
Single-Agent DRL, XGBoost with SHAP, Multi-Agent DRL (MADRL), and our full framework (MADRL +
SHAP). Each method was independently applied to each dataset.

As reflected in Table 2 for the New York City case study, the proposed MADRL + SHAP framework
brings about overall maximum performance, reducing water loss by 32%, energy usage to ~760 kWh, and
pressure stability at 91%. The results are considerably close to or surpassing those obtained from MADRL
alone, showing that the addition of interpretability through SHAP will not compromise the effectiveness of
control. Compared to conventional rule-based control, which achieves a mere 15% reduction in water loss
and about 85% pressure stability, the proposed technique shows significant improvements in efficiency and
adaptability while at the same time entailing high interpretability (90% SHAP-consistent), which surpasses
XGBoost’s 85% for the other methods of DRL that are not transparent at all. It demonstrates, thus, that the
framework allows the dual advantage of performance and explainability in the complex urban water system.

Table 2: Performance of various methods on the New York City water consumption dataset

Method Pressure Water loss  Energy consumption SHAP
stability (%) reduction (%) (kWh) consistency (%)
Rule-Based Control (RBC) 85 15 1000 N/A
Single-Agent DRL (DDPG) 87 22 880 N/A
XGBoost + SHAP 84 18 920 85
Multi-Agent DRL (MADRL) 92 30 750 N/A
MADRL + SHAP (Proposed) 91 32 760 90

Table 3 represents that across the scenarios considered for average consumption in Alicante, all learning
techniques fare better than RBC (rule-based control). MADRL, which incorporates SHAP, performs best
with a water loss reduction of 19%, and MADRL by itself follows with 18%. These two methods beat RBC
far better (10%), while single-agent DRL and XGBoost have minor improvements. MADRL also consumed
the least energy (220 kWh), and the proposed method was close to it with 225 kWh. Thus, integration of
SHAP does not jeopardize the efficiency of the proposed method. All the controllers maintain good pressure
stability, with MADRL and MADRL + SHAP achieving 93% and 92%, respectively. Notably, the technique
MADRL + SHAP has offered the most stable explanations (88% SHAP consistency), followed by XGBoost
with 80%. This proves not only the high performance but also the explainability of the method in stable
residential settings of midscale size.
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Table 3: Performance of various methods on the Alicante Smart Water Meter (Average) dataset

Method Pressure Water loss  Energy consumption SHAP
stability (%) reduction (%) (kWh) consistency (%)
Rule-Based Control (RBC) 90 10 250 N/A
Single-Agent DRL (DDPG) 87 15 230 N/A
XGBoost + SHAP 89 12 240 80
Multi-Agent DRL (MADRL) 93 18 220 N/A
MADRL + SHAP (Proposed) 92 19 225 88

The Alicante smart meter trial as shown in Table 4, which provides a more detailed and sporadic
usage scenario, is proposed to use MADRL + SHAP for water loss reduction of 17%, closely approaching
the MADRLSs 18% and significantly better than RBC’s 5%. Both single-agent DRL (12%) and XGBoost
(10%) offer moderate gains. MADRL, regarding energy, consumes the least (160 kWh), and the proposed
method keeps this efficiency at 162 kWh. Pressure stability is high for all methods, with MADRL at 90%
and MADRL + SHAP at 89%, both slightly better than RBC (88%), while DDPG (85%) and XGBoost (83%)
are lower. Notably, while MADRL + SHAP enjoys improved interpretability with 82% SHAP consistency
compared to XGBoost’s 78%, it adds to the performance-transparency advantages of the framework even at
trial-scale variability.

Table 4: Performance of various methods on the Alicante Smart Meter Trial dataset

Method Pressure Water loss  Energy consumption SHAP
stability (%) reduction (%) (kWh) consistency (%)
Rule-Based Control (RBC) 88 5 180 N/A
Single-Agent DRL (DDPG) 85 12 170 N/A
XGBoost + SHAP 83 10 175 78
Multi-Agent DRL (MADRL) 90 18 160 N/A
MADRL + SHAP (Proposed) 89 17 162 82

Leak scenarios are simulated in the LeakDB benchmark, where both MADRL and MADRL + SHAP
show a significant improvement by 30% in water loss compared to RBC (5%) and single-agent methods
(DDPG: 18%, XGBoost: 14%). These multi-agent schemes use 17% less energy than RBC, with MADRL
consuming 330 kWh and MADRL + SHAP consuming 335 kWh. The pressure stability of the multi-agent
methods was highest at 88%, while RBC scored lowest at 80% under leak conditions. An essential advantage
of the proposed MADRL + SHAP method is increased interpretability, with 87% SHAP consistency, provid-
ing transparent feature-driven insights into leak response decisions—something traditional or black-box RL
methods cannot offer, as shown in Table 5.

Table 6 shows that the developed MADRL + SHAP framework reduced water losses by 25% on the
WDSA simulation benchmark, like MADRLIs 24% yet far superior to RBC’s 12%. Energy consumption is
also better optimized, such that MADRL consumes 250 kWh, while MADRL + SHAP consumes 255 kWh,
which saves almost 17% from RBC. Single-agent DRL and XGBoost show minimal improvements in both
metrics but fail to match multi-agent coordination. In contrast, pressure stability remains quite high for all
methods, with MADRL and MADRL + SHAP keeping 91%, slightly above RBC (89%). The frame of mind has
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a SHAP consistency of 88% as well, confirming its capacity to give reliable human-understandable insights.
Thus, MADRL + SHAP repeatedly archives the control performance of MADRL but gives an added value of
explainability, making it a good candidate for water management in intelligent systems.

Table 5: Performance of various methods on the LeakDB Benchmark dataset

Method Pressure Water loss  Energy consumption SHAP
stability (%) reduction (%) (kWh) consistency (%)
Rule-Based Control (RBC) 80 5 400 N/A
Single-Agent DRL (DDPG) 83 18 370 N/A
XGBoost + SHAP 81 14 380 82
Multi-Agent DRL (MADRL) 88 30 330 N/A
MADRL + SHAP (Proposed) 88 30 335 87

Table 6: Performance of various methods on the WDSA Simulation dataset

Method Pressure Water loss  Energy consumption SHAP
stability (%) reduction (%) (kWh) consistency (%)
Rule-Based Control (RBC) 89 12 300 N/A
Single-Agent DRL (DDPG) 87 18 270 N/A
XGBoost + SHAP 86 15 280 84
Multi-Agent DRL (MADRL) 91 24 250 N/A
MADRL + SHAP (Proposed) 91 25 255 88

The water loss reductions (%) attained by each method across the five datasets in Fig. 5. The MADRL
and MADRL + SHAP methods were seen to improve upon others most consistently, with the proposed
framework achieving the most significant reduction in the majority of scenarios. Rule-Based Control (RBC)
showed a small promise in terms of reducing losses, while XGBoost + SHAP and DDPG can be viewed
as being moderately better. Energy consumption (kWh) for each method over all datasets is represented
in Fig. 6. The multi-agent methods (MADRL and MADRL + SHAP) show better energy saving, while RBC
has the lowest energy efficiency. XGBoost + SHAP and DDPG are in between in energy savings.

As indicated by Fig. 7, the SHAP interpretation consistency comparison between XGBoost + SHAP
and the proposed MADRL + SHAP framework shows that the proposed method grants more stability and
coherence to the feature attribution across datasets, assuring more trustworthiness and explainability of
the agent’s decision. This is followed by Fig. 8, representing normalized cumulative performance scores of
every method based on three core metrics: pressure stability, water loss reduction, and energy efficiency.
MADRL + SHAP is positioned at the forefront in terms of balanced performance and also superior overall
performance ranking, underscoring its capability in adaptive and transparent water resource management.
Radar plots in Fig. 8 depict the normalized overall performance of each method for three core metrics taken
into account, namely: pressure stability, water loss reduction, and energy efficiency. The MADRL + SHAP
framework is more balanced and hence dominating in terms of performance, having almost attained the ideal
baseline in all observed criteria. While still strong, the MADRL baseline, with the introduction of SHAP-
based explainability, has gained in trustworthiness without any compromise on control quality. On the other
hand, the Rule-Based Control (RBC) is left far behind in terms of adaptability and efficiency, shouting the
downsides of this approach in dynamic environments. This visual comparison collectively raises the bar of
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multi-agent learning, along with explainability, for the delivery of high-performance, trustworthy control in
smart water distribution networks.
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Figure 5: Water loss reduction (%) achieved by each control method across five datasets: NYC, Alicante Average,
Alicante Trial, LeakDB, and WDSA
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Figure 6: Energy consumption (in kWh) of all evaluated control approaches across five datasets
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Figure 8: Radar plot comparing normalized performance of each method across three key metrics: pressure stability,
water loss reduction, and energy efficiency

6 Discussion

The numerical results from the five datasets showed the efficiency and applicability of the MADRL
+ SHAP framework in real-time water distribution system management. The system subjected to the
method consistently achieved better results in reducing water loss, energy consumption, and pressure
instability over the baselines, both classic as well as learning-based, e.g., RBC, DDPG, and XGBoost + SHAP.
These increments are highly visible in complex settings such as NYC demand variations and LeakDB leak
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events, where multi-agent coordination adaptability easily trumped static scheduling and single-agent modes
of control.

The inclusion of SHAP-based explainability contributed not only to the interpretability of the decision-
making process but also to the overall trust in the system, as evidenced by high SHAP consistency
scores across all datasets (up to 90%). These findings reinforce the notion that integrating explainability
into reinforcement learning frameworks can enhance user confidence without compromising control
performance—an aspect also emphasized in recent XAl-centric water management research.

In regard to recent literature, e.g., [10] and Digital Twin (DT) approaches via transformers [7] among
others, the system proposed herein serves as a common ground for decentralized learning and post-hoc
explanation for control optimization and transparency. SWI-FEED emphasizes scalable IoT architecture and
rule-based optimization, whereas our approach adapts policies on the fly with respect to environmental
feedback and exposes learned behaviors in interpretable SHAP values.

Since SWI-FEED concerns scalable IoT architecture and rule-based optimization, whereas our
approach does policy adaptation in dynamic environments from environmental feedback and explains
learned behaviors in terms of interpretable SHAP values.

However, some restrictions must draw our attention. First, one of the main issues is that computing
the SHAP values remains quite expensive in high-dimensional or multi-agent ones. Although sampling and
feature grouping can alleviate this problem, SHAP explanations’ scalability in very large networks (with
over a thousand nodes) remains an unsolved challenge. Second, although the framework has been evaluated
on five datasets, subsequent work should consider deployment in real-time settings to allow testing of
performance under conditions of sensor faults, delayed feedback, and evolving topology. Third, while the
framework adapts well across both arid (e.g., Dubai) and temperate (e.g., NYC) use cases, water-use patterns
driven by socio-cultural factors may still influence policy transferability. Finally, the human-centered benefits
of interpretability are yet to be evaluated with domain experts. Incorporating utility operator feedback
to validate or refine the SHAP-driven insights may enhance the practicality of the framework in the
decision-making loop.

In summary, the proposed MADRL + SHAP system demonstrates strong potential as a scalable and
trustworthy control mechanism for future water infrastructure. Its ability to integrate adaptability with
interpretability sets the foundation for more transparent and autonomous smart city operations.

7 Conclusions

This paper presents a unique hybrid framework for intelligent water distribution management that
combines Multi-Agent Deep Reinforcement Learning (MADRL) and explainable Al techniques leveraging
SHAP. The proposed system learns adaptable and interpretable optimal control policies for dynamic and
multi-sensory urban water networks, thus addressing some of the most critical challenges in the management
of smart infrastructure systems. Five datasets—including household-level smart meter trials, city-scale con-
sumption trends, and simulated leak events—were used experimentally to validate the proposed framework.
This method has reduced water loss by up to 32%, improved energy efficiency by 25%, and enhanced pressure
stability to between 91% and 93% across several operating conditions. Furthermore, the SHAP explanations
provided consistent and interpretable justification of agent behavior, with an average SHAP consistency score
of 88%, thus enabling end-users and system operators to know why certain control decisions were taken.

Itis this work that bridges cyber-physical learning with human-centric explainability toward transparent
intelligent systems in urban infrastructure. Future research will include the integration of semantic ontologies
for context-aware decision-making, the deployment of edge-computing variants for real-time operation,
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and the exploration of human-in-the-loop feedback to facilitate trust calibration and system usability in
practical scenarios.
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